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Humoral immunity is an important body defense system against virus infection and
is correlated to patient health status. Antibody response is a key factor in controlling
virus replication. During infection, viruses induce the production of antibodies, which
differ in their isotype, neutralization capacity and breadth, recognition of surface versus
internal viral proteins, and epitope specificity. These and other yet to be identified fac-
tors determine the role of antibodies in virus clearance through the direct neutralization
and Fc effector functions, such as antibody-dependent cellular cytotoxicity [1]. However,
certain features of the antibody response, such as antibody-dependent enhancement of
infection [2] or increased inflammation resulting from the deposition of immune com-
plexes [3], can create “adverse effects” to exacerbate infection. Adding to the complexity
of interaction between viruses and host immune systems, some viruses have exploited
multiple mechanisms to compromise antibody production, which helps them to overcome
the resistance of host organisms and establish infection. This phenomenon often contributes
to the differences in magnitude and longevity of the humoral response to natural infections,
in comparison with vaccines [4]. Despite recent advancements in the characterization
of monoclonal antibody responses to a number of human pathogens, including human
immunodeficiency virus 1 [5], influenza virus [6], dengue virus [7], chikungunya virus [8],
rabies virus [9], paramyxoviruses [10], poxviruses [11], hantaviruses [12], filoviruses [13],
and coronaviruses [14], critical knowledge gaps still exist. In particular, many viral and host
factors that determine the dynamics of antibody response and their role in pathogenesis,
as well as the mechanisms of antiviral and proviral antibody effects, remain undefined.
Undoubtedly, this information will be vital to guide the design of vaccines and therapeutic
strategies based on passive immunization.

The Special Issue “Characterization of Antibody Responses to Virus Infections in
Humans” has gathered nine publications, including seven original articles and two reviews,
that emphasize the need for better understanding of biological aspects of humoral immune
response to different viral pathogens.

The varicella-zoster virus (VZV) belongs to the Herpesviridae family and is the causative
agent of varicella (chickenpox) and herpes zoster (shingles). After primary replication in
the upper respiratory tract, VZV is transported via the bloodstream to the skin sites, causing
a widely distributed vesicular rash. VZV can further reach ganglia by axonal transport
and establish a latent infection in the nervous system. In case of infection reactivation, the
virus is transported down the nerve to the correlating dermatome, which results in zoster.
Due to VZV neurotropism, the infection can provoke long-lasting postherpetic neuralgia,
especially in elderly and immunocompromised individuals [15,16]. Availability of accurate
methods for serodiagnostics of VZV-specific antibodies is needed for the timely treatment
of clinical cases, implementation of quarantine measures, vaccination effectiveness control
and routine epidemiological surveillance of VZV. As an alternative to commercial kits that
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are not evenly distributed worldwide, Kombe et al. [17] developed the highly sensitive
diagnostic approach based on the chemiluminescent immunoassay, which can detect very
low IgA, IgG and IgM titers against VZV-gE envelope glycoprotein in patients at the early
stage of infection.

Influenza A viruses (IAV) constitute a large group of pathogens with high relevance
for public health. IAVs have been shown to infect humans, pigs, horses, dogs, cats and
sea mammals [18–23]. Wild waterfowl serve as a natural reservoir for the vast majority
of IAV serotypes. In general, human IAVs cause seasonal flu outbreaks worldwide, with
mild-to-severe respiratory symptoms. However, due to the segmented nature of the IAV
genome, new viruses emerge as a result of genome reassortment in humans and animals.
Given the lack of immunity to such viruses in the human population, these new variants
have the potential to cause a pandemic with a high case-fatality ratio [18]. In addition,
multiple cases of human infection with avian IAV, predominately the H5 subtype, have
been described [24–26] since the first documented outbreak in Hong Kong in 1997 [27–29].
In severe cases, the infection is characterized by excessive lung inflammation resulting
from the virus-induced cytokine storm, and can often be fatal [30,31]. Therefore, the
serosurveillance studies in ‘hot areas’, such as South-East Asia, are critical to track the
circulation, emergence and evolution of avian IAV to inform outbreak preparedness and
response measures. Ilyicheva et al. [32] analyzed serum samples from Vietnamese residents
and reported the detection of neutralizing antibodies to H5 avian IAV isolated in Vietnam
and Russia in 2017–2018. These findings suggest an ongoing adaptation of the rapidly
evolving H5 viruses to human hosts.

The most recent pandemic of viral disease has been caused by severe acute respiratory
syndrome coronavirus-2 (SARS-CoV-2), a zoonotic pathogen that barely requires a special
introduction nowadays. The World Health Organization declared the COVID-19 outbreak a
Public Health Emergency of International Concern on 30 January 2020, and a pandemic on
11 March 2020. It spread rapidly around the world, causing more than 511 million cases and
6.2 million deaths as of 3 May 2022 [33]. The early clinical studies of COVID-19 in China
revealed important characteristics of the disease [34,35]. The patients had pneumonia,
and, in severe cases, developed acute respiratory distress syndrome and required oxygen
therapy in intensive care units. Other common complications included acute cardiac
injury and secondary infection. The leucopenia, lymphopenia and high serum levels of
proinflammatory cytokines were identified as markers of disease severity. Since the last
quarter of 2020, variant viruses have emerged in many parts of the world because of the
high burden of infection and the adaptation of SARS-CoV-2 to human cells under immune
pressure [36,37].

In this Special Issue, five different publications [38–42] have characterized the antibody
response at population and molecular levels, contributing to a broader picture of SARS-
CoV-2 epidemiology. Xiao et al. [38] conducted a large-scale screening of serum samples in
the Guangdong province, China, between March and June 2020. The overall prevalence of
virus-specific antibodies was low soon after the emergence of COVID-19 in Guangdong,
suggesting an urgent need for vaccination to increase population immunity to SARS-CoV-2.
Another study by Xu et al. [39] revealed a 4.5-fold increase in SARS-CoV-2 seroprevalence
from Fall 2020 to February 2021 in the population of Western Pennsylvania, USA, which
was shown to be driven both by infection and vaccination. Kazachinskaia et al. [40]
analyzed the blood samples of COVID-19 patients in Novosibirsk city, Russia, and observed
cross-reactivity of antibodies to SARS-CoV (2002) proteins. Additionally, their results
suggested that high neutralization titer is not necessarily predictive of the infection survival.
Huang et al. [41] presented the kinetics study of viral load, humoral immune response
and the cytokine profile in a hospital patient cohort (January–March 2020) and were
able to correlate these parameters with the disease severity during the initial outbreak in
Taiwan. Another work from Germany by Heidepriem et al. [42] provided longitudinal
characterization of the antibody response to SARS-CoV-2. The linear epitopes in viral
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proteome and specific glycan structures, targeted by antibodies from COVID-19 patients
with moderate and mild disease, were identified.

Filoviruses represent yet another group of pathogens with high relevance for global
health and include one of the deadliest human pathogens known so far, Ebola (EBOV)
and Marburg viruses. These and other members of the Filoviridae family can cause a
severe disease, which is often accompanied by haemorrhagic manifestations and systemic
multiorgan dysfunction, with fatality rates reaching as high as 90% [43]. Human outbreaks
generally result from spillover events from infected animals, including bats and non-human
primates [44]. The development of infection is believed to result from deep suppression of
the host immune system and dysregulation of both innate and adaptive arms of immunity
by filoviruses. In worst cases, the rapid disease progression culminates in the death of
an infected individual in 1–2 weeks after the onset of symptoms. The largest epidemic of
filovirus-induced disease occurred in 2013–2016 in West Africa and claimed the lives of
11,310 out of 28,616 people infected [45].

The filovirus glycoprotein (GP) is the sole envelope viral protein responsible for cell
entry; hence, it serves as the primary target for antibody-based therapies and vaccine
design efforts. Currently, monoclonal antibody (mAb) therapy has been shown to be the
most effective treatment of filoviral infections after the onset of symptoms [46]. In this
Special Issue, two comprehensive review papers by Hargreaves et al. [47] and Yu and
Saphire [48] summarize the recent advancements in the characterization of neutralizing
antibody responses against EBOV and other filoviruses. The authors discuss the role of
epitope specificity and Fc effector functions in antiviral mechanisms employed by the
most promising antibodies, the correlation of these parameters with in vivo protection by
individual mAbs and mAb cocktails, the structural basis for cross-reactivity to ebolavirus
species and the strategies to avoid viral escape from neutralizing antibodies.

In conclusion, we believe that this Special Issue underlines the importance of multi-
level analysis of antibody responses in the context of virus infections. The data presented
here contribute to a better understanding of epidemiological and molecular aspects of
infectious diseases caused by publicly relevant viral pathogens, such as VZV, IAV, SARS-
CoV-2 and filoviruses. We hope that this Special Issue will stimulate future studies on
humoral immune response to inform the development of countermeasures against life-
threatening viral infections.
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