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The immune functions of heat-killed Limosilactobacillus reuteri PSC102 (hLR) were
investigated in cyclophosphamide (CP)-treated immunosuppressed mice. BALB/c mice
were randomly divided into five groups: normal control group, CP group, CP treated
with levamisole (positive control group), and CP treated with low- and high-dose
hLR. After receiving the samples for 21 days, mice were sacrificed, and different
parameters, such as immune organ index, immune blood cells, splenocyte proliferation,
lymphocyte subpopulations, cytokines, and immunoglobulins, were analyzed. Results
showed that the immune organ (thymus and spleen) indices of hLR treatment groups
were significantly increased compared to the CP group (p < 0.05). hLR administration
prevented CP-induced reduction in the numbers of white blood cells, lymphocytes,
midrange absolute, and granulocytes, providing supporting evidence for hematopoietic
activities. Splenocyte proliferation and T-lymphocyte (CD4+ and CD8+) subpopulations
were also significantly augmented in mice treated with hLR compared to the CP group
(p < 0.05). Moreover, Th1-type [interferon-γ, interleukin (IL)-2, and tumor necrosis
factor-α] and Th2-type (IL-4 and IL-10) immune factors and immunoglobulin (IgG)
showed significant increasing trends (p < 0.05). Additionally, the other proinflammatory
cytokines (IL-1β and IL-6) were also significantly elevated (p < 0.05). Taken together, this
investigation suggested that orally administered hLR could recover immunosuppression
caused by CP and be considered a potential immunostimulatory agent for the treatment
of immunosuppressive disorders.
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INTRODUCTION

Immunosuppression is a state of immune dysfunction that
decreases the immune response to antigens and makes the
individual more sensitive to diseases (Round and Mazmanian,
2009). Based on the condition of immunosuppression, patients
may be at risk for different kinds of infections and complications,
delaying diagnostic and treatment outcomes. For example, the
immunocompromised conditions of HIV infection, irritable
bowel disease, and cancer often lead to low antibody levels or
ineffective treatment (McGrath et al., 2020). To control viral
infectious diseases and prevent infections, either vaccines or
immunostimulating drugs at a high dose need to be used for long-
term treatment, often leading to serious side effects (Xie et al.,
2015). Hence, the most effective way of treating and preventing
immunosuppressive disorders is to explore and develop novel
immunostimulators.

Nowadays, the application of probiotics has acquired
considerable attention as a treatment option for immune
diseases. Probiotics play an important role in maintaining the
intestinal microbiota balance, immunomodulation, preventing
gastrointestinal infections as well as improving hematological
indices (Park et al., 2017). Previous studies have shown that
lactobacilli can be effective for host immunostimulation to build
the early line of defenses against pathogenic infections (Bujalance
et al., 2007; Paturi et al., 2007). Limosilactobacillus (formerly
Lactobacillus) reuteri (L. reuteri) (Zheng et al., 2020) has been
reported to show immunoregulatory activity by the activation of
macrophage populations, IgA and IgG production (De Gregorio
et al., 2016), prevention of streptococcus infections (De Gregorio
et al., 2015), promotion of Th-cell responses (Hoang et al.,
2019), production of biogenic amines (Greifová et al., 2017),
and enhancement of the gut cytokine profile (Maassen et al.,
2000). Moreover, L. reuteri has been proven effective for treating
infantile colic (Sung et al., 2018) and gastrointestinal (Francavilla
et al., 2008) infections.

However, the safety issue of using live probiotics is still
a matter of argument. The potential risks could be systemic
infections due to translocation in pediatric and vulnerable
patients (Deshpande et al., 2018). Additionally, probiotic
administration may cause the risk of acquiring antibiotic
resistance genes and intervening in the gut microbiota in
neonates (Bafeta et al., 2018). The use of live probiotics in
certain risk factors, such as diabetes mellitus, mitral regurgitation,
and short-gut syndrome, may produce different forms of sepsis,
including liver abscess, endocarditis, and bacteremia (Mackay
et al., 1999; Rautio et al., 1999; Kunz et al., 2004). To overcome
these risks, there is a growing interest in using non-viable
probiotic bacteria or their cell extracts, mainly heat-inactivated
lactic acid probiotic bacteria. Heat-killed probiotic cells, cell-
free supernatants, and isolated, purified main components
can produce beneficial effects, including immunomodulation
(Kataria et al., 2009; Taverniti and Guglielmetti, 2011). Heat-
killed Limosilactobacillus rhamnosus OLL2838 has been shown
to protect the mucosal barrier integrity defects in colitis-induced
mice (Miyauchi et al., 2009). Heat-killed Limosilactobacillus
paracasei can boost immunity by stimulating splenocyte and

macrophage proliferation (Chiang et al., 2012). The combined
therapy of several heat-killed probiotics can modulate the
production of cytokines and immunoglobulins (Campeotto et al.,
2011; Chang et al., 2013). Moreover, heat-killed probiotics
may also provide the development of safer preparations with
pharmaceutical properties, such as reduction of reactions with
other materials, easier storage, and extension of shelf-life
(Kang et al., 2021). In this study, L. reuteri PSC102, a newly
identified probiotic strain isolated from pigs, is yet to check
for potential immunoregulatory effects. Therefore, this study
aimed to investigate the immunostimulatory effects of heat-killed
L. reuteri PSC102 (hLR) in cyclophosphamide (CP)-induced
immunosuppressed BALB/c mice. CP is a classical antineoplastic
drug that causes immunosuppression, oxidative stress, and
physiological disturbance as side effects and is widely used to
produce an immunosuppressive model (Xie et al., 2016; Meng
et al., 2019).

MATERIALS AND METHODS

Chemicals and Reagents
Cyclophosphamide monohydrate and levamisole hydrochloride
were purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), concanavalin A (Con A), lipopolysaccharide
(LPS), and Roswell Park Memorial Institute (RPMI)-1640
medium were obtained from Sigma-Aldrich (St. Louis,
MO, United States). Cytokines and IgG enzyme-linked
immunosorbent assay (ELISA) kits were purchased from ELK
Biotechnology (Wuhan, China). Red blood cell (RBC) lysing
buffer, fetal bovine serum (FBS), and penicillin-streptomycin
(P/S) were purchased from Gibco Life Technologies (New York,
NY, United States). Dimethyl sulfoxide (DMSO) was obtained
from Duksan Pure Chemical Co., Ltd. (Kyungkido, South Korea).
Phosphate-buffered saline (PBS) was provided by Welgene, Inc.
(Gyeongsangbuk, South Korea). Anti-CD4+ [phycoerythrin
(PE)] and anti-CD8+ [fluorescein isothiocyanate (FITC)]
antibodies were supplied by BD Biosciences (San Diego,
CA, United States).

Isolation and Preparation of Sample
Gram-positive probiotic Limosilactobacillus reuteri PSC102
(L. reuteri PSC102) is a patent strain isolated from pig feces
(Sus domesticus). The analysis details have been deposited
in the repository,1 providing the GenBank accession code
(MZ127631.1). The strain also has accession number given
by the International depository authority (KCCM12927P) as a
patent strain. Briefly, feces were obtained in sterile plastic bags
from Gyeongsangbuk Veterinary Service Laboratory (Daegu,
South Korea). Fecal samples were mixed with buffered peptone
water broth, followed by shaking for 2 min. The mixed samples
were spread on a de Man Rogosa and Sharpe (MRS) agar plate
and incubated for 24 h at 37◦C. The colonies were randomly
selected from plates and individually cultivated in MRS broth at

1https://www.ncbi.nlm.nih.gov/nuccore/2032707025
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37◦C for 24 h and restreaked onto the MRS agar. The isolates were
subjected to Gram staining and microscopic observation.

To prepare samples for in vivo experiments, L. reuteri PSC102
was grown in MRS medium for 24 h at 37◦C. The pellets
were collected by centrifugation for 10 min at 6,000 rpm at
4◦C, and the culture supernatant was discarded. The cell pellets
were washed twice with sterile PBS. The collected pellets were
dried by lyophilization in a vacuum freeze dryer (Operon Co.,
Ltd, Gyeonggi, South Korea). The colony-forming units per
gram (CFU/g) of the dried sample was determined by serial
10-fold dilution and incubation on an MRS agar plate for
24 h at 37◦C. The dried pellet was heat-killed at 80◦C for
15 min in a temperature-controlled water bath. Non-viability
was confirmed by plating the inactivated sample on MRS agar
medium and incubating overnight at 37◦C. There were no
bacterial colonies observed.

Scanning Electron Microscopy Analysis
Scanning electron microscopy (SEM) was used to examine the
morphological characteristics of hLR, as described previously
(Vinod et al., 2015). Heat-inactivated and non-treated control
L. reuteri PSC102 cells were fixed for 2 h at 4◦C in 2.5%
glutaraldehyde in PBS (pH 7.0) and washed thrice with the same
buffer. Cells were dehydrated in a graded sequence of ethanol
concentrations (30, 50, 70, 80, 90, and 100%) after washing. The
samples were kept overnight at –70◦C and dried by lyophilization
for 24 h. The prepared samples were mounted on an SEM tube
and sputter-coated with gold-palladium before analysis on an
SEM (model S-4300; Hitachi, Tokyo, Japan) at 5.0 kV voltage and
×20,000 magnification.

16S rRNA Gene Sequencing Analysis
The genomic DNA of PSC102 was isolated using the DNA
isolation and purification kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. The universal primer
(27F/1492R) was applied, and the following cycling conditions
were maintained for analysis: enzyme activation and initial
denaturation at 94◦C for 5 min, 35 cycles of denaturation for
30 s at 94◦C, annealing for 30 s at 56◦C, and elongation for
30 s at 72◦C, followed by final extension for 7 min at 72◦C. The
polymerase chain reaction product was analyzed from the Korean
Culture Center of Microorganisms (Seoul, South Korea). Using
BLAST software, the sequencing results were compared to closely
correlated sequences available from the GenBank database.
Finally, a phylogenetic tree was constructed by the neighbor-
joining method using MEGA 5.0 software (An et al., 2006).

Experimental Animals
Forty specific pathogen-free male BALB/c mice (4–5 weeks,
18± 20 g) were purchased from Central Lab Animal, Inc. (Seoul,
South Korea). All mice were acclimatized to rodent facilities for
1 week before the commencement of the experiment. Mice were
provided standard laboratory conditions at 24 ± 1◦C, 55 ± 5%
relative humidity, and 12/12 light/dark cycle and fed standard
laboratory chow feed and water ad libitum. All experimental
protocols were approved by the Laboratory Animal Care and Use
Committee of Kyungpook National University (2020-103).

Experimental Design
After acclimatization to the laboratory environment, all mice
were randomly divided into five groups consisting of eight
mice each (Table 1). The total number of mice used in the
study was calculated by the G∗power program (3.1.9.2) based
on effect size (0.5), α error probability (0.05), power (1-β
error probability) (0.8), and group number (5). Except for the
normal control (NRM) group, mice from the other four groups
were intraperitoneally (i.p.) injected with CP (80 mg/kg body
weight/day) in a sterile isotonic saline solution for the first three
consecutive days to induce immunosuppression (CP group). Oral
administration was conducted with 200 µL levamisole (80 mg/kg;
PC group), low-dose hLR (hLR-L; 106 CFU/kg), and high-dose
hLR (hLR-H; 1010 CFU/kg) once daily for 21 days (Figure 1). The
samples were dissolved in distilled water and administered into
mice through gavage feeding. The body weight was checked twice
weekly to adjust the dose. After 21 days, all mice were sacrificed,
and blood and immune organs were processed accordingly.

Body Weight Analysis
The body weight of each mouse of the five groups was
measured at 3-day intervals for a total of nine times throughout
the experiments.

Determination of Immune Organ Index
On day 21, after treatments, all mice in each group were
terminated by cervical dislocation, and the thymus and spleen
were removed and weighed immediately. Finally, the organ
indices were calculated as follows:

Index =
weight of thymus or spleen (mg)

body weight (g)
(Qiet al., 2018)

Determination of Hematological Parameters
After hLR administration for 3 weeks, blood was collected from
the tail vein of mice and kept in EDTA-coated Microvette R© CB
300 K2E tubes (Sarstedt AG and Co., Numbrecht, Germany).
The number of white blood cells (WBCs), lymphocytes, midrange
absolute (MID), and granulocytes in each blood sample was
measured using URIT-300 Vet Plus (URIT Medical Electronic
Co., Ltd., Guangxi, China).

Preparation of Thymocytes and Splenocytes
Thymocyte and splenocyte isolation and preparation were
done according to a previously described method (Han et al.,
2018). Aseptically collected thymus and spleen from mice
were gently passed through a 70 µm cell strainer (BD
Biosciences) using the plunger of a 3 mL syringe. Cells were
collected and washed thrice with RPMI-1640 by centrifugation
(1800 rpm, 5 min, 4◦C). The collected cells were treated
with RBC lysing buffer, and lysed RBCs were removed by
centrifugation and maintained in RPMI-1640 supplemented with
10% FBS and 1% P/S.

Mitogen Con A- and LPS-induced Splenocyte
Proliferation Assay
The proliferation of splenocytes was determined using the
MTT assay (Zhang et al., 2020). The number of splenocytes
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TABLE 1 | Description of different groups.

Groups Treatment Description

NRM Normal control Normal diet and water

CP CP control i.p. administration with three consecutive doses of 80 mg/kg CP

PC CP and positive control i.p. administration of three consecutive doses of 80 mg/kg CP and treated with 40 mg/kg levamisole

hLR-L CP and low-dose treatment i.p. administration of three consecutive doses of 80 mg/kg CP and treated with 1 × 106 CFU/kg/day hLR

hLR-H CP and high-dose treatment i.p. administration of three consecutive doses of 80 mg/kg CP and treated with 1 × 1010 CFU/kg/day hLR

FIGURE 1 | Experimental timeline.

was adjusted to 1 × 106 cells/well in RPMI-1640 complete
medium and seeded at 100 µL/well in a 96-well plate. Next,
mitogen Con A and LPS (5 µg/mL) were added to each well to
make the final volume of 200 µL, followed by incubation for
72 h at 37◦C. The wells containing only RPMI-1640 medium
without any mitogen were used as control. The MTT (5 mg/mL)
solution (20 µL) was added to each well, followed by incubation
for another 4 h. The medium was removed, and 200 µL
DMSO was added to each well and shaken for 10 min in an
orbital shaker. Finally, absorbance was measured at 570 nm
using Gen5 microplate reader version 3.08 (BioTek, Winooski,
VT, United States).

Flow Cytometric Analysis of Thymic and Splenic
T-lymphocyte Subpopulations
The above-mentioned prepared thymic and splenic
lymphocytes were adjusted to 1 × 106 cells/mL, mixed
with anti-CD3+ (APC), anti-CD4+ (PE), and anti-CD8+
(FITC) antibodies, and incubated at 4◦C for 30 min
in a dark place. Cells were washed with PBS thrice
to remove unbound antibodies. The BD FACSAria III
flow cytometry system (BD Biosciences, San Diego, CA,
United States) was used to acquire the data. Finally,
the population of CD4+ and CD8+ T lymphocytes was
analyzed using FlowJo software (BD Biosciences) and
expressed as percentages.

Quantification of Cytokines and Immunoglobulin by
ELISA
The serum sample was obtained from whole blood by
centrifugation for 10 min at 3000 rpm and kept at –70◦C until use.
The concentration of cytokines [interferon (IFN)-γ, interleukin
(IL)-6, IL-2, tumor necrosis factor (TNF)-α, IL-1β, IL-4, and IL-
10] and immunoglobulins (IgG) in the serum was determined
according to the instructions of the ELISA kits. The results were
expressed as pg/mL by generating a standard curve.

Statistical Analysis
Data were expressed as the mean ± standard error of the
mean. Comparisons among the groups were made using one-way
analysis of variance, followed by Tukey’s multiple comparison test
using GraphPad Prism software version 7 (GraphPad Software,
Inc., San Diego, CA, United States). p < 0.05 was considered
statistically significant.

RESULTS

Scanning Electron Microscopy Analysis
of hLR
Scanning electron microscopy was used to observe and compare
the morphology of viable and heat-killed L. reuteri PSC102. Upon
exposure of heat (80◦C for 15 min), L. reuteri PSC102 was killed
and caused a minor morphological alteration. SEM indicated that
cell surface of heat-killed L. reuteri PSC102 appeared slightly
rougher and uneven than live L. reuteri PSC102 (Figure 2).

Analysis of the Phylogenetic Tree
The GenBank data homology search for the nucleotide sequence
of the strain PSC102 16S rRNA gene at the National Center for
Biotechnology Information (NCBI) showed that it belongs to
L. reuteri with > 99% similarity. Strain L. reuteri PSC102 and
L. reuteri L23507 belong to the same taxonomic group according
to the phylogenetic tree based on the comparative analysis of
the 16S rRNA gene (Figure 3). Moreover, the tree indicated that
L. reuteri PSC102 was allocated to the species of L. reuteri.

Effects of hLR on Body Weight
The body weight of mice is summarized in Figure 4. Before
CP administration, the body weight did not differ among the
different groups of mice. However, there was a significant weight
loss due to injection with CP compared to NRM mice (p < 0.05).
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FIGURE 2 | Morphology of control L. reuteri PSC102 (A) and hLR (B).

FIGURE 3 | Phylogenetic tree of strain L. reuteri PSC102 based on the comparative analysis of the 16S rRNA sequence. Data were obtained from the
NCBI-GenBank, and the phylogenetic tree was built with the neighbor-joining method using the Mega 5.0 program package. Scale bar, 0.0050 substitution per
nucleotide.

In the CP group, treatment with hLR-L, hLR-H, and levamisole
(PC) showed a significant increase in body weight throughout
the remaining experimental period compared to CP alone-treated
group (p < 0.05).

Effects of hLR on the Immune Organ
Index
The thymus and spleen indices of the CP group were
significantly decreased than the NRM group (p < 0.05;
Table 2). However, the indices of both organs were significantly
improved in the PC, hLR-L, and hLR-H groups compared
to the CP group (p < 0.05). The hLR-H group showed a

stronger effect on immune organ indices than the PC group
(p < 0.05).

Effects of hLR on the Hematopoietic
Functions in CP-Treated Mice
To assess the protective effects of hLR on the myelosuppression
produced by CP, WBCs, lymphocytes, MID, and granulocytes
from peripheral blood were analyzed. WBCs, lymphocytes, MID,
and granulocytes counts were significantly reduced (p < 0.05) in
CP-treated mice compared to NRM mice (Figure 5). However,
mice treated with hLR had significantly higher hematopoietic
effects than mice in the CP group. A numeral increase in WBCs,
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FIGURE 4 | Effects of hLR on the body weight in CP-treated mice. Data are
the mean ± SEM (n = 8). Values with different letters indicate a significant
difference between the groups in the same time point (p < 0.05).

TABLE 2 | Effects of hLR on the immune organ (thymus and spleen) index in mice.

Groups Thymus index Spleen index

NRM 2.65 ± 0.07a 4.66 ± 0.13a

CP 2.08 ± 0.10b 3.57 ± 0.05b

PC 2.88 ± 0.09a 4.49 ± 0.11a

hLR-L 2.72 ± 0.7a 4.15 ± 0.16a

hLR-H 3.29 ± 0.12c 5.56 ± 0.10c

Data are the mean ± SEM (n = 8). Different letters indicate a significant difference
between the groups (p < 0.05).

lymphocytes, MID, and granulocytes counts was observed in both
doses of hLR. This observation indicated that hLR could improve
the myelosuppression induced by CP.

Effects of hLR on the Splenocyte
Proliferation of Immunosuppressed Mice
Splenocyte proliferation is one of the essential events in the
activation event of cellular and humoral immunity (Sassi
et al., 2017). Spleen cell counts in hLR-treated (hLR-H) mice
were higher than in CP-treated mice (Figure 6A). Moreover,
as shown in Figure 6B, CP treatment could decrease the
proliferation of splenocytes compared to NRM mice. However,
hLR treatment significantly enhanced the proliferation of splenic
T lymphocytes compared to the CP-treated group (p < 0.05). This
observation indicated that hLR could stimulate T-lymphocyte-
specific proliferation capacity.

Effects of hLR on the Expression of
Thymic and Splenic T-Lymphocyte
Subpopulations
To determine the effects of hLR on lymphocyte activities, thymic
and splenic T-lymphocyte subsets were determined by flow
cytometry. As shown in Figure 7A, the percentages of CD4+ and
CD8+ T lymphocytes in the CP-treated group were significantly
decreased compared to NRM (p < 0.05). However, CD4+
T-lymphocyte subpopulations in the thymus increased in mice
treated with hLR compared to the CP-treated group, but the
increase was non-significant. In contrast, the percentage of CD8+
T lymphocytes increased in the hLR-treated group, which was

statistically significant (p < 0.05). In the spleen (Figure 7B), the
expression of CD4+ T lymphocytes was significantly increased
in mice treated with hLR-H, and the expression of CD8+ T
lymphocytes was significantly increased in mice treated with both
hLR-L and hLR-H than the CP-treated group (p < 0.05).

Effects of hLR on Cytokine and
Immunoglobulin Levels in the Serum of
Mice
The cytokine and immunoglobulin levels are shown in Figure 8.
IFN-γ, IL-2, and TNF-α are preferentially called Th1-type
cytokines, whereas IL-4 and IL-10 are generally regarded as Th2-
type cytokines (Saxena and Kaur, 2015). CP treatment caused
a significant decrease in IFN-γ, IL-6, IL-2, TNF-α, IL-1β, IL-4,
and IL-10 in the sera of the CP group compared to the NRM
(p < 0.05). hLR treatment significantly prevented CP-treated
decrease in both Th1- and Th2-type cytokines as well as other
proinflammatory cytokines (IL-1β and IL-6). These cytokines
significantly increased in both hLR groups, and the PC group
compared to the CP group (p < 0.05). In immunoglobulin
production, IgG production was significantly suppressed in the
CP-treated group compared to NRM (p < 0.05). However, hLR
administration was found to noticeably inhibit the decline in
IgG concentrations.

DISCUSSION

Immunosuppression reduces the body’s capability to resist a
particular infection due to damage to the immune system. It
is an area of interest to discover immunomodulatory agents
from probiotic bacteria to treat immunosuppressive diseases.
Besides this, the attention to using inactivated probiotic
bacteria as an immunostimulatory agent is increasing day by
day. Recent investigations suggested that killed bacteria can
produce bioactivities and are also believed to be safe (Campeotto
et al., 2011; Taverniti and Guglielmetti, 2011). In our study,
we killed L. reuteri PSC102 with optimal killing condition
(80◦C for 15 min). Heat inactivation neither damages the
total cell integrity of L. reuteri PSC102 nor diminishes the
capability to stimulate immune response in mice. A slight
change in bacterial morphology can be happened during
exposing to external stresses, such as high temperatures (Ou
et al., 2011). Similarly, our SEM analysis demonstrated that
after being exposed to high temperature, hLR retained its
bacterial structure with a very slight rough and uneven cell
surface. Various cell wall components of hLR could contribute
to showing immunomodulatory effects. Many reports showed
that lipoteichoic acid, teichoic acid, peptidoglycan, and β-glucan
of bacteria, known as pathogen-associated molecular patterns
(PAMPs), modulate the immune response by regulating
cytokine production (Matsuguchi et al., 2003; Adams, 2010).
Moreover, these components can also stimulate the proliferation
of hematopoietic and lymphatic cells to boost immunity
(Ohshima et al., 1991). Exopolysaccharide, an extracellular
carbohydrate macromolecule secreted from probiotic bacteria
has been characterized to possess pathogen protection and
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FIGURE 5 | Effects of hLR on immune blood cell counts of CP-treated immunosuppressed mice. Number of WBCs (A), lymphocytes (B), MID (C), and granulocytes
(D). Data are the mean ± SEM (n = 8). Different letters above the bars indicate a significant difference between the groups (p < 0.05).

FIGURE 6 | Effects of hLR on splenocyte proliferation. (A) Splenocyte counts in different groups. (B) Con A- and LPS-induced splenocyte proliferation. Data are the
mean ± SEM (n = 4). Different letters above the bars indicate a significant difference between the groups (p < 0.05).

immunomodulating properties (Angelin and Kavitha, 2020).
Moreover, bacterial exopolysaccharides are being studied
extensively due to their biological activities and physicochemical
features, as well as their prospective applications in industry,
food, cosmetics, and medicine (Castro-Bravo et al., 2018;
Angelin and Kavitha, 2020). Surface-layer proteins are
present on the cell surface of lactobacilli, has been proved
the capability of the probiotics to bind to immune cells such
as dendritic cells to stimulate the T-regulatory phenotype

and maintain the immune homeostasis (Konstantinov et al.,
2008). Bacteriocins are antimicrobial tiny heat-stable peptides
produced by lactic acid bacteria capable to prevent the growth
of other pathogenic bacteria including enteric pathogens.
Reuterin, a well-known antibacterial bioactive metabolite
produced by L. reuteri has been shown to exert its activity
against gut pathogenic microorganisms (Schaefer et al.,
2010). Except bacteriocins and rueterin, the probiotic lactic
acid bacteria contains a large number of anti-microbial
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FIGURE 7 | Effects of hLR on thymic and splenic T-lymphocyte subpopulations. (A) Thymic T-lymphocyte subpopulations (CD4+, region Q1; CD8+, region Q4).
(B) Splenic T-lymphocyte subpopulations (CD4+, region Q1; CD8+, region Q4). Data are the mean ± SEM (n = 4). Different letters above the bars indicate a
significant difference between the groups (p < 0.05).

components, such as diacetyl, lactic acid, and acidocin
(Lukic et al., 2017).

Although the mechanism of action of probiotics on host
immunity is not fully known. Several studies proposed some
pathways to reveal the potential mechanism of action to regulate
the immune system. The probiotic bacteria have the capability
to interact with lymphocytes, macrophages, and dendritic cells
to produce immune response which is triggered by pattern
recognition receptors (PPRs) by binding with PAMPS (Gómez-
Llorente et al., 2010). The well-known PPRs are toll-like
receptors (TLRs). Among many other TLRs, TLR2 can recognize
peptidoglycan, which is found in Gram-positive bacteria such as
Lactobacillus genus. Previous studies showed that L. casei CRL431
interacts with epithelial cells via TLR2, and this interaction
in gut associated immune cells encourages an increase in the
number of TLR2 receptors to be involved in innate immune
response (Vinderola et al., 2005). Moreover, L. casei CRL431
can activate TLR4 to induce proinflammatory mediators, leading
to the recruitment of inflammatory cells, and initiate the
immune response in spleen (Castillo et al., 2011). Furthermore,

extracellular C-type lectin receptors (CLRs) and intracellular
nucleotide binding oligomerization domain-containing protein
(NOD)-like receptors (NLRs) have been found to send signals
during interaction with bacteria and thereby contribute to
the immune response (Lebeer et al., 2010). It has been
demonstrated that immunobiotic Lactobacillus stains can induce
appropriate NLR family pyrin domain containing protein
(NLRP) 3 activation in swine gut-associated lymphoid tissue
(GALT) by directly promoting NLRP3 expression through TLR
and NOD-mediated signaling to maintain immune homeostasis
(Tohno et al., 2011).

Cyclophosphamide, as an alkylating agent, has been widely
applied for cancer treatment. Besides its significant clinical
effects, it can produce cytotoxic effects by alkylating DNA,
cross-linking proteins, impairing immunity, and interfering
with the proliferation and differentiation of T and B cells.
CP treatment can cause weight loss of immune organs and
discrepancy of various leukocytes in the peripheral blood of mice,
ultimately decreasing immune functions (Xu and Zhang, 2015).
Meanwhile, it can reduce the expression of proinflammatory
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FIGURE 8 | Effects of hLR on cytokines and immunoglobulin in the serum of mice. IFN-γ (A), IL-6 (B), IL-2 (C), TNF-α (D), IL-1β (E), IL-4 (F), IL-10 (G), and IgG (H)
concentrations. Data are the mean ± SEM (n = 3). Different letters above the bars indicate a significant difference between the groups (p < 0.05).

cytokines and thus suppress the cell-mediated and humoral
immunity of the organism (Fan et al., 2013). Therefore, the
immunosuppressed state of mice as an animal model was
established by CP treatment to assess the immunostimulant
effects of hLR in this study.

In this study, treatment of mice with CP (80 mg/kg,
i.p.) notably decreased the body weight, immune organ
index, hematopoietic functions, splenocyte proliferation, and
expression of CD4+ and CD8+ T lymphocytes. Furthermore,
the levels of cytokines IFN-γ, IL-6, IL-2, TNF-α, IL-1β, IL-4,
and IL-10, and immunoglobulin IgG were reduced by CP. These
experimental outcomes concurred with previous reports (Meng
et al., 2018; Noh et al., 2019). The above-described results
indicated that the immune functions of BALB/c mice significantly
declined by CP, suggesting that the immunosuppressed model of
mice was effectively produced.

The effects of hLR on the thymus and spleen indices were
investigated first, as both are significant immune organs in the
body and sites of immunological cell growth and proliferation.
T lymphocytes grow, proliferate, differentiate, and mature in the
thymus, whereas B lymphocytes mature in the bone marrow.
After maturation, both T and B lymphocytes migrate to the
different secondary lymphoid organs including spleen. As a
result, the immune organ index is usually used to reveal
immune organ growth and assess the immunoregulatory effects
of probiotics (Li et al., 2011; Won et al., 2011). According to
these findings, hLR treatment significantly increased the thymus
and spleen indices compared to the CP group, indicating that
hLR could resist the impact of immunosuppression on the
development of vital immune organs.

The proliferation of lymphocytes in response to mitogens is
usually used to determine the efficacy of immunomodulatory
agents (Li et al., 2011); hence, splenic lymphocyte proliferation
has been used to evaluate the effects of heat-killed probiotics on

immune function. Heat-inactivated Lactobacillus brevis KCTC
12777BP can stimulate mitogen-induced splenocyte proliferation
in a dose-dependent manner (Jeong et al., 2020). To examine
cellular immunity, splenocytes of hLR-administered mice were
isolated, and their proliferation was tested by treating them with
mitogen Con A and LPS. Results showed that hLR treatment
significantly increased the splenocyte proliferation of CP-induced
immunosuppressed mice, providing the supporting evidence of
improving cell-mediated and humoral immunity. Hence, hLR
can play a crucial role in the initiation and modulation of non-
specific immune responses.

Cycophosphamide-induced myelosuppression is a major
issue for cancer patients undergoing clinical chemotherapy.
Previous studies showed that CP administration significantly
reduced hematopoiesis (Wang et al., 2012; Jang et al.,
2013). hLR administration enhanced the activity of the
hematopoietic system, suggesting that it can restore peripheral
WBC, lymphocyte, MID, and granulocyte counts against the
myelosuppression induced by CP.

T-helper (CD4+) and cytotoxic T (CD8+) lymphocytes are
the most important immune cells regulating the immune system
via the release of cytokines or direct cytotoxic effects (Jang
et al., 2013). In accordance with the previous investigation, the
expression of CD4+ and CD8+ T cells was markedly reduced
in mice treated with CP than normal mice (Huyan et al.,
2011; Włodarczyk et al., 2018). These findings suggested that
hLR can prevent the decline in the proportion of CD4+ and
CD8+ T-lymphocyte subpopulations. Based on these results, hLR
possesses multiple positive impacts to augment cellular immunity
in CP-treated mice. IgG is one of the major immunoglobulins that
can boost humoral immunity to protect against different kinds of
external infectious agents (Vidarsson et al., 2014). In this study,
the result indicated that hLR could increase humoral immunity
by stimulating IgG production.
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Th1 and Th2 are two distinct types of T-lymphocyte subsets
differentiated by activated CD4+ T cells. Activated Th cells are
distributed into Th1 and Th2 after antigen recognition and
secrete different cytokines. Normally, Th1 cells release IFN-
γ, IL-2, and TNF-α, which mainly contribute to cell-mediated
immune response (Letsch and Scheibenbogen, 2003; Li et al.,
2013), whereas Th2 cells secrete IL-4 and IL-10, which mainly
boost humoral immunity (Kidd, 2003). It is important to keep the
functional kinetic equilibrium between Th1 and Th2 to maintain
the host’s normal cell-mediated and humoral immune response.
Probiotic Lactobacillus spp. show a substantial impact on the
Th1/Th2 immune response (Torii et al., 2007). This investigation
showed a significant increase in the levels of Th1-type cytokines
(IFN-γ, IL-2, and TNF-α) in all hLR-treated groups compared to
the CP group. Moreover, secretion of Th2-type cytokines (IL-4
and IL-10) was significantly elevated with hLR treatment in CP-
treated immunosuppressed mice. Additionally, the non-Th1/Th2
cytokines (IL-1β and IL-6) also showed similar increasing trend
in hLR treated mice. This observation indicated that hLR might
maintain the normal immune function by inspiring the secretion
of non-Th1/Th2 cytokines as well as regulating the balance
between Th1 and Th2.

CONCLUSION

This study demonstrated that oral administration of hLR
improves immunity by stimulating the immune organ
development, enhancing hematopoietic functions, increasing
lymphocyte proliferation, improving the expression of
T-lymphocyte subpopulations, and upregulating the levels
of Th1/Th2 cytokines and non-Th1/Th2 cytokines, and
immunoglobulins in CP-induced immunosuppressed mice.
Therefore, these findings suggest that hLR can be used as
an effective immunostimulating agent to ameliorate impaired
immunity in humans and other animals. Nonetheless, the

pharmacologically active components in hLR, as well as the
signaling mechanisms involved in immunostimulation are also
remained to be further elucidated.
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