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Abstract
Environmental bulk samples often contain many different taxa that vary several orders 
of magnitude in biomass. This can be problematic in DNA metabarcoding and metagen-
omic high-throughput sequencing approaches, as large specimens contribute dispro-
portionately high amounts of DNA template. Thus, a few specimens of high biomass 
will dominate the dataset, potentially leading to smaller specimens remaining unde-
tected. Sorting of samples by specimen size (as a proxy for biomass) and balancing the 
amounts of tissue used per size fraction should improve detection rates, but this  
approach has not been systematically tested. Here, we explored the effects of size sort
ing on taxa detection using two freshwater macroinvertebrate bulk samples, collected 
from a low-mountain stream in Germany. Specimens were morphologically identified 
and sorted into three size classes (body size < 2.5 × 5, 5 × 10, and up to 10 × 20 mm). 
Tissue powder from each size category was extracted individually and pooled based 
on tissue weight to simulate samples that were not sorted by biomass (“Unsorted”). 
Additionally, size fractions were pooled so that each specimen contributed approxi-
mately equal amounts of biomass (“Sorted”). Mock samples were amplified using four 
different DNA metabarcoding primer sets targeting the Cytochrome c oxidase I (COI) 
gene. Sorting taxa by size and pooling them proportionately according to their abun-
dance lead to a more equal amplification of taxa compared to the processing of com-
plete samples without sorting. The sorted samples recovered 30% more taxa than the 
unsorted samples at the same sequencing depth. Our results imply that sequencing 
depth can be decreased approximately fivefold when sorting the samples into three 
size classes and pooling by specimen abundance. Even coarse size sorting can substan-
tially improve taxa detection using DNA metabarcoding. While high-throughput 
sequencing will become more accessible and cheaper within the next years, sorting 
bulk samples by specimen biomass or size is a simple yet efficient method to reduce 
current sequencing costs.
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1  | INTRODUCTION

Recent advancements in high-throughput sequencing (HTS) and 
DNA barcoding have improved our ability to rapidly assess biodiver-
sity. Using traps or manual collection methods (e.g. nets), thousands 
of specimens can be easily collected. However, manually identifying 
hundreds or thousands of specimens in a single sample is often not 
feasible, especially if species level identification is needed (Haase 
et al., 2004). Bulk samples, which previously took weeks or months 
to determine morphologically, can now be homogenized and their 
DNA extracted for sequencing based identification within days. The 
power, accuracy, and cost-effectiveness of these HTS based assess-
ments have already been demonstrated (e.g., Ji et al., 2013; Tang et al., 
2015; Gómez-Rodríguez et al., 2015; Leray & Knowlton, 2015; Gibson 
et al., 2014; Hajibabaei et al., 2011; Zimmermann et al., 2014; Dowle, 
Pochon, & Banks, 2015; Elbrecht et al. 2017), and sequencing costs 
are expected to further decline in the future.

In DNA-based ecosystem assessment, we can distinguish between 
two approaches: (1) A target gene fragment is amplified and compared 
to a DNA barcoding database (metabarcoding, see Taberlet et al., 
2012), or (2) the extracted DNA from the bulk sample is shotgun se-
quenced directly without PCR and can be optionally enriched for tar-
get genes (metagenomics, see Liu et al., 2016; Crampton-Platt et al., 
2016). Both approaches have specific advantages and drawbacks: 
Metabarcoding is severely limited by PCR bias, preventing estimates 
of taxa biomass and potentially not detecting all taxa present in the 
sample (Elbrecht & Leese, 2015; Leray & Knowlton, 2015; Piñol et al., 
2014). While metagenomics might overcome these PCR-based prob-
lems, this approach is currently limited because only little reference 
data is available (e.g., mitochondrial genomes), and a high sequencing 
depth is required (Crampton-Platt et al., 2016). Additionally, both ap-
proaches are likely affected by variable cell densities and types, as well 
as variable mitochondrial genome copy numbers between taxa and 
specimen life stages (Ballard & Whitlock, 2004; Moraes, 2001), which 
is potentially affecting taxa detection. While these problems might 
be solved at least partially by optimized degenerate primers (Elbrecht 
& Leese, 2017), reduced sequencing costs and mitogenome capture 
(Tang et al., 2014), both metabarcoding and metagenomics approaches 
are potentially affected by an additional factor: variable taxa biomass.

Environmental samples usually contain a diverse set of taxa 
spanning often several orders of magnitude in specimen size and 
consequently biomass. When extracting complete bulk samples, large 
biomass rich specimens will contribute significantly more DNA to the 
final bulk DNA isolate than small organisms with little biomass. We 
demonstrated this previously, by bulk extracting DNA from 31 speci-
mens of the same stonefly (Plecoptera) species with varying specimen 
biomass, and found a clear significant linear correlation between ob-
tained reads and dry specimen weight (p < .001, R2 = .65, Elbrecht & 
Leese, 2015). We hypothesize that also in more species rich samples, 
taxa biomass translates directly into read abundance (assuming no 
primer bias among species, Elbrecht & Leese, 2015). Thus, just a few 
big specimens in a sample will likely make up the majority of the reads, 
requiring higher sequencing depth to also detect small specimens and 

rare taxa. The effects of large specimens might be also further influ-
enced by primer bias increasing or decreasing the number of reads 
obtained for a taxon (Elbrecht & Leese, 2015; Piñol et al., 2014). Some 
DNA metabarcoding studies have already sorted samples into differ-
ent size fractions, because of this biomass introduced bias (Leray & 
Knowlton, 2015; Wangensteen & Turon, 2016). However, the effect 
of fractioning samples by specimen biomass compared against pro-
cessing complete sample without presorting of specimens has not 
yet been systematically tested and quantified. Morinière et al., 2016 
detected additional taxa when sorting malaise trap samples by insect 
orders that sometimes have different biomass. The effects, however, 
could have been also caused by unequal sequencing depth between 
the samples. Thus authors further encourage to also test the effects of 
fractioning samples by specimen biomass instead of orders.

In this study, we systematically quantified the effects of biomass 
sorting on taxon recovery using two complete stream macroinverte-
brate kick samples (mostly larval specimens). Specimens of both sam-
ples were morphologically identified and sorted into three biomass 
categories based on specimen sizes: small (S), medium (M) and large 
(L), see Figs 1a and S1. These size fractions were used to generate 
mock samples to compare the effect of extracting all specimens to-
gether without sorting (“Unsorted”) against pooling the sorted sam-
ples according to number specimens in each sample (“Sorted”), to 
archive a more equal representation of all specimens in the extracted 
sample (Fig. 1). While it is difficult to accurately pool the ground tissue 
of each size category (Fig. 1b), pooling extracted DNA might be po-
tentially biased by variable cell sizes and mitochondrial copy numbers 
in different taxa (Bendich, 1987; Lemire, 2005) and requires quanti-
fication (Fig. 1d). Thus, we decided to pool the DNA extraction buf-
fer after tissue digestion of S, M, and L size fraction for mock sample 
generation, as the lysis buffer has the same DNA proportions as the 
ground tissue but can be more precisely pooled (by pipetting, see 
Fig. 1c). Additionally, DNA from each size category was extracted and 
sequenced individually, to estimate which taxa are present in each and 
are thus expected to be also detected in the mock samples. By me-
tabarcoding these individual size fractions as well unsorted and sorted 
samples mock samples, we can precisely investigate the effects of 
sample sorting by specimen size on taxa recovery.

2  | MATERIAL AND METHODS

Figure S2 gives an overview of how samples were collected, extracted, 
pooled into mock communities and metabarcoded as will be discussed 
in the following.

2.1 | Sample collection and processing

Macroinvertebrates were collected at two sampling points of the 
small low-mountain range stream Kleine Schmalenau in Germany 
(Arnsberger Wald). The main stream (site P8, N51.43623 E8.13721) 
and a small tributary (site P10, N51.43295 E8.14350) were sampled 
with five kick samples per sampling site (0.45 m2 area) following the 
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general principle of the multihabitat sampling protocol also used in 
the German implementation of the EU Water Framework Directive 
(Meier et al., 2006). Collected specimens were stored in 96% ethanol 
at −20°C for later molecular analysis. All invertebrates were counted 
and identified morphologically to the lowest taxonomic level that 
could be accurately and consistently determined given the available 
literature, larval life stage, and specimen condition (Table S1).

Specimens from the two samples were each sorted into three size 
categories under a Zeiss Stemi 2000 stereo microscope by placing 
them onto millimeter paper (Fig. S1c). Specimens below 2.5 × 5 mm 
body size (length x height, excluding thin extremities and appendices) 
were sorted into small (S) specimens up to 5 × 10 mm into medium 
(M) and everything bigger than that into large specimens (L, max 
10 × 20 mm, see Fig. S1c). For thin but long specimens like, for ex-
ample chironomids (nonbiting midges), the specimen shape was con-
sidered and evaluated if it would fit into the surface of the respective 
rectangle (e.g., all chironomids were sorted into the small size category 
despite being some times longer than 5 mm). Antennae and cerci were 

not counted in the measurement of body length. Goal of the sorting 
by specimen size was to visually separate the specimens into size cat-
egories as a proxy for biomass (see Fig. S1), as accurate measurements 
on ethanol wet specimens are difficult. Terrestrial taxa and Trichoptera 
(caddisfly) quivers were included in the samples, as it is not realistic 
to remove nontarget organisms or empty shells and quivers in large 
scale routine monitoring samples. This means that besides tissue also 
acellular material was part of the ground tissue power.

2.2 | DNA extraction and tissue pooling

Specimens of each size category were dried overnight at room tem-
perature in sterile Petri dishes to remove the ethanol. Total dry speci-
men weight in each size category was measured (in duplicates) on a 
Sartorius RC 210D scale. Specimens from each category were homog-
enized (Fig. 2d) using an IKA ULTRA-TURRAX Tube Drive control sys-
tem with sterile 20-ml tubes and 10 steel beads (5 mm Ø) by grinding 
at 4,000 rpm for 30 min (IKA, Staufen im Breisgau, Germany).

F IGURE  1 Overview of different strategies to reduce the presence of biomass rich specimens when metabarcoding bulk samples. Aliquots 
with a green checkmark (✓) were generated and metabarcoded in this study, while those with a red “X” were not tested. Large specimens 
(L) have substantially more biomass than small specimens (S) and thus contribute more DNA when extracting complete unsorted samples (a). 
This likely leads to metabarcoding datasets being dominated by a few biomass rich or abundant taxa, while small and rare ones might remain 
undetected. If the goal of the study is to detect all taxa present in the sample it might make sense to adjust the biomass to have all specimens 
equally strong represented in the dataset. This can be performed by sorting specimens into size categories (e.g., small, medium, and large 
specimens), followed by sequencing of individual size fractions (e) or pooling them proportionally based on specimen abundance in each fraction 
(see b, c and d). It is, however, difficult to precisely pool ground tissue (b). Extracted DNA on the other hand has to be quantified and might 
be affected by copy number variation of mitochondrial genomes between taxa (d). Thus, in this study pooled digested tissue from each size 
category (c) was used to investigate the effects of sorted and unsorted samples
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In this study, we wanted to compare the taxa recovery between 
samples sorted by specimen size and then proportionally pooled by 
specimen abundance (So) against unsorted complete samples (Un). 
Thus, five different DNA extractions were prepared for each of the 
two sampling sites (Fig. 2). First of all, DNA from each size category 
(S, M and L) was separately digested using a modified salt extraction 
protocol (Sunnucks & Hales, 1996; see Fig. S3). Seven tissue aliquots 
were digested and united per size category (Fig. 2f), to obtain sufficient 
amounts of digested tissue for pooling (Fig. 2g). Then three aliquots of 
digested tissue were then used to generate the sorted and unsorted 
mock samples. Tissue digested in DNA extraction buffer was used, as 
it can be precisely pooled in specific proportions (unlike ground tis-
sue), while not introducing biases based on variation in cell density 
and mitochondrial copy numbers which possibly affect extracted DNA 
(Fig. 1). However, the amount of tissue used in digestion of S, M, and 
L samples was not always similar (Fig. 2e), which has to be accounted 
for when pooling the digested tissue for mock community generation 
(Fig. 2i). This, however, was mistakenly not performed for the sorted 
samples (Fig. 2h), where digested tissue was pooled based on the num-
ber of specimens in each size category to reduce the influence of large 

specimens in the extraction. This mock sample was compared with an 
unsorted sample pooled based on specimen weight (Fig. 2j) that retains 
the original tissue proportions in the sample, representing bulk DNA 
extraction of the complete sample. Additionally, all S, M, and L aliquots 
were extracted separately and used as individual metabarcoding sam-
ples, to be included as positive controls (Fig. 2). All extractions from the 
digested tissue were carried out in triplicates and united into one single 
aliquot, to increase the amount of DNA available for each sample.

Forty five microliter DNA from each sample (S, M, L, Un, So for 
sampling site P8 and P10) was digested with 1 μl RNAse A (10 mg/ml, 
Thermo Fisher Scientific, Waltham, MA, USA) and cleaned up using a 
MinElute Reaction Cleanup Kit (Qiagen, Venlo, the Netherlands) with 
resuspension in ddH2O. DNA concentrations were quantified fluoro-
metrically using a Qubit (HS Kit, Thermo Fisher Scientific) and concen-
trations adjusted to 25 ng/μl.

2.3 | DNA metabarcoding and bioinformatics

All 10 samples (S, M, L, Un, So for sampling sites P8 and P10) were am-
plified with the four freshwater macroinvertebrate fusion primer sets 

F IGURE  2 Strategies how digested tissue was pooled, to generate samples which retained the original proportion of small, medium and 
large specimens, as if the sample has not been sorted (“Unsorted” [j]) and a sample where size sorting did take place and specimens of each size 
category are proportionally pooled by specimen abundance (“Sorted” [h]). Specimens of both kick samples were sorted by specimen size into 
three size categories; small, medium, and large [a]. Using the specimen abundance in each category [b], as well as total dry weight [c], “sorted” 
and “unsorted” samples were generated by pooling digested tissue [g]) in specific proportions. To generate a unsorted mock sample digested 
liquid was pooled based on dry specimen weight [c] in each size category [j] under consideration of how much tissue was used in the digestion 
[e,i]. To adjust for specimen biomass, the sorted specimens were pooled according to the number of specimens in each size category [h]. For 
the sorted mock sample [h], we mistakenly did not consider the tissue adjustment factor [i]. After pooling of digested tissue, three aliquots were 
extracted for each category (small, medium and large specimens as well as sorted and unsorted mock samples), which each were united into a 
single DNA aliquot used for metabarcoding
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BF/BR (Elbrecht & Leese, 2017). The four primer combinations are 
targeting a 217- to 421-bp long fragment of the Cytochrome c oxi-
dase I (COI) gene. Figure S4 gives an overview of sample tagging using 
fusion primers with inline barcodes. Each PCR was composed of 1× 
PCR buffer (including 2.5 mmol/L Mg2+), 0.2 mmol/L dNTPs (Thermo 
Fisher Scientific), 0.5 μmol/L of each primer (Biomers, Ulm, Germany), 
0.025 U/μl of HotMaster Taq (5Prime, Gaithersburg, MD, USA), 
0.5 mg/μl molecular grade BSA (NEB, MA, USA), 12.5 ng DNA, filled 
up with HPLC H2O to a total volume of 250 μl. Each 250 μL PCR reac-
tion mix was divided into five wells before the PCR. PCRs were run 
in a Biometra TAdvanced Thermocycler using the following program 
94°C for 3 min, 40 cycles of 94°C for 30 s, 50°C for 30 s, and 65°C for 
2 min, and 65°C for 5 min. The large reaction volume and BSA were 
necessary due to PCR inhibitors present in the samples. PCR prod-
ucts were purified and size selected (left sided) using SPRIselect with a 
ratio of 0.8× (Beckman Coulter, CA, USA) and quantified with a Qubit 
fluorometer (HS Kit, Thermo Fisher Scientific). Samples were pooled 
to equal molarity, and the final library purified with the MinElute 
Reaction Cleanup Kit (Qiagen, NL), as a precaution because the BSA 
used in the PCR caused adhesion of beads to the tube walls in the 
PCR clean-up with SPRIselect. Paired-end sequencing was performed 
on one lane of an Illumina HiSeq 2500 system with a rapid run 250-
bp PE v2 sequencing kit and 5% PhiX spike-in. However, sequences 
contained ambiguous bases at two positions, due to air bubbles in the 
flow cell (SRR3399055). Thus, the run was repeated, this time loading 
two lanes with the same library with slightly different cluster densi-
ties, again with a 5% PhiX spike-in.

We used the UPARSE pipeline in combination with custom R 
scripts (Dryad https://doi.org/10.5061/dryad.8v528) for data process-
ing (Edgar, 2013; Fig. S5). Reads from both lanes were demultiplexed 
with a R script and paired end reads merged using Usearch v8.1.1861 
–fastq_mergepairs with –fastq_maxdiffs and –fastq_max-
diffpct 99 (Edgar & Flyvbjerg, 2015). Primers were removed with 
Cutadapt version 1.9 on default settings (Martin, 2011). Sequences 
were trimmed to the same 217-bp region amplified by the BF1 + BR1 
primer set and the reverse complement build if necessary using 
fastx_truncate/fastx_revcomp. Only sequences with 207–
227 bp were length used in further analysis (filtered with Cutadapt). 
Low quality sequences were then filtered from all samples using 
fastq_filter with maxee = 1. Sequences from all samples were 
then pooled, dereplicated (minuniquesize = 3) and clustered into 
operational taxonomic units (OTUs) using cluster_otus with 97% 
identity (Edgar, 2013) (includes chimera removal). A threshold of 97% 
was used to reduce the effect of sequencing errors, which might lead 
to the generation of additional “false” OTUs.

Preprocessed reads (Fig. S5, step B) of all samples were derepli-
cated again using derep_fulllength, but singletons were included. 
Sequences of each sample were matched against the OTUs with a 
minimum match of 97% using usearch_global. As the same library 
was loaded on both lanes, hit tables from both HiSeq lanes were com-
bined, because they only represent sequencing replicates. Only OTUs 
with a read abundance above 0.01% in at least one sample were con-
sidered in downstream analysis. Within each sample, OTUs with less or 

equal than 0.01% were set to 0% sequence abundance to reduce the 
number of false positive OTUs. Taxonomy was assigned to the remain-
ing OTUs using an R script searching the BOLD and NCBI database 
independently. Conflicting taxonomy was resolved on a case-by-case 
basis (with falling back to a coarser taxonomic level if the correct as-
signment was no evident). Only OTUs reliably identified as freshwater 
macroinvertebrates were included in the main analysis.

3  | RESULTS

Weight measurements of the tissue used for DNA extraction were 
performed twice independently, with consistent results between rep-
licates (SD = 0.083 mg). The library was sequenced on a HiSeq rapid 
run with a cluster density of 438 k/mm2 and 542 k/mm2 for lane 1 
and 2 (raw data available on the NCBI SRA archive: SRR3399056 
and SRR3399057). On average 1.71 (SD = 0.29, lane 1) and 2.17 
(SD = 0.38, lane 2) million read pairs were obtained for each sample 
after demultiplexing (Fig. S4). Read quality varied with amplicon length 
and cluster density (Fig. S4) but did not affect results strongly as OTU 
abundance was very similar between both lanes (=sequencing repli-
cates of identical library). However, stochastic effects between both 
lanes increased for OTUs with low read abundance (Fig. S6, variability 
between replicates for abundant OTUs > 10%, SD = 0.007, OTUs with 
0.1–0.01 > % abundance, SD = 0.077).

The OTU raw data are available in Table S2 and morphology based 
identifications and taxa abundances in Table S3. After clustering and 
discarding low abundance OTUs, a total of 314 OTUs remained in the 
dataset (Fig. S7, Table S2). Approximately 71% of these OTUs could 
be reliably identified with available reference databases, with 58% of 
the OTUs belonging to freshwater macroinvertebrate taxa (Fig. S8). 
All high abundance OTUs (at least 0.1% of reads) were identified as 
macroinvertebrate. Of these taxa 45 of 52 were reliably identified at 
species level, of which about 3/4 had 100% similarity matches to ref-
erence sequences. Low abundance OTUs (<0.1%) often showed poor 
matches to databases or could not be identified at all (see Fig. S8). 
With DNA metabarcoding over twice as many macroinvertebrate taxa 
and in particular five times more species were detected than with  
morphology based identification (Fig. S9). The main stream (P8) and 
tributary (P10) could be clearly distinguished, with only 14.3% of 
OTUs shared between both sites (Fig. S7, 36.4% similarity based on 
morphological identification, Table S1).

Sorting the sample into three size categories and proportional 
pooling of DNA extracts by amount of specimens in each category 
reduced the dominance of large specimens substantially (Fig. 3). The 
sorted samples (So) resembled the composition of the original sample 
much better (average difference to original composition = 2.3-fold, 
SD = 2.49) than the unsorted samples (Un, average difference = 9.0-
fold, SD = 7.88, Fig. 3). Using the four primer sets an average of 88.75 
(SD = 6.46) invertebrate taxa were detected in the sorted samples, 
compared against 62.5 (SD = 4.5) in the unsorted samples (30% less, 
paired t-test, p = .005, Fig. 4, no rarefaction applied). Using the S, M, 
and L samples as controls, we could estimate the expected (E) amount 

https://doi.org/10.5061/dryad.8v528
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F IGURE  4 Amount of detected taxa 
based on OTUs with unsorted (Un) and 
sorted samples (So) for the four tested 
primer combinations, considering different 
sequencing depths. The sequencing depth 
is plotted on a logarithmic scale
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morphologically identified taxa are sharing the same size categories. For example, if a taxon is represented by small, medium, and large 
specimens it gets assigned to “SML” (grey) in the metabarcoding dataset, as specimens of all size classes contribute DNA which clusters into 
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of taxa, we should be detecting with each primer pair (Fig. S10). In 
sorted samples (So), very similar amounts of taxa as in the controls (E) 
were detected (paired t test, p = .17). However, on average only 80% 
(SD = 8%) of the expected number of taxa were detected when the 
complete sample was extracted without sorting (Fig. S10a, paired t 
test, p < .001). The same trend was observed when looking at Shannon 
Diversity (Fig. S10b, paired t test, E vs. So; p = .9153, E vs. Un; p < .001). 
When comparing the taxa detected with metabarcoding against the 
taxa list based on morphological identification, again the unsorted sam-
ples showed decreased detection rates (67%, SD = 3%, paired t test, 
p = .006). However, also with sorting, only 74% (SD = 3%) of the mor-
phologically identified taxa were detected with each primer set, which, 
however, was not significantly different than the detection rates in the 
controls E (paired t test, p = .23, Fig. S10c). Six morphologically identi-
fied taxa were not detected in our metabarcoding dataset (Fig. S7, Table 
S3, the morphologically determined “Plecoptera” and “Insecta” speci-
mens are counted as “detected” here, as several insect and Plecoptera 
OTUs were present in the dataset. We, however, do not know which of 
the OTUs matches the morphological identified Plecoptera or Insecta). 
The reduced number of taxa detected with the unsorted samples 
persists when the sequencing depth is reduced (Fig. 4). Sample sorting 
does reduce the required sequencing depth to detect the same amount 
of taxa by ~5 times, compared to the unsorted samples.

4  | DISCUSSION

4.1 | Effects of sorting metabarcoding samples by 
specimen size

We sorted two samples by specimen size (resembling biomass) into 
small, medium, and large specimens and pooled them proportionately 
by specimen abundance per size class and compared the results against 
unsorted samples. Our results demonstrate that read abundances of 
the unsorted samples were dominated by few biomass rich taxa that 
contribute the majority of DNA in the bulk extraction. This does not 
only skew the read abundances in favor of biomass rich specimens, 
but also some smaller and less abundant taxa remained undetected 
(on average ~30% fewer taxa detected in the unsorted samples). The 
size-sorted samples only need 1/5 of the sequencing depth to detect 
the same amount of taxa as in the unsorted samples. This means that 
sorting metabarcoding bulk samples by specimen size can substan-
tially reduce sequencing costs, if the aim is to detect all taxa present in 
the sample regardless of biomass. While we only manually sorted our 
samples into three size categories, further cost reductions might be 
possible by sorting samples into more size categories. It is likely that 
larger specimens will have similar effects on metagenomic sequenc-
ing, and thus, sorting by specimen size and correcting for abundance 
might also likely be viable for these bulk samples.

Based on basic physical laws, it is expected that large specimens 
are overrepresented in a metabarcoding study when extracted in bulk 
together with smaller organisms. Thus, it is no real surprise that sorting 
by specimen size in combination with pooling fractions proportionally 
by number of specimens in each size category leads to a more equal 

representation of specimens in the sample and increased the detec-
tion of rare and small specimens with DNA metabarcoding. However, 
also the limitations and shortcomings of this study should be discussed 
here. While we took great care to reduce factors biasing ours result, 
for example by extracting all samples from the same digested tissue 
aliquots, we failed to adjust for the amount of tissue digested in these 
aliquots for the sorted mock samples (Fig. 2h,i). This leads to a slight 
underrepresentation of small taxa in the mock samples, as for medium 
and large taxa, more tissue was extracted (Fig. 2e). While this will not 
change the overall effects found in this study, it does mean that the 
positive effects of sample sorting are potentially slightly underesti-
mated here: We hypothesize that with the correct (higher amount) of 
small specimens used in the mock communities, even more taxa could 
have been detected in the sorted samples. Additionally, this study was 
only carried out on two sampling sites and with limited morphological 
identifications. With more time spent and higher taxonomic expertise, 
probably more taxa could have been identified morphologically. Also, 
despite the COI reference databases being fairly complete for common 
macroinvertebrate taxa (Fig. S8), there are still gaps and potentially 
unreliable reference barcodes present, preventing the identification 
of some less abundant OTUs. We also show that with our dataset 
that stochastic effects during Illumina sequencing affect mainly low 
abundant OTUs, which was recently also confirmed in other studies 
(Leray & Knowlton, 2017). For a full and more detailed discussion of 
effects limitations of DNA metabarcoding for routine macroinverte-
brate monitoring see Elbrecht et al. (2017). Nevertheless, DNA-based 
identifications can be more accurate than classical morphology based 
identification (Stein et al., 2013; Sweeney et al., 2011) as we also show 
with our two kick samples in this project.

4.2 | Implications: not all samples have to be sorted

While we could demonstrate and also quantify the increased reso-
lution and potential cost savings by size sorting metabarcoding 
bulk samples, we have to acknowledge that these sample sorting 
steps can be time consuming and potentially also a source of cross-
contamination between samples. Thus, we do not recommend sorting 
every sample by specimen biomass right away. First of all, the sample 
should have specimens varying several magnitudes in biomass. If all 
specimens have similar sizes, sorting will likely not improve metabar-
coding results. Additionally, the number of samples which can be relia-
bly tagged on a HTS run in combination with the expected sequencing 
output, might make sorting obsolete if expected sequencing depth per 
sample is sufficiently high. However, in many cases where bulk sam-
ples show substantial variation in biomass, sequencing depth should 
be sufficiently high to also detect small and rare taxa. Here, sorting 
samples and adjusting for specimen biomass can help to increase the 
number of taxa detected, making it possible to pool more samples on 
the same sequencing run.

Whether or not the method of size sorting should be used in a 
study depends on sample composition and characteristics as dis-
cussed above, but more importantly it should be considered if it is 
necessary to detect small and rare taxa present in the bulk sample 
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(e.g., for non-targeted early detection of pests, invasive species or to 
build barcoding reference databases). It has to be stressed that for 
most studies, the proportion of the abundant taxa is most relevant, 
which gets distorted by sample sorting and pooling by abundance 
of small, medium, and large specimens. Also, if samples just contain 
a few large specimens and abundance data are not that important, 
one could retain a small piece of tissue in the sample (e.g., a leg of an 
invertebrate) and remove the rest of the specimen from the sample (as 
performed e.g. by Ji et al., 2013). Especially, if only presence–absence 
data are desired, this might be a good trade-off to reduce the negative 
influence of a few large specimens on the dataset, without sorting the 
complete sample. However, treating samples to reduce the influence 
of biomass rich specimens should be performed systematically across 
samples to not introduce processing biases. In this study, sorted indi-
vidual specimens into three size categories under a stereo microscope 
to get very accurate size classes needed to test this method. With 
approximately 2–3 hrs for each sample and the additional workload 
for DNA extraction, this is a highly time consuming step, making the 
technique of size sorting samples impractical for large sample quanti-
ties. Studies on marine invertebrate did size sort samples by sieving 
the samples with different sieve sizes from 63 μm to 10 mm (Leray 
& Knowlton, 2015; Wangensteen & Turon, 2016). Sieving is probably 
the only feasible method for processing large numbers of samples, but 
care has to be taken when cleaning the sieves between samples, to 
prevent cross-contamination. Sieving might also change the commu-
nity composition as very small bacteria on surfaces and small organism 
might get lost, and broken off body parts (e.g., legs, antennae) or tissue 
parts from prey animals might end up in the lowest size fraction (Leray 
& Knowlton, 2015; Wangensteen & Turon, 2016). These effects have 
to be taken into consideration when looking at each size fraction in-
dividually. However, if the goal is to obtain a presence–absence taxa 
list for a complete sample, sieving and proportional pooling might be 
an ideal solution to minimize bias introduced by large specimens in 
the samples. Using dry specimen weight from each size fraction can 
be used to roughly estimate the number of taxa in each size fraction, 
which can then be used to pool the DNA proportionately, instead of 
sequencing each size fraction individually. Also, precise pooling of di-
gested tissue (Fig. 1c) as performed in this ground truthing study might 
not be needed for routine application of this size sorting approach. 
Depending on the accuracy needed, pooling ground tissue from dif-
ferent size fractions directly (Fig. 1b) or extracting, quantifying, and 
pooling of DNA (Fig. 1d) might already be sufficient to reduce the 
prevalence of large specimens in the dataset.

5  | CONCLUSIONS

We demonstrated that sorting metabarcoding samples into three 
specimen size categories and then pooling the tissue fractions propor-
tionally to the number of specimens in each size class can reduce the 
amount of required sequencing depth compared to the unsorted sam-
ple by 80%. Sample sorting leads to a more balanced taxa assessment, 
dramatically reducing the overrepresentation of large specimens on 

the dataset. While size sorting of bulk samples might not be neces-
sary or suitable for all samples, ecosystems or research questions, we 
encourage to evaluate if sample fractioning could be beneficial and 
feasible in respective metabarcoding projects. Also, some metagen-
omic projects will likely profit from presorting samples by biomass, 
even though we did not explicitly test this here.
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