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Abstract: Single atom catalysts (SACs) have received a lot of attention in recent years for their high
catalytic activity, selectivity, and atomic utilization rates. Two-dimensional N-doped graphene has
been widely used to stabilize transition metal (TM) SACs in many reactions. However, the anchored
SAC could lose its activity because of the too strong metal-N interaction. Alternatively, we studied
the stability and activity of dual-atom catalysts (DACs) for 24 TMs on N-doped graphene, which
kept the dispersion state but had different electronic structures from SACs. Our results show that
seven DACs can be formed directly compared to the SACs. The others can form stably when the
number of TMs is slightly larger than the number of vacancies. We further show that some of the
DACs present better catalytic activities in hydrogen evolution reaction (HER) than the corresponding
SACs, which can be attributed to the optimal charge transfer that is tuned by the additional atom.
After the screening, the DAC of Re is identified as the most promising catalyst for HER. This study
provides useful information for designing atomically-dispersed catalysts on N−doped graphene
beyond SACs.

Keywords: graphene; transition metal atoms; hydrogen evolution reaction; DFT

1. Introduction

Single atom catalysts (SACs) exhibit the maximum atomic efficiency, high selectivity,
and high activity towards a variety of chemical reactions, which opens up a new frontier
in the field of catalysis [1–4]. However, the practical chemical processes require a huge
number of SACs, which make them easy to aggregate and form clusters owing to their high
surface energies [5]. It is well known that the rational design of catalysts is a key step in
catalysis research [6]. As a result, some substrates are introduced to attach single metal
atoms and prevent the formation of metal clusters [7], such as Pt1/FeOX [8], Fe1/SiO2 [9],
and Pt1/C, [10]. Among them, two-dimensional defected graphene is used as the effective
template to stabilize the SACs by taking advantage of a large surface area, good conductivity,
good stability, and strong dispersibility [11–14]. Recently, a synergy strategy of co-doping
graphene with transition-metal (TM) and nitrogen (N) atoms has been proposed to enhance
the surface stability and catalytic activity simultaneously. For example, Wang et al. reported
Fe SACs with triple nitrogen coordination (Fe−N3) on graphene has excellent nitrogen
reduction reaction activity [15]. Sa et al. synthesized single atom Ni anchored in N−doped
graphene, which gave high performance for the carbon dioxide reduction reaction due
to the dispersed highly catalytically active sites [16]. Zhong et al. studied the oxygen
reduction reaction mechanism of TMs (Cr, Mn, Fe, and Co) with quadruple-coordinated
nitrogen (TM−N4) on graphene using density functional theory (DFT) calculations and
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discovered that Fe/N/C had the best ORR activity [17]. Cheng et al. discovered that
the single platinum atom catalysts exhibit significantly enhanced catalytic activity of the
hydrogen evolution reaction, and Fang et al. uncovered that the near-free single-atom Pt
possesses the favorable bonding energies with the reactants that are responsible for the
superior hydrogen evolution reaction (HER) activity [18,19]. Hossain et al. and Jung et al.
confirmed the excellent HER activity of single-atom Co on nitrogen-doped graphene from
the perspectives of theoretical design and experimental verification [20,21]. Zang et al.
demonstrated that atomically-dispersed Ni with triple nitrogen coordination (Ni−N3)
can achieve efficient hydrogen evolution reaction (HER) performance in alkaline media,
which was attributed to the lower coordination number than Ni−N4 to facilitate water
dissociation and hydrogen adsorption [22].

Despite the significant progress in theory and experiments, the stability of anchored
SACs possibly comes with the sacrifice of activity because of the too strong metal-support
interaction. Compared with SACs, dual-atom catalysts (DACs) have emerged as a novel
frontier because the synergistic effect between adjacent metal atoms can promote their
catalytic activity [23]. DACs on the N−doped graphene can also be highly dispersed but
have different electronic structures from SACs [24]. As the single atoms in SACs always
have a stronger adsorption capacity than any other sites of support, the secondary atom is
thermodynamically more likely to be captured to form DACs [25]. Therefore, DACs could
form simultaneously with SACs if the practical loading of metal atoms on the surface is
larger than the number of vacancies (overloading). Several studies have confirmed that
using nitrogen-doped graphene as a substrate, DACs can serve as good electrocatalysts in
HER [26–28]. However, there are limited studies of DACs on the N-doped graphene in the
literature with respect to the studies of SACs.

In this work, we performed DFT calculations to study the stability of the TM atoms
on the two-dimensional 3N−doped single-vacancy graphene (SVGN3). A total of 24 TM
elements were systematically investigated, including the third period (Ti, V, Cr, Mn, Fe,
Co, Ni, and Cu), fourth period (Zr, Nb, Mo, Tc, Ru, Rh, Pd, and Ag), and fifth period (Hf,
Ta, W, Re, Os, Ir, Pt, and Au). Among the 24 TM elements, 17 of them generally prefer to
form the anchored SACs (TM1−SVGN3), while the rest of them are prone to forming DACs
(TM2−SVGN3) instead of SACs. When the TM atoms are overloaded, all TM2−SVGN3
become stable. Then, the catalytic activities of SACs/DACs in the HER were predicted
based on the Gibbs free energy of H adsorption [29,30]. We found 13 DACs showed higher
HER activity than SACs, in which Re2−SVGN3 show the superior activity.

2. Materials

The spin-polarized Density Functional Theory (DFT) calculations were carried out
using the exchange-correlation potential that was prescribed by Perdew–Burke–Ernzerhof
(PBE) [31] and projector augmented wave (PAW) [32] methods within the Vienna ab initio
simulation package (VASP) [33]. We also tested RPBE and PBE+D3 functionals with 3d
elements and found that these functionals gave similar results (details in Supplementary
Materials Table S1 and Figure S1). The plane-wave basis set was given a kinetic energy
cutoff of 600 eV. The total energies were converged to 10−6 eV, and forces criteria was
0.02 eV/Å. The geometric optimization was performed using a Monkhorst–Pack grid of
3 × 3 × 1 k-points [34]. The Climbing image Nudged Elastic Band (CI−NEB) method
was used to study the minimum energy path for dual-atom migration [35]. The calculated
lattice parameter of graphene is 2.47 Å, which agreed with the reported theoretical and
experimental results [36,37]. The optimized bulk graphene C–C bonds are 1.43 Å and
the graphene supercell is then constructed based on the calculated lattice constant. In
the xy plane, a 6 × 6 supercell (72 atoms) was used to eliminate the effects from the
periodic structure. The distance between the graphene monolayer and its mirror copies
was adjusted at 15Å in the z-axis, which was enough to preclude interactions between
the two monolayers. In this work, we focus on SVGN3 as the substrate because of its
applications in experiments and the lower formation energy of single-vacancy than that of
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the double-vacancy, which indicates the possibility of a single-vacancy site is high while
synthesizing defect-containing graphene substrates (details in Supplementary Materials
Table S2) [22,38].

The binding energy (En
b or EG

b ) of the TMn on SVGN3 substrate or pure graphene (G)
substrate are calculated as below:

En
b = ETMn−SVGN3 − ESVGN3 − nETM1 (n = 1 or 2) (1)

EG
b = ETM1−G − EG − ETM1 (2)

where ETMn−SVGN3 and ETM1−G are the total energies of TMn−SVGN3 and TM1−G slab,
respectively. ESVGN3 is the energy of SVGN3, EG is the energy of G, ETM1 is the energy of
an isolated transition metal atom in the vacuum, and TM1 and TM2 stand for single-atom
and dual-atom, respectively.

The adsorption energy ∆EH∗ of H atom was calculated by:

∆EH∗ = E(TMn−SVGN3+H) − ETMn−SVGN3 − 1/2EH2 (n = 1 or 2) (3)

where E(TMn−SVGN3+H) represents the total energy of the TMn−SVGN3 systems with one
adsorbed H atom, and EH2 represents the energy of a gas phase H2 molecule.

Under standard conditions, the Gibbs free energy of H adsorption, ∆GH∗ was obtained
by the equation:

∆GH∗ = ∆EH∗ + ∆EZPE − T∆SH∗ (4)

where ∆EZPE corresponds to the zero-point energy of adsorbed hydrogen and hydrogen
in the gas phase H2 molecule, and ∆SH∗ is the entropy difference between the adsorbed
state and gas phase. The temperature (T) is 298.15 K. In this work, the EZPE and SH∗ values
were calculated based on the vibrational frequencies through the VASPKIT [39].

3. Results and Discussion
3.1. Geometric Structures
3.1.1. Single-Atom

In Figure 1, considering the symmetry of the structure, we marked the possible
adsorption sites on G and SVGN3, respectively. As consistent with previous reports,
the calculated C-C bond length on the optimized G is 1.42 Å, while the calculated bond
lengths of C-C and C-N in the pore on the optimized SVGN3 are 1.34 Å and 1.45 Å,
respectively [40,41]. There are three adsorption sites on G: hollow (H), bridge (B), and top
(T), and five adsorption sites on SVGN3: single vacancy (S), top position of nitrogen (a),
bridge position between nitrogen and nitrogen, (B’) and different top positions of carbon
(b or c) on the substrate.
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ble adsorption site for TM1−G and TM1−SVGN3, respectively, where M1 is a TM atom in 
these systems. When the M1 is adsorbed on G, the H site is the most stable adsorption 

Figure 1. Color code: C, black; N, blue. (a) the three different adsorption sites (H (hollow), B (bridge),
T (top)) in pure graphene; (b) in the SVGN3: a stands for the top position of nitrogen, b and c stand
for the top positions of carbon at different positions; B’ stands for the bridge position between two
nitrogen atoms; The symbol S represents the single vacancy in the substrate. The three nitrogen atoms
are labeled as N1, N2, and N3, respectively.
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Tables 1 and 2 give the geometric parameters and binding energies of the most stable
adsorption site for TM1−G and TM1−SVGN3, respectively, where M1 is a TM atom in
these systems. When the M1 is adsorbed on G, the H site is the most stable adsorption
site for 13 elements (Ti, V, Fe, Co, Ni, Zr, Nb, Tc, Ru, Rh, Hf, Ta, and Os); B site is the most
stable adsorption site for 7 elements (Cr, Mo, Pd, Ag, W, Ir, and Pt); and the remaining
elements (Mn, Cu, Re, and Au) sit on T site. Generally speaking, when the M1 is chemically
adsorbed, it tends to be adsorbed at the H site, while in the case of physical adsorption,
the coordination number of the M1 atom with C atoms on the surface of pure graphene
decreases ( H → B→ T ). For TM1−SVGN3, the M1 is embedded in the position of the S
point for all the elements. Comparing Tables 1 and 2, for elements (Cr, Mo, Pd, Ag, W,
Ir, and Pt) whose B site is the best adsorption site on pure graphene, the value difference
between E1

b and EG
b of Pd(Pt) is relatively small, making the C-C bonds (B site) and the

single-defect vacancy (S site) to single atom in Pd−SVGN3(Pt−SVGN3) competitive for the
adsorption of a single atom, eventually resulting in one dM1−Nx that is much larger than
the other two. All the results are consistent with previous works [40,42–44]. As shown
in Figure 2, we found much stronger E1

b than EG
b , which is in line with the expectation.

In addition, the binding energy of the single atom on the SVGN3 substrate is smaller
than that on the single-vacancy substrate without an N atom [14]. The binding energy is
roughly positively associated with the height (h) from the M1 to the pure graphene in the
TM1−G and with the average distance (dM1−Nx) from the anchored M1 to the N atom in
the TM1−SVGN3 (details in Supplementary Materials Figures S2 and S3).

Table 1. The most stable adsorption site, binding energy (EG
b ), and M1 height from graphene (h)

of TM1−G.

Site EG
b /eV h/Å

Ti H −1.98 1.85
V H −1.20 1.85
Cr B −0.31 2.23
Mn T −0.23 2.24
Fe H −1.17 1.55
Co H −1.24 1.54
Ni H −1.52 1.56
Cu T −0.29 2.08
Zr H −2.38 1.98
Nb H −1.55 1.71
Mo B −0.22 2.32
Tc H −1.19 1.66
Ru H −3.02 1.73
Rh H −1.86 1.78
Pd B −1.09 2.06
Ag B −0.01 3.47
Hf H −1.83 1.93
Ta H −1.76 1.85
W B −0.52 2.22
Re T 0.07 2.20
Os H −1.01 1.71
Ir B −1.51 1.94
Pt B −1.55 1.97
Au T −0.18 3.46
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Table 2. The most stable adsorption site, binding energy (E1
b ), the distance between the anchored

metal atoms (M1) and N atom (dM1−Nx), and the M1 height from graphene (h) of TM1−SVGN3.

Site E1
b/eV dM1−N1/Å dM1−N2/Å dM1−N3/Å h/Å

Ti S −6.29 1.91 1.91 1.91 1.58
V S −5.80 1.90 1.90 1.90 1.52
Cr S −3.73 1.96 1.96 1.96 1.51
Mn S −3.98 2.00 2.00 2.00 1.65
Fe S −4.57 1.78 1.78 1.78 1.23
Co S −4.96 1.83 1.83 1.83 1.39
Ni S −4.48 1.84 1.85 1.85 1.37
Cu S −3.12 1.89 1.89 1.89 1.51
Zr S −6.55 2.07 2.06 2.06 1.84
Nb S −5.84 1.99 1.99 1.99 1.76
Mo S −4.30 1.94 1.94 1.94 1.68
Tc S −5.10 1.91 1.91 1.91 1.59
Ru S −6.23 1.93 1.93 1.93 1.55
Rh S −4.32 2.04 2.04 2.05 1.66
Pd S −2.33 2.27 2.11 2.11 1.78
Ag S −1.68 2.31 2.31 2.31 2.05
Hf S −6.49 2.00 2.00 1.99 1.75
Ta S −6.41 1.96 1.95 1.95 1.70
W S −5.35 1.91 1.91 1.91 1.65
Re S −4.36 1.91 1.91 1.91 1.60
Os S −4.90 1.91 1.91 1.91 1.55
Ir S −4.32 2.01 2.01 2.01 1.63
Pt S −2.86 2.09 2.24 2.09 1.73
Au S −1.09 2.34 2.34 2.35 2.03
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Figure 2. The binding energies of the TM1−G and TM1−SVGN3 are shown in square and circle,
respectively.

3.1.2. Dual-Atom

For dual-atoms, we defined M1 as the TM anchored at the vacancy and M2 as the
additionally attached one and six initial configurations that were sampled: (Figure 3I) M2
is also at the vacancy site but on the different side of the graphene sheet; (Figure 3II) M2
is at position a, (Figure 3III) M2 is at the position b, (Figure 3IV) M2 is at the position c,
(Figure 3V) M1 is at B’, while M2 is at a (Figure 3VI), both atoms stay on the same side of
the graphene sheet and perpendicular to the graphene sheet.
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Figure 3. Color code: C, black; N, blue; TM, yellow. The six initial configurations are marked
as (I–VI).

The structural and energetic parameters of DACs are summarized in Table 3. We found
that there is no optimum configuration matching to Figure 3III for all the DACs. First,
according to Figure 2, in the same period, the E1

b value of the IVB elements is the largest, so
that the overloaded metal atom may also tend to bond with the single-defect vacancy, and
finally the TM2 of the group IVB elements (Ti, Zr, and Hf) takes the stable configuration as I.
Second, the V2, Nb2, Rh2, Pd2, Ta2, and W2 are all on the same side of the SVGN3. Among
them, V2−SVGN3, Nb2−SVGN3, and Ta2−SVGN3 prefer to adopt the II configuration,
whereas the configurations of Rh2−SVGN3 and Pd2−SVGN3 are IV, and W2−SVGN3
forms a stable structure as V. Finally, the TM2 of remaining 15 elements (Cr, Mn, Fe, Co,
Ni, Cu, Mo, Tc, Ru, Ag, Re, Os, Ir, Pt, and Au) are perpendicularly adsorbed on SVGN3
(configuration VI). Additionally, in the TM2−SVGN3 system (details in Supplementary
Materials Figure S4), the average distance (dM1−Nx and dM2−Nx) between the dual-atoms
(M1 and M2) and the N atom is related positively to the binding energy. We also tested
other possible configurations and discovered that they are all unstable.

Table 3. The most stable configuration, binding energy (E2
b ), the distance between the anchored

metal atoms (Mx) and N atom (dMx−Nx) (M1 denotes the first metal atom, whereas M2 denotes a
second attached atom), and the metal–metal distance of M1−M2 (dM1−M2).

Configuration E2
b/eV dM1−N1/Å dM1−N2/Å dM1−N3/Å dM2−N1/Å dM2−N2/Å dM2−N3/Å dM1−M2/Å

Ti I −9.92 2.08 2.10 2.10 2.15 2.06 2.06 2.82
V II −7.79 1.95 1.95 2.04 3.48 3.48 1.98 2.03
Cr VI −5.70 2.07 2.07 2.07 3.26 3.27 3.28 1.51
Mn VI −5.75 1.96 1.96 1.96 3.82 3.78 3.81 2.28
Fe VI −7.21 1.85 1.85 1.85 3.43 3.44 3.43 2.06
Co VI −7.07 1.94 1.95 1.95 3.80 3.59 3.43 2.11
Ni VI −6.58 1.93 1.93 1.92 3.65 3.65 3.64 2.16
Cu VI −4.54 2.02 2.02 2.02 3.88 3.89 3.87 2.25



Nanomaterials 2022, 12, 2557 7 of 14

Table 3. Cont.

Configuration E2
b/eV dM1−N1/Å dM1−N2/Å dM1−N3/Å dM2−N1/Å dM2−N2/Å dM2−N3/Å dM1−M2/Å

Zr I −11.08 2.20 2.19 2.25 2.23 2.18 2.17 3.11
Nb II −9.55 2.07 2.07 2.14 3.77 3.77 2.09 2.34
Mo VI −9.44 2.27 2.27 2.27 3.68 3.68 3.69 1.68
Tc VI −12.92 2.15 2.15 2.15 3.17 3.16 3.17 1.28
Ru VI −11.00 2.01 2.01 2.01 3.69 3.71 3.68 2.10
Rh IV −7.71 1.97 2.04 1.97 3.20 2.86 4.50 2.51
Pd IV −4.04 2.20 2.12 2.13 3.39 4.62 2.96 2.64
Ag VI −2.77 2.39 2.39 2.40 4.72 4.74 4.73 2.63
Hf I −10.71 2.16 2.16 2.19 2.19 2.16 2.16 3.07
Ta II −10.93 2.04 2.04 2.12 3.81 3.81 2.12 2.40
W V −9.77 2.04 2.04 2.82 3.25 3.25 2.19 2.11
Re VI −9.22 2.08 2.08 2.09 3.79 3.79 3.74 2.07
Os VI −10.41 2.02 2.02 2.02 3.75 3.75 3.75 2.14
Ir VI −9.89 2.03 2.03 2.04 3.85 3.85 3.85 2.21
Pt VI −7.03 2.08 2.08 2.16 4.05 4.07 4.07 2.33
Au VI −3.52 2.38 2.23 2.52 4.52 4.60 4.60 2.52

3.2. Stability

To evaluate the relative stability between SACs and DACs, the difference of the binding
energy was calculated using the following equation:

∆E1 = E2
b − 2 ∗ E1

b (5)

When ∆E1 is negative, the anchored DAC is energetically more stable than two isolated
SACs that are trapped by SVGN3. As shown in Figure 4a, all the isolated SACs of 3d
and 4d elements are more stable except for Mo and Tc (∆E1 is −0.84 eV and −2.72 eV,
respectively). Among the 5d elements, the late TM elements (Re, Os, Ir, Pt, and Au) tend to
form DACs instead of being dispersed into SACs, with ∆E1 of −0.50, −0.61, −1.25, −1.31,
and −1.34 eV, respectively. It is interesting to notice that when the number of 5d valence
electrons (from 5d5 to 5d10) increases, the ∆E1 values of these elements (Re, Os, Ir, Pt, and
Au) gradually become more negative, which strongly show the DACs of these elements are
more prone to forming than SACs. The investigation of the catalytic properties of these
DACs are necessary.

For other elements, ∆E1 is positive, which means the isolated SACs are preferred
to form on the SVGN3 when there are enough vacancies. However, as we mentioned in
the Introduction, the number of TM atoms could be slightly larger than the number of
vacancies in practical synthesis. When the TM atoms are overloaded, we consider the extra
atoms can either disperse on the graphene surface or attach to the trapped SACs to form
DACs. The relative stability was evaluated as:

∆E2 = E2
b − E1

b − EG
b (6)

If ∆E2 is negative, the DACs structure is more stable. The calculated values of ∆E2
range from −0.55 to −6.63 eV (Figure 4b), showing the relative stability of TM2−SVGN3.
The absolute value of ∆E2 generally shows that it first decreases and then increases with
the increase of the atomic number of TM for the 3d and 4d elements. The more negative
the value of ∆E2, the better the stability of TM2−SVGN3. As is known, the surface energy
of TM atoms will first increase and then decrease as the atomic number increases [45]. The
elements in the middle of the period have more positive surface energies than the early
and late TM elements in the same period [46,47], meaning the metal–metal interaction is
stronger, and M2 is more likely to bond with M1 to form DACs. For example, in the 5th
period elements, W, Re, and Os have the larger surface energies than the other elements,
while in our calculations, W2−, Re2−, and Os2−SVGN3 possess higher relative stabilities.
DACs stability can also be considered in terms of TM atoms migration energy barriers,
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for example (Figure 5), Re2 migration energy barrier in Re2−SVGN3 is 3.16eV, further
confirming the excellent stability of Re2−SVGN3.
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3.3. HER Activity

With the growing worldwide energy demand and increasing environmental pres-
sures, producing high-purity hydrogen from abundant water via an electrochemical HER
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as a clean energy source is a sustainable and cost-effective option [48]. ∆GH∗ is well-
documented as a singular activity descriptor of the HER, and there is a reported re-
lationship between ∆GH∗ and HER activity in the system of graphene-supported sin-
gle atom catalysts [20]. According to the Sabatier principle, the closer ∆GH∗ to zero
(|∆GH∗| ≤ 0.10), the higher catalytic activity of HER [29,30,49]. If the interaction be-
tween H and the catalyst is too weak (∆GH∗ � 0), hydrogen adsorption (Volmer reac-
tion: H+ + e− + ∗ → H∗ , where * refers to catalysts surface) will be limited, while too
strong interaction (∆GH∗� 0) creates difficulty for the desorption step (Tafel or Heyrovsky
step: H∗ + H∗ → H2 + 2∗ or H+ + H∗ + e− → H2 + ∗ ) to proceed on the catalyst sur-
face [50,51]. Based on these results, we calculated ∆GH∗ by considering the H adsorption
on the stable SACs (TM1−SVGN3)/DACs (TM2−SVGN3) models.

The active site for HER is highly related to the adsorption site of H atom. We tested
several possible configurations for the H atom adsorbed on SACs and DACs, and obtained
the optimal configurations: For SACs, the most favorable adsorption sites of H is on top
of the TM atoms; for DACs, the best adsorption sites of H are divided into two different
situations: (1) the H bonds to the second TM atom in Ti, Cr, Zr, Mo, Tc, Ru, Os, Ir, Pt, and
Hf DACs; (2) it adsorbs between the two TM atoms in V, Mn, Fe, Co, Ni, Cu, Nb, Rh, Pd,
Ag, Ta, W, Re, and Au DACs. Then, ∆GH∗ corresponding to the most favorable adsorptions
are shown in Figure 6 (details in Supplementary Materials Tables S3–S5). A total of 13 TM
elements such as Ti, Mn, Fe, Mo, Rh, Ag, Hf, W, Re, Os, Ir Pt, and Au, are predicted to have
better HER activities in DACs than SACs. The results show that the DACs have better HER
activities than SACs mainly in the cases where the bonding of the H atom to the TM atom
is weakened in DACs. Re2−SVGN3 gives a ∆GH∗ value of −0.09 eV, which is the closest to
zero among all the DACs and much closer to zero than Re1−SVGN3. On the contrary, for
other elements, the catalytic activity of HER will be reduced if the TM atoms form DACs.
The two elements of Co and Ni exhibit excellent HER catalytic activity in the SACs, which
is consistent with previous study [22,38]. In addition, we found that Pd1−SVGN3 can be
employed as a potential element for catalyzing HER, with the ∆GH∗ value of −0.09 eV.
These results indicate the catalytic activity of these systems can be adjusted by delicately
tuning the formation of SACs or DACs.
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The intensity of H adsorption energy that is associated with charge transfer can directly
affect the Gibbs free energy of H adsorption [20,52], and the Bader charge analysis can
visualize charge transfer. To further investigate the HER activity of Co, Ni, Pd, and Re
elements in SACs and DACs, the Bader charge analysis is performed with and without
the H adsorption. As shown in Table 4, the total charge on the TMs increases upon the
hydrogen adsorption. For Co, Ni, and Pd, the SACs lose fewer electrons than DACs
upon H adsorption, resulting in the lower H adsorption capacities. On the contrary, the
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Re SAC loses more electrons (+0.35 e) than the DAC (+0.15 e), resulting in the weaker
binding strength of the H atom on Re2. We also perform the charge density difference of
Re1−SVGN3 and Re2−SVGN3 for before and after H adsorption (as presented in Figure 7),
in order to further analyze the change of charge transfer during the catalytic process:
(1) For Re SAC, before H adsorption, the Re single-atom is roughly positively charged
due to the system’s electrical neutrality, electron cloud density focusing on the N atoms in
the substrate as well as the Re single-atom, and the graphene substrate being negatively
charged; after H adsorption, the Re single-atom is normally negatively charged due to the
system’s electrical neutrality, electron cloud density focusing on the H atom and the Re
single-atom, and the H atom being positively charged. (2) For Re DAC, before H adsorption,
the Re dual-atom is normally negatively charged due to the system’s electrical neutrality,
electron cloud density focusing on the N atoms in the substrate as well as the Re dual-atom,
and the graphene substrate being positively charged; after H adsorption, the Re dual-atom
is still negatively charged due to the system’s electrical neutrality, electron cloud density
focusing on the H atom and the Re dual-atom, and the H atom being positively charged. In
conclusion, we intuitively find more charge transfer for Re SAC, which is the same as our
calculated results from Bader charge analysis. Thus, the smaller the electron loss upon H
adsorption, the weaker the binding strength, which shifts ∆GH∗ towards the zero point in
these cases. The different behavior of charge transfer in SACs and DACs determines the
different activity.

Table 4. Bader Charges, Q(e), of the typical TMs in SACs and DACs with non−H and H adsorption.
(“+” means electron loss; “−” means electron gain).

Non−H System QM1/e QM2/e QM1+M2/e

Co-SVGN3 +0.82 − +0.82
Co2-SVGN3 +0.73 −0.13 +0.60
Ni-SVGN3 +0.73 − +0.73
Ni2-SVGN3 +0.64 −0.18 +0.46
Pd-SVGN3 +0.52 − +0.52
Pd2-SVGN3 +0.47 +0.11 +0.58
Re-SVGN3 +1.00 − +1.00
Re2-SVGN3 +0.97 −0.17 +0.80

H adsorption System QM1/e QM2/e QM1+M2/e ∆Q/e

Co-SVGN3 +0.95 − +0.95 +0.13
Co2-SVGN3 +0.77 +0.08 +0.85 +0.25
Ni-SVGN3 +0.74 − +0.74 +0.01
Ni2-SVGN3 +0.69 +0.08 +0.77 +0.31
Pd-SVGN3 +0.54 − +0.54 +0.02
Pd2-SVGN3 +0.52 +0.10 +0.62 +0.04
Re-SVGN3 +1.35 − +1.35 +0.35
Re2-SVGN3 +1.06 −0.11 +0.95 +0.15
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4. Conclusions

In summary, by using DFT calculations, we systematically investigated the geometric
structure, stability, and HER catalytic activity for the 3d, 4d, and 5d TM SACs and DACs
on the SVGN3 substrate, respectively. We conclude the DACs of Mo, Tc, Re, Os, Ir, Pt,
and Au are relatively more stable than the isolated SACs. The other DACs could also
form when the TM atoms are slightly overloaded on the surface. Comparing the HER
reaction overpotential, 13 DACs exhibit better catalytic performance than the SACs. After
screening, Re2−SVGN3 is predicted to be good catalysts for HER. This study shows the
importance of studying DACs for atomically-dispersed catalysis. It also provides useful
information to design DACs on the SVGN3 surface for HER beyond SACs. Furthermore,
we also found that both the electrochemical conditions and the lattice/matrix in which the
metals are embedded affect the stability and HER activity of atomically-dispersed metal
catalysts [51,53]. In future work, we will further consider the effect of the real environment
on the stability and catalytic activity.
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for 3d elements; Table S2: Formation energy of SVGN3 and DVGN4; Table S3: zero-point energy
(ZPE), and entropic correction (TS, T = 298.15K) of H2; Table S4: The adsorption energy (∆EH∗ ), zero-
point energy difference (∆EZPE), and entropic correction difference (T∆SH∗ , T = 298.15K), Gibbs free
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