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Promoters adopt distinct dynamic manifestations
depending on transcription factor context
Anders S Hansen1,* & Christoph Zechner2,3,4,**

Abstract

Cells respond to external signals and stresses by activating transcrip-
tion factors (TF), which induce gene expression changes. Prior work
suggests that signal-specific gene expression changes are partly
achieved because different gene promoters exhibit distinct induction
dynamics in response to the same TF input signal. Here, using high-
throughput quantitative single-cell measurements and a novel statis-
tical method, we systematically analyzed transcriptional responses to
a large number of dynamic TF inputs. In particular, we quantified the
scaling behavior among different transcriptional features extracted
from the measured trajectories such as the gene activation delay or
duration of promoter activity. Surprisingly, we found that even the
same gene promoter can exhibit qualitatively distinct induction and
scaling behaviors when exposed to different dynamic TF contexts.
While it was previously known that promoters fall into distinct
classes, here we show that the same promoter can switch between
different classes depending on context. Thus, promoters can adopt
context-dependent “manifestations”. Our analysis suggests that the
full complexity of signal processing by genetic circuits may be signifi-
cantly underestimated when studied in only specific contexts.
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Introduction

Exquisite regulation of gene expression underlies essentially all biologi-

cal processes, including the remarkable ability of a single cell to develop

into a fully formed organism. Transcription factors (TFs) control gene

expression by binding to the promoters of genes and recruiting chro-

matin remodelers and the general transcriptional machinery. Recruit-

ment of RNA Polymerase II enables the initiation of transcription,

which produces mRNAs that are exported to the cytoplasm, where they

are finally translated into proteins by the ribosome. Gene expression is

primarily regulated at the level of promoter switching dynamics and

initiation of transcription, which is associated with large cell-to-cell vari-

ability (Coulon et al, 2013). For practical reasons, however, gene

expression is typically analyzed at the level of mRNAs (e.g., FISH) or

proteins (e.g., immunofluorescence or GFP reporters) using bulk or

single-cell approaches. Although powerful, these data provide only

partial and indirect information about the underlying promoter states

and transcription initiation dynamics. Moreover, although natural gene

regulation is complex in both time (e.g., time-varying signals) and

space (e.g., signaling gradients) (Li & Elowitz, 2019), experimental

measurements tend to be limited to simple perturbations such as ON/

OFF or dose–response curves under steady-state conditions.
Ideally, gene regulation should be studied at the level of promoter

switching dynamics and transcription initiation events, using experi-

mental approaches that capture gene expression in a sufficiently large

number of single living cells in response to a broad range of dynamic

inputs. Several studies have addressed some, but not all, of these

challenges (Suter et al, 2011; Coulon et al, 2013; Hansen & O’Shea,

2013; Toettcher et al, 2013; Zoller et al, 2015). Here, through an inte-

grated experimental and computational approach, we make a first

attempt to realize this goal. We focus on a simple system, where a

single inducible TF activates a target gene. Surprisingly, our approach

reveals that even single gene promoters can display complex and

counter-intuitive behaviors, which are difficult to explain by simple

kinetic models. In particular, we show that genes exhibit ”context-

dependent manifestations”, such that the same gene can switch

between qualitatively different kinetic behaviors depending on which

dynamic input it is exposed to. While it was previously known that

promoters fall into distinct classes, we thus show here that the same

promoter can switch class depending on context.

Results

Single-cell time-series measurements of promoter dynamics
under complex TF inputs

To study how genes respond to complex and dynamic TF inputs, we

focus on a large dataset that we previously generated (Fig EV1)
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(Hansen & O’Shea, 2013; Hansen & O’Shea, 2015) and which we

have here converted from arbitrary fluorescence units to absolute

protein abundances. In our setup, addition of a small molecule

causes the budding yeast TF, Msn2, to rapidly translocate to the

nucleus and activate gene expression (Fig 1A). Using microfluidics,

rapid addition or removal of 1NM-PP1 allowed us to control both

pulse length, pulse interval, and pulse amplitude of the TF (fraction

of Msn2 that is activated) and simultaneously measure the single-

cell response of natural and mutant Msn2 target genes using fluores-

cent reporters (Hansen & O’Shea, 2013; Hansen et al, 2015; Hansen

& O’Shea, 2015) (Fig 1A).

We note that Msn2 naturally exhibits complex signal-dependent

activation dynamics (Hao & O’Shea, 2012). First, Msn2 exhibits

short pulses of nuclear localization in response to glucose starvation

with dose-dependent frequency/number, and our pulse number/
interval experiments were designed to match those (Fig 1B).

Second, Msn2 largely exhibits a single pulse of nuclear localization

in response to osmotic stress with dose-dependent duration, and our

pulse duration experiments were designed to match this (Fig 1B).

Third, Msn2 exhibits a sustained pulse of nuclear localization in

response to oxidative stress with dose-dependent amplitude, and

our amplitude-modulated experiments were designed to match this

(Fig 1B) (Hao & O’Shea, 2012). In summary, we chose our TF inputs

to be physiologically relevant. We note that the system is not

subject to known feedback from Msn4 since Msn4 has been deleted

in our system (Hao & O’Shea, 2012; Hansen & O’Shea, 2013; Akha-

vanAghdam et al, 2016), though we cannot rule out other forms of

feedback. We also note that we replaced the target gene ORF with

YFP and measured the endogenous gene response (Hansen &

O’Shea, 2013; Hansen & O’Shea, 2015) and that the target genes are

strictly Msn2-dependent (Hansen & O’Shea, 2013). Our extensive

dataset contains 30 distinct dynamical Msn2 inputs for nine genes

(270 conditions) and ∼ 500 cells per condition, numbering more

than 100,000 single-cell trajectories in total (Fig 1B).

Bayesian inference of promoter dynamics from
time-lapse measurements

Gene promoters can generally exist in different transcriptionally

active and inactive states (Coulon et al, 2013; Neuert et al, 2013).

However, although our dataset is rich, since protein synthesis and

degradation are slow processes, the raw YFP traces provide only

indirect information about promoter state occupancies and dynam-

ics. Bayesian methods provide an effective means to obtain statisti-

cal reconstructions of promoter states and transcription dynamics

from time-lapse reporter measurements (Suter et al, 2011; Golightly

& Wilkinson, 2011; Amrein & K€unsch, 2012; Zechner et al, 2014).

However, performing such reconstruction is computationally very

demanding and existing approaches are typically too slow to handle

large datasets like the one considered here, or rely on certain

approximations which may be incompatible with the considered

experimental system. To address this problem, we have developed a

hybrid approach, which achieves accurate reconstructions while

maintaining scalability.

Bayesian state reconstruction requires a mathematical model that

captures the dynamics of the underlying molecular states and how

those relate to the corresponding time-series measurements. To

describe the dynamics of gene expression, we focus on a standard

Markov chain model, in which a promoter can switch between L dif-

ferent states with distinct transcription rates z0, . . . ,zL�1 (e.g., tran-

scriptionally inactive vs. active). Messenger RNA and protein YFP

reporter copy numbers are described by two coupled birth-and-

death processes. We account for extrinsic variability (Elowitz et al,

2002) at the translational level by considering the translation rate to

be randomly distributed across a population of cells. The dynamic

state of the overall gene expression system at time t is denoted by

sðtÞ¼ ðzðtÞ,mðtÞ,nðtÞÞ, with zðtÞ∈fz0, . . . ,zL�1g as the instantaneous

transcription rate and mðtÞ and nðtÞ as the mRNA and YFP reporter

copy numbers, respectively. We denote by s0:K ¼fsðtÞj0≤ t ≤ tKg a

complete trajectory of sðtÞ on the time interval t∈ ½0, tK �. We

consider a sequence of K partial and noisy measurements y1, . . . ,yK
at times t1< t2< . . .< tK along the trajectory. The statistical relation-

ship between the measurements and the underlying state of the

system is captured by a measurement density pðykjskÞ with sk ¼ sðtkÞ
for all k¼ 1, . . . ,K. In the scenario considered here, the measure-

ments y1, . . . ,yK represent noisy readouts of the reporter copy

number extracted from time-lapse fluorescence movies. In order to

infer s0:K from a measured trajectory y1, . . . ,yK , we employ Bayes’

rule, which can be stated as

pðs0:K jy1, . . . ,yKÞ/ pðy1, . . . ,yK js0:KÞpðs0:KÞ¼
YK
k¼1

pðykjskÞpðs0:KÞ,

(1)

with pðs0:KÞ as the prior probability distribution over trajectories

s0:K , governed by the stochastic model of gene expression. The

corresponding posterior distribution on the left-hand side

captures the knowledge about a cell’s trajectory s0:K that we

gain once we take into account the experimentally measured

time series.

However, the posterior distribution in equation (1) is analytically

intractable and one is typically left with numerical approaches.

Sequential Monte Carlo (SMC) methods have been successfully

applied to address this problem in the context of time-lapse reporter

measurements (Zechner et al, 2014; Feigelman et al, 2016; Kuzma-

novska et al, 2017). The core idea of these approaches is to generate

a sufficiently large number of random sample paths s
ðiÞ
0:K from the

prior distribution and reweighing them using the measurement

density pðykjskÞ to be consistent with the posterior distribution. This

is performed sequentially over individual measurement time points,

which allows splitting the overall sampling problem into a sequence

of smaller ones that can be solved more effectively (Methods and

Protocols: Recursive Bayesian estimation).

The resulting SMC methods, however, are still computationally

very expensive since the generation of an individual sample path

s
ðiÞ
0:K can span thousands or even millions of chemical events when

considered on realistic experimental time scales. In the Msn2 induc-

tion system, for instance, trajectories often involve a large number

of transcription and translation events, which would render conven-

tional SMC approaches impractically inefficient. Alternatively, equa-

tion (1) can be calculated using analytical approximations (Huang

et al, 2016). The main idea is to approximate the posterior distribu-

tion by a “simpler” distribution, such as a normal or log-normal

distribution, which can be handled analytically. While analytical

approximations can be substantially more efficient than SMC meth-

ods, the underlying distributional assumptions may not be suitable
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Figure 1. Overview of Msn2 system and inference approach.

A Overview of microfluidic control of Msn2 activity and read-out of gene expression.
B Overview of range of Msn2 input dynamics.
C Stochastic model of gene expression. The promoter (left) can switch from its inactive state to its active state in an Msn2-dependent manner. Once active, mRNA can

be transcribed at a certain rate z1. Transcription can be further tuned by recruitment of additional factors, which is captured by a third state with distinct
transcription rate z2. Messenger RNA and protein dynamics are described as a two-stage birth-and-death process, accounting for extrinsic variability in the
translation rate (right). A detailed description of the model can be found in Methods and Protocols: Stochastic model of Msn2-dependent gene expression).

D Statistical reconstruction of promoter switching and transcription dynamics. Gene expression output trajectories were quantified for diverse Msn2 inputs in a large
number of cells. One half of the trajectories was used to calibrate the model using a moment-based inference approach (Zechner et al, 2012). The model parameters
corresponding to mRNA degradation, translation, and protein degradation where estimated once for each promoter from a single-pulse condition (50 min, 100%
Msn2) but then held fixed for all other conditions. In contrast, the parameters corresponding to promoter switching and mRNA production where re-calibrated for
each condition. The remaining half of the trajectories were used to reconstruct time-varying transcription rates and promoter state occupancies using the previously
calibrated models in combination with the hybrid SMC algorithm (Methods and Protocols Hybrid sequential Monte Carlo). Several features characterizing the
promoter and transcription dynamics were calculated from the single-cell reconstructions for all promoters and experimental conditions.

E Hierarchical clustering of promoter dynamics. We considered all single-pulse experiments (10–50 min duration, 25–100% Msn2 induction, see (B) top row) for all
promoters except the two SIP18 mutants. For each condition, we calculated the percentage of responders, the average transcriptional output, the average time active,
and the average time to activate. All features were averaged over five repeated runs of the inference pipeline. For a particular promoter and Msn2 induction level, we
grouped together the respective features for all pulse lengths, giving rise to a 20-dimensional data point. In total, this leads to 28 20-dimensional data points (four
Msn2 levels for seven promoters), which were normalized across individual features. Data points which had zero % responders for at least one of the pulse lengths
were excluded from the analysis, since the remaining three features are not defined in this case. The data were clustered using a Euclidian distance metric and are
shown as a heatmap, with cluster annotation.
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in certain scenarios and lead to poor approximations. For instance,

switch-like promoter dynamics are unlikely to be captured accu-

rately by a continuous distribution such as a Gaussian. To address

these problems, we developed a hybrid approach, which combines

efficient analytical approximations with SMC sampling and thus

strikes a balance between computational efficiency and accuracy.

More precisely, only the promoter switching events have to be simu-

lated stochastically, while the more expensive transcription and

translation dynamics are eliminated from the simulation and

handled analytically. This hybrid inference scheme targets the

marginal posterior distribution

pðz0:K jy1, . . . ,yKÞ/ pðy1jz0:1Þ
YK
k¼2

pðykjy1, . . . ,yk�1,z0:kÞpðz0:KÞ, (2)

where the mRNA and reporter dynamics mðtÞ and nðtÞ have been

integrated out. We derived expressions for the marginal likelihood

functions pðykjy1, . . . ,yk�1,z0:kÞ using an analytical approximation

based on conditional moments (Methods and Protocols: Hybrid

sequential Monte Carlo). The resulting method can be understood

as a Rao-Blackwellized SMC approach (Doucet et al, 2000; Zechner

et al, 2014). Using this hybrid approach, the sampling space can be

significantly reduced, which makes inference efficient enough to

deal with the large dataset considered in this study. A complete

description of the method and a quantitative analysis of its accu-

racy based on simulated data can be found in Methods and Proto-

cols and Fig EV2A and B.

Inference of Msn2-dependent promoter and
transcription dynamics

To quantify and understand how promoters respond to different

dynamic TF inputs, we applied the hybrid SMC algorithm to the

Msn2 datasets. To describe promoter activation and transcription,

we focus on a canonical three-state promoter architecture (Fig 1C),

which has been widely used in the literature (Coulon et al, 2013;

Hansen & O’Shea, 2013). This model accounts for Msn2-dependent

activation of the promoter after which mRNA can be transcribed at

a certain rate. Transcription can be further tuned (for instance by

recruitment of additional factors), which is captured by a third state

with distinct transcription rate (Fig 1C).

The model involves a number of unknown parameters, which

have to be determined prior to applying the hybrid SMC algorithm.

To achieve this, we used a randomly selected subset of the Msn2

dataset in combination with an efficient moment-based approach,

which reveals maximum a posterior estimates of the unknown

parameters (Zechner et al, 2012). The inference was performed for

each promoter and condition separately using 50% of the available

single-cell trajectories. However, only the promoter switching and

transcription rates were allowed to vary between conditions. The

remaining parameters associated with mRNA degradation, transla-

tion, and protein degradation were estimated only for the first condi-

tion within experimentally constrained ranges (Hansen & O’Shea,

2013) and then held fixed for all other conditions (Methods and

Protocols: Statistical inference of kinetic parameters).

The resulting calibrated models were then used to infer time-

varying transcription rates and promoter state occupancies within

individual cells from the remaining 50% of trajectories using the

hybrid SMC algorithm (Fig 1D). From the large number of recon-

structions, in turn, we computed a number of transcriptional

features that summarize the single-cell expression dynamics of each

promoter and condition (Methods and Protocols: Quantitative char-

acterization of promoter dynamics). For the purpose of this study,

we mainly focus on four transcriptional features. First, each cell was

classified as responder or non-responder, depending on whether it

was inferred to have resided in a promoter state with significant

transcriptional activity for more than 2 min. For all responders, we

estimated the time it took the promoter to switch into an active state

(time to activate), the total time the promoter was in an active state

(time active) as well as the integral over the time-varying transcrip-

tion rate over the whole time course, which we refer to as transcrip-

tional output. These dynamical features are chosen to be generic

such that they do not rely on the particular structure of the consid-

ered promoter model. We remark that since the overall analysis

pipeline depends on random number generation (e.g., splitting of

data between model calibration and trajectory inference, Monte

Carlo sampling), the inferred transcriptional features exhibit a

certain degree of variability between repeated runs of the analysis.

To quantify this variation, we performed five independent runs of

the overall pipeline and calculated averages and standard errors.

Data points shown in the following correspond to the inferred tran-

scriptional features averaged across individual runs, unless stated

otherwise. Both the calibrated models and temporal reconstructions

were validated using a cross-validation approach (Fig EV2C–F). In
summary, this combined experimental and computational approach

allowed us to compare different promoters under a wide range of

Msn2 contexts.

Promoters exhibit context-dependent scaling behaviors
and manifestations

To gain an overview of this high-dimensional dataset, we analyzed

the gene expression responses to single pulses of nuclear Msn2 of

different amplitudes (25, 50, 75, or 100%) for each promoter. Using

hierarchical clustering, we uncovered the known promoter classes

(Hansen & O’Shea, 2013) for most conditions (Fig 1E): slow activa-

tion, high amplitude threshold promoters (SIP18, TKL2) clustered

together and fast activation, and low amplitude threshold promoters

(HXK1, DCS2) also clustered together. Surprisingly, however, DDR2

(Figs 1E and EV3) clustered with the slow, high threshold promoters

at low Msn2 amplitudes (25, 50%), but with the fast, low threshold

promoters at high Msn2 amplitudes (75, 100%). This suggests that

the same promoter can switch promoter class and exhibit qualita-

tively different promoter and transcription dynamics when exposed

to different Msn2 contexts.

To gain a better understanding of this phenomenon, we plotted

the average time it took to activate the promoter (Fig 2A) and the

average time the promoter was active (Fig 2B) against the transcrip-

tional output for single-pulse inputs for DDR2. At low amplitude

Msn2 input, the time it takes to activate DDR2 for the first time

increases with pulse length (Fig 2A), while both the time active

(Fig 2B) and the transcriptional output increase only moderately

(Fig 2A). In contrast, at high Msn2 amplitude, the time to activate

appears fixed at approximately 5–10 min, but now transcriptional

output and time active increase significantly with pulse duration.
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This can be seen more clearly when plotting the dynamics of

the inferred transcription rates of responding cells for low (Fig 2

C) and high (Fig 2D) Msn2 amplitudes. For 25% Msn2, the popu-

lation-averaged transcription rate peaks at a time that scales with

pulse length, while the maximum of the peak remains almost

constant. This suggests that Msn2 duration predominantly regu-

lates the probability to activate the promoter rather than the rate

of transcription once the promoter becomes active. This behavior

is in qualitative agreement with the slow activation, high ampli-

tude threshold promoters such as ALD3 (Fig 2E). In contrast, for

100% Msn2, the maximum transcription rate of DDR2 increases

by twofold to threefold between the 10 min and 50 min duration

pulses, indicating that upon promoter activation, transcription can

be further enhanced by the presence of Msn2. This behavior is

characteristic for the fast activation, low amplitude promoters

such as DCS2 (Fig 2F).

In summary, this shows that a single promoter can switch

between qualitatively distinct behaviors depending on Msn2

context. Here, DDR2 behaves like one promoter class at low Msn2

amplitudes (pulse length regulates time to activate, but nothing

else), but a distinct class at high Msn2 amplitudes (pulse length

regulates time active, transcription output and maximum rate, but

not time to activate) (Fig 2G and H). While it is well known that

promoters fall into distinct classes (Stavreva et al, 2009; Suter et al,

2011; Hao & O’Shea, 2012; Sharon et al, 2012; Hansen & O’Shea,

2013; Hansen & O’Shea, 2015; Haberle & Stark, 2018; King et al,

2020), what we show here is that the same promoter can switch

from one class to another depending on context. To explain this

phenomenon, we introduce the concept of ”context-dependent

manifestations”. Operationally, we define a context-dependent

manifestation of a promoter as a situation where the same promoter

exhibits qualitatively distinct kinetic behaviors under different

input contexts.

Context-dependent promoter manifestations control gene
expression noise

We next studied if promoters other than DDR2 exhibit similar

context-dependent promoter class switching. To this end, we

analyzed the relationship between different promoter features under

all input contexts and compared them with each other.

First, we analyzed the correlation between transcriptional

output and the time the promoter was in any of the two tran-

scriptionally permissive states (i.e., states 1 or 2 in Fig 1C) within
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Figure 2. Context-dependent scaling behaviors.

A, B Scaling behaviors for DDR2. Scaling of time to activate (A) and total time active (B) for DDR2 with transcriptional output. All three features were calculated as
population averages across all responding cells per condition. Circles correspond to the mean of these features calculated over five independent inference runs and
error bars indicate two times the standard error above and below the mean.

C, D Population averages of the time-varying transcription rate were calculated for the 10, 30, and 50 min pulse conditions for 25% Msn2 amplitude (C) and 100%
Msn2 amplitude (D) for DDR2 considering only responding cells. Solid lines correspond to the mean calculated over five independent inference runs and shaded
areas mark two times the standard error above and below the mean. The colored numbers indicate the estimated fraction of responding cells for the respective
condition, averaged over all five inference runs. Inset plots show the maximum of the population-averaged transcription rate calculated over the whole time
course. Circles correspond to means calculated over five independent inference runs and error bars mark two times the standard error above and below the
means.

E, F Time-varying transcription rates were calculated as in (C, D) for the 10, 30, and 50 min pulse conditions, and 100% Msn2 amplitude are shown for ALD3 and DCS2
for comparison.

G, H Schematic model of DDR2 promoter manifestations for low and high Msn2 induction levels. At Low Msn2 levels, Msn2 pulse length regulates the time to activate
but not the other features. At High Msn2 levels, Msn2 pulse length regulates the time the promoter is active, transcriptional output, and maximal transcription
rate, but it no longer regulates the time to activate.
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individual cells (Fig 3A) for TKL2, DDR2, and DCS2. We refer to

the latter as time transcribing. For DCS2, transcriptional output at

the single-cell level shows a linear and nearly deterministic

dependence on time transcribing. To validate this, we performed

a regression analysis and found that a simple linear model where

transcriptional output is proportional to time transcribing (with

slope k) can explain most of the variation in transcriptional

output (R2 ≈ 1; Fig 3A). Thus, for a given Msn2 amplitude, the

effective rate of DCS2 transcription is fixed and the single-cell

transcriptional output can be determined very accurately by the

time the promoter is in the transcriptionally permissive states.

However, the rate of transcription is set by the Msn2 amplitude

(i.e., k increases with Msn2 amplitude). Thus, DCS2 is remarkably

simple within the considered contexts and regulation by time

transcribing and transcription rate can be decoupled. Similarly,

for DDR2, the rate of transcription is also set by Msn2 amplitude.

However, in comparison with DCS2, it exhibits larger variation

for low and intermediate Msn2 amplitudes, which decrease

toward higher Msn2 amplitudes. The inverse scaling of variability

with amplitude can be explained by simple Markovian models

with Msn2-dependent switching rates (Peccoud & Ycart, 1995;

Hansen & O’Shea, 2013).

In contrast, TKL2 resembles DCS2 and DDR2 at low Msn2 ampli-

tudes (R2 ≈ 1), but at intermediate Msn2 amplitudes (Fig 3A,

yellow), TKL2 exhibits large variation, which decreases again for

higher Msn2 amplitudes. Thus, surprisingly, time transcribing is a

A

B

Figure 3. Single-cell manifestations control gene expression noise.

A Dependency of transcriptional output with time transcribing, defined as the time the promoter spends in any of the two transcriptionally permissive states (see
Fig 1C). The left panel plots transcriptional output against time transcribing for individual cells for a 50 min pulse with 25, 50, 75, and 100% Msn2 input for all single-
cell responses (responders and non-responders). Results are shown for one of the five independent inference runs. Linear regression analysis was performed to
determine the R2 and slope k between transcr. output and time transcribing as shown in the center and bottom panels. Circles correspond to averages across five
independent inference runs and error bars mark two times the standard error below and above the average.

B Scaling of noise with average transcriptional output for all Msn2 contexts. Noise is defined as the squared coefficient of variation of the transcriptional output
calculated across individual cells. Single-pulse experiments of different Msn2 induction level and duration are shown as circles of varying size and color whereas all
repeated-pulse experiments are shown as orange and equally sized triangles for visual clarity. Individual data points correspond to averages over five independent
inference runs.
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fairly poor predictor of TKL2 transcriptional output at intermediate

levels of Msn2 but a much better predictor at low and high Msn2

amplitudes. This non-monotonic relationship indicates that above a

certain Msn2 concentration, additional promoter states with larger

transcriptional activity become accessible, which increase in occu-

pancy toward higher Msn2 amplitudes. This again suggests that the

behavior of a single promoter can be dominated by distinct

promoter architectures depending on input context.

The analysis above was concerned with the statistical relation-

ship between time transcribing and transcriptional output in single

cells for a single 50 min Msn2 pulse at different amplitudes. To

generalize our analysis, we next studied how noise in transcrip-

tional output (quantified using CV2 = std2/mean2) scales with mean

transcriptional output under all conditions (Fig 3B). As expected

from previous studies (Bar-Even et al, 2006, Newman et al, 2006,

Taniguchi et al, 2010), transcriptional noise uniformly decreases as

transcriptional output increases for some genes such as DCS2. In

contrast, TKL2 and also SIP18 exhibit more complex and non-mono-

tonic noise scaling: low noise during low transcription, high noise

during intermediate levels of transcription and again lower noise

during high levels of transcription (Fig 3B), similar to the previous

example in Fig 3A.

To further investigate this “inverse-U” scaling, we compared the

behavior of the wild-type SIP18 promoter with the two mutants A4

and D6 (Hansen & O’Shea, 2015) (Fig 3B). Mutant A4 resembles the

simple inverse scaling relationship of DCS2. Similarly, mutant D6

also more closely resembles DCS2, albeit with a slightly weaker

relationship between stronger expression and lower noise,

suggesting that attenuation of this relationship can similarly be

encoded in the promoter sequence. Taken together, these results

demonstrate that modifying the number and location of Msn2

DNA binding sites in the promoter is sufficient to switch scaling

and manifestation behavior.

Memory-dependent promoter manifestations revealed by
pulsatile Msn2 activation

We next analyzed how promoters respond to pulsatile Msn2 activa-

tion. Cells were exposed to four 5-min Msn2 pulses separated by 5,

7.5, 10, 15, or 20 min intervals. Some promoters behaved relatively

simply, e.g., DCS2 (Fig 4A). Most cells activate the DCS2 promoter

during the first pulse, and the promoter displays limited positive

memory between pulses (Fig 4A). By positive memory, we refer to

the fact that successive pulses of Msn2 activation increase the

susceptibility of the promoter to become activated and induce

higher gene expression. This has also been termed the head-start

effect (Hao & O’Shea, 2012).

In contrast, the SIP18 mutant D6 promoter (Hansen & O’Shea,

2015) exhibited very curious behavior: at 5-min intervals, there was

significant positive memory (Fig 4A, top row). In contrast, with

20 min intervals, we observed negative memory: there was much

lower expression during pulse 2–4, than during pulse 1(Fig 4A,
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Figure 4. Context-dependent promoter memory and model.

A Interval-dependent regulation of promoter memory. Cells where treated with four consecutive Msn2 pulses (75% induction level) with 5-min duration. The intervals
between the pulses were 5, 7.5, 10, 15, and 20 min, respectively (left column). Population averages of the time-varying transcription rates were calculated for DCS2
(middle column) and SIP18 mutant D6 (right column) considering all cells per condition (responding and non-responding cells). Solid lines correspond to the mean of
the population-averaged transcription rate calculated over five independent inference runs and shaded areas mark two times the standard error above and below the
mean.

B Toy model of context-dependent promoter manifestations. We considered a four-state promoter model with complex, nonlinear Msn2-dependent transition rates (top
row). Green and red arrows indicate transitions, which are promoted or repressed by Msn2, respectively. Gray arrows correspond to Msn2-independent transitions. We
simulated the promoter response to all thirty Msn2 inputs and quantified its dynamics by calculating the expected total number of transitions between all states
(middle row heatmaps; blue show transitions with high probability (e.g., state 2 is rarely occupied in the middle scenario (High Msn2))). Depending on the Msn2
inputs, certain state transitions are favored, while others are effectively repressed. Therefore, different classes of dynamical inputs can reveal distinct manifestations
of the same promoter (bottom row).
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bottom row). In other words, exposure to one pulse of Msn2 inhib-

ited transcription during subsequent pulses. Furthermore, compar-

ing the different pulse intervals we observed a transition from

positive memory at 5 and 7.5 min intervals to negative memory at

15 and 20 min intervals (Fig 4A).

While positive memory has previously been reported (Hao &

O’Shea, 2012; Hansen & O’Shea, 2013), a context-dependent switch

from positive to negative memory has not. We note that a sharp

transition from positive to negative promoter memory is difficult to

explain by simple kinetic models and that this type of behavior only

becomes visible once the response to diverse dynamic inputs are

analyzed. Although the underlying molecular mechanism is

unknown, we show in Fig EV4 a hypothetical toy model that could

explain such a switch from positive to negative memory. In conclu-

sion, these data provide another example of how the same promoter

can exhibit very different quantitative and qualitative behaviors

depending on the context—in this case, depending on the interval

between Msn2 pulses.

Discussion

Here, we quantitatively analyze the dynamic input–output rela-

tionship in a simple inducible gene regulation system. Previously,

a large number of studies have shown that promoters fall into

distinct classes (e.g., fast vs. slow; low vs. high threshold) and

that different promoters decode dynamic stimuli differently (Stav-

reva et al, 2009; Suter et al, 2011; Hao & O’Shea, 2012; Sharon

et al, 2012; Hansen & O’Shea, 2013; Hansen & O’Shea, 2015;

Haberle & Stark, 2018; King et al, 2020). For example, a slow

promoter may filter out a brief and transient stimulus (Purvis &

Lahav, 2013). However, promoter class was assumed to be a

fixed property.

Here, we show that promoters can switch between distinct

classes depending on context. We show that even under these rela-

tively simple conditions, the same promoter can exhibit context-

dependent scaling and induction behaviors (Figs 1–4 and EV5). To

describe this observation, we introduce the concept of context-

dependent manifestations. The underlying number of molecular

states of a promoter is potentially enormous; if we were to enumer-

ate the combinatorial number of states based on nucleosome posi-

tions, TF occupancy at each binding site, binding of co-factors such

as Mediator, SAGA, TFIID, RNA Polymerase II, and numerous other

factors, the number of discrete molecular states would be astronom-

ically high. When we measure a dose–response, we may observe

only certain rate-limiting regimes or manifestations of the system.

What we show here is that the particular observed manifestation

can be highly context-dependent and very distinct quantitative

behaviors can be observed under different contexts even in systems

that are seemingly simple.

Does this mean that the concept of a few discrete promoter states

is too strong an approximation to be useful? We suggest that this is

not necessarily the case. Our analyses show that for a given context,

a 3-state promoter architecture was capable of quantitatively

describing promoter dynamics. However, the specific three

promoter states and their associated rates were in general dependent

on Msn2 context. In other words, a complicated system can mani-

fest itself in a simpler form under specific conditions. Comparing

different manifestations across multiple input contexts can thus help

to unravel the overall complexity of promoter dynamics.

To illustrate this point further, consider a hypothetical promoter

with four major states (Fig 4B). If under some dynamical Msn2

inputs, this promoter reduces to simpler architectures (e.g., 2-

state), but not under other Msn2 inputs (e.g., remains 4-state), then

the observed quantitative manifestation of the promoter is depen-

dent on Msn2-context. To more concretely demonstrate an example

of this, we performed simulations of a complex 4-state promoter

with nonlinear Msn2-dependent switching rates (Fig 4B; see Meth-

ods and Protocols: Toy model of a complex, context-dependent

promoter for details on the model) to all thirty dynamical Msn2

inputs. To characterize the dynamics of the promoter, we calcu-

lated the average number of transitions between all promoter

states. These results show that depending on the Msn2 inputs,

certain state transitions are favored, while others are effectively

repressed. In particular, the same promoter can behave effectively

like a 2-, 3-, or 4-state promoter, depending on which type of

dynamical input it is exposed to (Fig 4B). Mechanistically, one

could imagine a promoter state that requires sustained chromatin

remodeling and only becomes available if the Msn2 pulse and

concentration is sufficiently high, as we previously suggested for

SIP18 and its two promoter mutants studied here (Hansen &

O’Shea, 2015). But this is speculative, and the precise molecular

mechanisms underlying the distinct promoter manifestations

observed here remain unknown. We suggest elucidating the molec-

ular mechanisms underlying promoter manifestations as an impor-

tant area for future research.

Our results have two important potential implications. First, our

results suggest that system identification efforts based on limited

sets of experimental conditions within complex systems are unlikely

to be successful in the sense of capturing the full range of relevant

behaviors of the underlying molecular pathways. In extreme cases,

we may arrive at different and possibly contradictory conclusions

about a pathway’s inner workings depending on which experimen-

tal context we choose to study. The only solution to this problem is

to resort to experimental and computational approaches that capture

a pathway’s response to a sufficiently broad range of physiologically

meaningful contexts. Much more work on simple systems will be

necessary to truly understand the relevant complexity of signal

processing in cells, and we hope the approaches developed here will

be helpful in this regard.

Second, a major conundrum in quantitative biology has been

how to reconcile the remarkable spatiotemporal precision of biologi-

cal systems with the high degree of gene expression noise

observed at the single-cell level (Elowitz et al, 2002; Cai et al, 2006;

Li & Elowitz, 2019). For example, when information transduction

capacities have been measured for simple pathways, such systems

appear to be barely capable of reliable distinguishing ON from

OFF (∼ 1 bit) (Cheong et al, 2011; Uda et al, 2013; Selimkhanov

et al, 2014; Voliotis et al, 2014). Since these studies were done

under strict experimental conditions, they may have captured

only one out of multiple manifestations. Our results suggest that

if all physiologically relevant manifestations could be captured,

the estimated information transduction capacity of biochemical

pathways could be substantially greater than previously esti-

mated. This could, in part, explain the remarkable signal process-

ing capabilities of biological systems.
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Materials and Methods

Reagents and Tools Table

Reagent/Resource
Reference or
source Identifier or catalog number

Experimental models

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX hxk1::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2810

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX sip18::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2813

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX rtn2::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2816

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX dcs2::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2819

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX tkl2::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2822

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX ddr2::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2825

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::kanMX ald3::
mCitrineV163A/SCFP3A-spHIS5 (Diploid)

Hansen and
O’Shea (2013)

EY2828

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::KAN sip18::
mCitrine_V163A/SCFP3A-spHIS5 pSIP18 Mutant A4 with 4 STREs (Diploid)

Hansen and
O’Shea (2015)

EY2967

TPK1M164G TPK2M147G TPK3M165G msn4Δ::TRP1/LEU2 MSN2-mCherry NHP6a-iRFP::KAN sip18::
mCitrine_V163A/SCFP3A-spHIS5 pSIP18 Mutant D6 with 6 STREs (Diploid)

Hansen and
O’Shea (2015)

EY2996

Chemicals, enzymes, and other reagents

1-NM-PP1 Hansen and
O’Shea (2013)

1-NM-PP1

Software

Image analysis code Hansen et al
(2015)

https://www.nature.com/articles/nprot.
2015.079

Code and raw data to reproduce all plots in this manuscript This study https://github.com/zechnerlab/Promote
rManifest/

Other

Gene expression data for ALD3, TKL2, DCS2, DDR2, HXK1, RTNA, and SIP18 Hansen and
O’Shea (2013)

https://www.embopress.org/doi/10.1038/
msb.2013.56

Gene expression data for pSIP18 mutant A4 and D6 Hansen and
O’Shea (2015)

https://www.sciencedirect.com/science/
article/pii/S2211124715007950

Compilation of all single-cell trajectories used in this study This study https://zenodo.org/record/2755026

Methods and Protocols

Overview of experiments and source data
We note that the data used here were acquired previously (Hansen

& O’Shea, 2013; Hansen & O’Shea, 2015), but in the interest of

making it clear how the experiments were conducted, we provide a

brief outline of the experimental setup in the sections below. The

data in concentration units of arbitrary fluorescence were previously

acquired and described (Hansen & O’Shea, 2013; Hansen & O’Shea,

2015). Here, we used absolute abundance quantification (Huang

et al, 2016) to convert the data to absolute numbers of YFP and CFP

proteins per cell. All the source data supporting this manuscript are

freely available together with a detailed ReadMe file at https://ze

nodo.org/record/2755026. Information about the yeast strains can

be found in the Reagent and Tools Table.

Microfluidics and time-lapse microscope
Since the unnormalized data were previously acquired, here we

only briefly describe the experimental methods. Microfluidic

devices were constructed as previously described (Hansen &

O’Shea, 2013). We furthermore refer the reader to a detailed

protocol describing how to construct microfluidic devices and

computer code for controlling the solenoid valves (Hansen et al,

2015). Briefly, for microscopy experiments, diploid yeast cells

were grown overnight at 30°C with shaking at 180 RPM to an

OD600 nm of ca. 0.1 in low fluorescence medium without leucine

and tryptophan, quickly collected by suction filtration and loaded

into the five channels of a microfluidic device pretreated with

concanavalin A (4 mg/ml). The setup was mounted on an

inverted fluorescence microscope kept at 30°C. The microscope

automatically maintains focus and acquires phase-contrast, YFP,
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CFP, RFP, and iRFP images from each of five microfluidic chan-

nels for 64 frames with a 2.5 min time resolution corresponding

to imaging from −5 to 152.5 min. Solenoid valves control delivery

of 1-NM-PP1 to each microfluidic channel. For full details on the

range of input conditions, please see source data at https://zenod

o.org/record/2755026.

Image analysis and YFP quantification and normalization
Time-lapse movies were analyzed using custom-written software

(MATLAB) that automatically segments yeast cells based on

phase-contrast images and tracks cells between frames. The image

analysis software and a protocol describing how to use it is avail-

able elsewhere (Hansen et al, 2015). The arbitrary fluorescence

units were converted to absolute abundances by comparing fluo-

rescence to strains with known absolute abundances and by

segmenting the cell to calculate the total number of YFP mole-

cules per cell per timepoint (Huang et al, 2016). Maturation delay

was accounted for by shifting the YFP trajectories by a fixed time

interval of 12.5 min, corresponding to the first five measurement

time points.

Quantification of nuclear Msn2 dynamics
Msn2 was visualized as an Msn2-mCherry fusion protein. This

allows accurate quantification of the nuclear concentration of Msn2

over time (Msn2 only activates gene expression when nuclear) as

previously described (Hao & O’Shea, 2012; Hansen & O’Shea, 2013).

From the resulting time courses, we extracted continuous functions

u(t), which served as inputs to our stochastic promoter model. Since

we found nuclear Msn2 concentration to vary very little between

cells (Fig EV1), we considered u(t) to be deterministic. We

performed this as described previously (Hansen & O’Shea, 2013)

and elaborated on here. We model nuclear Msn2 import with first-

order kinetics:

uðtÞ¼u0ð1�e�k1tÞ: (3)

That is, if Msn2 is cytoplasmic at time t¼ 0, the nuclear level of

Msn2 at a later time t is given by the above expression where u0 is

the maximal level of nuclear Msn2 for the given concentration of 1-

NM-PP1. We chose the 1-NM-PP1 concentrations as 100, 275, 690,

and 3,000 nM such that they would correspond to approximately

25, 50, 75, and 100 of maximal nuclear Msn2. The parameter k1 is a

fit parameter describing the rate of nuclear import, which we

found to vary slightly depending on the 1-NM-PP1 concentra-

tion. Similarly, we model export of Msn2 from the nucleus as a

first-order process:

uðt2Þ¼uðt1Þe�k2ðt2�t1Þ: (4)

Here, uðt1Þ is the nuclear level of Msn2 when the microfluidic

device was switched to medium without 1-NM-PP1. Correspond-

ingly, uðt2Þ is the nuclear level of Msn2 at some later time t2> t1.

This is to account for the fact that, depending on the pulse dura-

tion, Msn2 may not have reached its maximal nuclear level, u0.

The parameters u0, k1 and k2 were determined through fitting.

Specifically, we took the full 30 different pulses and inferred the

best-fit values for u0, k1, and k2 using least squares fitting. The

values are shown below:

[1-NM-PP1] (nM) u0 k1ðmin�1Þ k2ðmin�1Þ
100 313.2 1.11 0.97

275 774.5 0.61 0.81

690 1,107.8 0.59 0.57

3,000 1,410.1 1.07 0.29

Stochastic model of Msn2-dependent gene expression
We describe Msn2-dependent gene expression using a canonical

three-state model as shown in Fig 1C. The promoter is described

as a continuous-time Markov chain, which switches stochasti-

cally between three states of different transcriptional activity.

Correspondingly, the rate of transcription at time t is governed

by a stochastic process ZðtÞ∈fz0,z1,z2g, whose value changes

discontinuously whenever the promoter transitions from one

state into another. In the absence of nuclear Msn2, the promoter

is in its transcriptionally inactive state (z0 ¼ 0), where no tran-

scripts are produced. Upon recruitment of Msn2 to the promoter,

it can switch into a transcriptionally permissive state in which

transcription takes place with propensity z1. To account for

Msn2-dependent promoter activation, we consider the switching

rate from z0 to z1 to depend on the nuclear Msn2 abundance.

For simplicity, we consider a linear dependency, i.e.,

q01ðtÞ¼ γuðtÞ, with uðtÞ as the Msn2 abundance at time t. The

corresponding reverse rate q10 is considered to be constant. We

assume that transcription can be further enhanced by recruit-

ment of additional factors such as chromatin remodeling

complexes and general transcriptional factors. This is captured in

our model by introducing a third state with transcription rate z2
and corresponding transition rates q12 and q21. With this, we

can describe the time-dependent probability distribution over the

transcription rate PZðtÞ¼ P Z tð Þ¼ 0jθð Þ,P Z tð Þ¼ z1jθð Þ,P Z tð Þ¼ðð
z2jθÞÞT in terms of a forward equation.

d

dt
PZðtÞ¼QðtÞPZðtÞ¼

�q01ðtÞ q10 0

q01ðtÞ �q10�q12 q21

0 q12 �q21

0
B@

1
CAPZðtÞ, (5)

with PZð0Þ¼ pz,0 as some initial distribution over ZðtÞ and

θ¼fγ,q10,q12,q21,z1,z2g as a set of parameters. In the following,

we denote by zt ¼fzðsÞj0≤ s≤ tg a complete realization of ZðtÞ on

a fixed time interval ½0, t�. Furthermore, we introduce the condi-

tional path distribution pðztjθÞ which measures the likelihood of

observing a particular trajectory zt for a given parameter set θ.

Note that it is straightforward to draw random sample paths zt
from this distribution using Gillespie’s stochastic simulation algo-

rithm (SSA) (Gillespie, 2007) or its variants.

Transcription and translation are modeled as a two-stage reac-

tion network as shown in Fig 1C. We denote by MðtÞ and NðtÞ the

copy numbers of mRNA and protein at time t, respectively. The

parameters c1 and c2 are the mRNA and protein degradation rates

and A is the protein translation rate. To account for cell-to-cell vari-

ability in protein translation, we consider the latter to be randomly

distributed across isogenic cells, i.e., A∼pðajβÞ, with pðajβÞ as an

arbitrary probability density function (pdf) with positive support

and β as a set of hyperparameters characterizing this distribution
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(Zechner et al, 2012; Zechner et al, 2014). Here, we consider as

hyperparameters the average and coefficient of variation (CV) of A

such that β¼fhAi,CV½A�g. Consequently, β captures the magnitude

and variability associated with protein translation. In the following,

we denote by ω¼fc1,c2,βg the set of parameters corresponding to

transcription and translation.

For a given set of parameters θ and ω and a concrete realiza-

tion of the translation rate A, the overall dynamics of the joint

system state ðZðtÞ,MðtÞ,NðtÞÞ can be described by a Markov

chain. However, due to the random variability over A, each cell

is associated with a differently parameterized Markov chain. This

results in a heterogeneous Markov model, whose computational

analysis turns out to be challenging (Zechner et al, 2014). One

way to address this issue is to augment the state space by the

random variable A and to formulate a master equation on this

extended space. For SðtÞ¼ ðZðtÞ,MðtÞ,NðtÞ,AÞ, such master equa-

tion reads

d

dt
P z0,m,n,a, tð Þ ¼ z0P z0,m�1,n,a, tð Þþ c1 mþ1ð ÞP z0,mþ1,n,a, tð Þ

þamP z0,m,n�1,a, tð Þþ c2 nþ1ð ÞP z0,m,nþ1,a, tð Þ
� z0þ c1mþamþ c2n½ �P z0,m,n,a, tð Þ
þq10P z1,m,n,a, tð Þ�q01 tð ÞP z0,m,n,a, tð Þ

d

dt
P z1,m,n,a, tð Þ ¼ z1P z1,m�1,n,a, tð Þþ c1 mþ1ð ÞP z1,mþ1,n,a, tð Þ

þamP z1,m,n�1,a, tð Þþ c2 nþ1ð ÞP z1,m,nþ1,a, tð Þ
� z1þ c1mþamþ c2n½ �P z1,m,n,a, tð Þ
þq01 tð ÞP z0,m,n,a, tð Þ�q10P z1,m,n,a, tð Þ
þq21P z2,m,n,a, tð Þ�q12P z1,m,n,a, tð Þ

d

dt
P z2,m,n,a, tð Þ ¼ z2P z2,m�1,n,a, tð Þþ c1 mþ1ð ÞP z2,mþ1,n,a, tð Þ

þamP z2,m,n�1,a, tð Þþ c2 nþ1ð ÞP z2,m,nþ1,a, tð Þ
� z2þ c1mþamþ c2n½ �P z2,m,n,a, tð Þ
þq12P z1,m,n,a, tð Þ�q21P z2,m,n,a, tð Þ

(6)

with Pðzi,m,n,aÞ :¼ PðZðtÞ¼ zi,MðtÞ¼m,NðtÞ¼n,A∈ ½aþdaÞjθ,ωÞ.
Differential equations for arbitrary moments  fðZðtÞ,MðtÞ,NðtÞ,AÞ½ �
with f as a polynomial can be computed by multiplying (6) with f

and summing or integrating over all possible values of m, n, zi and

a, respectively (Zechner et al, 2012). In the following, we will

denote by st ¼fsðuÞj0≤ u≤ tg a complete sample path of the full

system state between time zero and t and introduce a corresponding

path distribution pðstjω,θÞ. The path distribution conditional on a

particular initial state Sð0Þ¼ s0 is denoted by pðstjs0,ω,θÞ.

Conditional dynamics of transcription and translation
One major difficulty in inferring gene networks like the one in Fig 1

C is that they involve both very lowly and highly abundant compo-

nents. This is why moment-based descriptions of the full system

state SðtÞ are of limited use for the time-series inference problem

considered here as will be discussed later. On the other hand,

approaches purely based on stochastic simulation become computa-

tionally expensive, since transcription and translation often involve

thousands or even millions of events over the duration of a time-

course experiment. In such cases, hybrid approaches can be benefi-

cial, where only the lowly abundant components are described

stochastically, whereas the remaining components are handled

using moment equations (Hasenauer et al, 2014). In the scenario

considered here, for instance, the time evolution of the transcription

rate zt can be efficiently simulated using stochastic simulation since

the number of times the promoter switches between states is compa-

rably small. For a given zt, one could then calculate a corresponding

set of conditional moments characterizing the dynamics of mRNA

and protein. More technically, this can be understood by the fact

that the path distribution over the total system state factorizes into

pðstjω,θÞ¼ pðxtjzt,ωÞpðztjθÞ. Correspondingly, we can describe the

dynamics over XðtÞ¼ ðMðtÞ,NðtÞ,AÞ as a conditional Markov

process XðtÞjzt, whose state probability distribution Pðm,n,a, tÞ :¼
PðMðtÞ¼m,NðtÞ¼n,A∈ ½aþdaÞjztÞ satisfies

d

dt
Pðm,n,a, tÞ ¼ zðtÞPðm�1,n,a, tÞþ c1ðmþ1ÞPðmþ1,n,a, tÞ

þamPðm,n�1,a, tÞþ c2ðnþ1ÞPðm,nþ1,a, tÞ
� zðtÞþ c1mþamþ c2n½ �Pðm,n,a, tÞ,

(7)

where as we assume for the initial condition Pðm,n,a, t¼ 0Þ¼
PðMð0Þ¼m,Nð0Þ¼njZð0Þ¼ z0ÞpðajβÞ. For simplicity, we further

consider the initial mRNA and protein copy numbers to be inde-

pendent of the transcription rate such that PðMð0Þ¼m,

Nð0Þ¼njZð0Þ¼ z0Þ¼ PðMð0Þ¼m,Nð0Þ¼nÞ. In order to derive

conditional moments, we multiply (7) with polynomials in x and

sum and integrate over all m, n, and a, respectively. Here, we

consider moments of mRNA and protein up to order two, which

can be fully described by the system of differential equations

d

dt
 M tð Þjzt½ � ¼ zðtÞ� M tð Þjzt½ �c1

d

dt
 NðtÞjzt½ � ¼ MðtÞAjzt½ �� NðtÞjzt½ �c2

d

dt
 MðtÞ2jzt
h i

¼ zðtÞþ2 MðtÞjzt½ �zðtÞþ MðtÞjzt½ �c1
�2 MðtÞ2jzt

h i
c1

d

dt
 M tð ÞN tð Þjzt½ � ¼ N tð Þjzt½ �z tð Þ� M tð ÞN tð Þjzt½ �c1

� M tð ÞN tð Þjzt½ �c2þ MðtÞ2Ajzt
h i

d

dt
 MðtÞAjzt½ � ¼ Ajzt½ �zðtÞ� MðtÞAjzt½ �c1

d

dt
 NðtÞ2jzt
h i

¼ NðtÞjzt½ �c2þ MðtÞAjzt½ �

�2 NðtÞ2jzt
h i

c2þ2 MðtÞNðtÞAjzt½ �
d

dt
 NðtÞAjzt½ � ¼ MðtÞA2jzt

� �� NðtÞAjzt½ �c2
d

dt
 MðtÞ2Ajzt
h i

¼ Ajzt½ �zðtÞþ2 MðtÞAjzt½ �zðtÞ

þ MðtÞAjzt½ �c1�2 MðtÞ2Ajzt
h i

c1

d

dt
 MðtÞNðtÞAjzt½ � ¼ NðtÞAjzt½ �zðtÞ� MðtÞNðtÞAjzt½ �c1

� MðtÞNðtÞAjzt½ �c2þ MðtÞ2A2jzt
h i

d

dt
 MðtÞA2jzt
� �¼ A2jzt

� �
zðtÞ� MðtÞA2jzt

� �
c1

d

dt
 MðtÞ2A2jzt
h i

¼ A2jzt
� �

zðtÞþ2 MðtÞA2jzt
� �

zðtÞ

þ MðtÞA2jzt
� �

c1�2 MðtÞ2A2jzt
h i

c1: ð8Þ
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Note that (8) involves all first- and second-order moments, but

also a few additional moments of order three and four, which are

needed in order to obtain a closed set of differential equations.

Statistical model of time-series reporter measurements
As detailed above, we analyzed quantitative single-cell time-lapse

measurements of reporter expression for different Msn2-inducible

promoters and Msn2 activation profiles. We denote by t1, . . . , tK the

time points at which measurements were taken. Correspondingly,

we define by sl:k a complete sample path of the gene expression

system between times tl and tk. If l¼ 0, we refer to the state at time

t¼ 0, which does not necessarily coincide with the first measure-

ment time point t1. The measurements—denoted by Yk for

k¼ 1, . . . ,K—provide noisy information about the system state SðtkÞ
according to a measurement density

Ykj SðtkÞ¼ skð Þ∼pð�jskÞ:

We consider the measurement noise to be independent among

time points such that

pðy1, . . .,yK js1, . . .,sKÞ¼
YK
k¼1

pðykjskÞ: (9)

In our particular case, the measurements correspond to the

reporter abundance NðtÞ corrupted by measurement noise such that

pðykjskÞ¼ pðykjxkÞ¼ pðykjnkÞ:

For a given set of parameters fθ,ωg, the relation between a

complete sample path s0:K and the observed measurements is

captured by a joint distribution

p y1, . . .,yK ,s0:K jω,θð Þ¼ pðs0:K jω,θÞ
QK
k¼1

pðykjskÞ, (10)

with pðs0:K jω,θÞ as the distribution over complete sample paths

s0:K . Correspondingly, the posterior distribution over s0:K is propor-

tional to (10), i.e.,

p s0:K jy1, . . .,yK ,ω,θð Þ/ pðs0:K jω,θÞ
QK
k¼1

pðykjskÞ: (11)

Recursive Bayesian estimation
The posterior distribution (11) is generally intractable but several

approximate techniques can be employed. Most of them rely on

Bayesian filtering methods, which construct an approximation of

(11) recursively over measurement time points. In those

approaches, one exploits the fact that the posterior distribution at

any measurement time tk can be written recursively as

p s0:kjy1, . . .,yk,ω,θð Þ/ pðykjskÞpðsk�1:kjsk�1,ω,θÞ
p s0:k�1jy1, . . .,yk�1,ω,θð Þ, (12)

with p s0:k�1jy1, . . . ,yk�1,ω,θð Þ as the posterior distribution at time

tk�1. In order to solve the Bayesian recursion between consecutive

time steps, one can either employ analytical approximations, or

Monte Carlo methods. In a recent study, for instance, we have

proposed normal and log-normal approximation of the Bayesian fil-

tering problem, which rely on the time evolution of the first and

second order moments of the gene network dynamics (Huang et al,

2016). While computationally efficient, the underlying continuous

approximations may not be suitable for discrete and switch-like

components, such as the transcription rate ZðtÞ in our promoter

model. Alternative approaches are mostly based on sequential

Monte Carlo techniques, which approximate (11) using a suffi-

ciently large number of Monte Carlo samples drawn by SSA. The

main advantage of these techniques is that they are exact up to

sampling variance but on their downside, suffer from limited scala-

bility. In particular, forward simulation via SSA can become prohi-

bitively slow, especially when RNAs and proteins are highly

abundant. Therefore, they are currently not able to tackle large

datasets like the one considered here. In the following, we will

present a hybrid inference algorithm, which bypasses expensive

SSA simulations of highly abundant species, making it sufficiently

scalable to deal with datasets that span tens or even hundreds of

thousands of single-cell trajectories.

Hybrid sequential Monte Carlo
One strategy to improve the scalability of sequential Monte Carlo

techniques is to analytically eliminate variables that are not of direct

interest to a particular inference problem (Doucet et al, 2000; Zech-

ner et al, 2014). In our case, for instance, we are specifically inter-

ested in the promoter switching dynamics and the corresponding

transcription rate ZðtÞ. From this perspective, it would therefore suf-

fice to calculate the marginal posterior distribution

pðz0:K jy1, . . . ,yK ,θ,ωÞ/ pðy1, . . . ,yK ,z0:K jθ,ωÞ (13)

in which the dynamics of XðtÞ have been “integrated out”. In order

to perform this integration, we first realize that the joint distribu-

tion can be rewritten as

p y1, . . .,yK ,s0:K jω,θð Þ¼ p y1, . . .,yK ,x0:K ,z0:K jω,θð Þ

¼ pðs0:K jω,θÞ
QK
k¼1

pðykjskÞ

¼ pðx0:K jz0:K ,ωÞpðz0:K jθÞ
QK
k¼1

pðykjxkÞ

¼ P x0ð Þpðz0:K jθÞ
QK
k¼1

pðykjxkÞpðxk�1:kjxk�1,zk�1:k,ωÞ

(14)

where we have made use of the identities pðs0:K jω,θÞ¼
pðx0:K jz0:K ,ωÞpðz0:K jθÞ and pðx0:K jz0:K ,ωÞ¼ Pðx0Þ

QK
k¼1pðxk�1:kjxk�1,

zk�1:k,ωÞ. Next, we integrate (14) over all subpaths

xk�1:k nfxk�1,xkg such that only the values of XðtÞ at the time

points t0, . . . , tK remain in the model. Informally, this integration

can be carried out by replacing the path distribution pðxk�1:kjxk�1,

zk�1:k,ωÞ by the state transition kernel Pðxkjxk�1,zk�1:k,ωÞ, i.e.,

p y1, . . .,yK ,x0, . . .,xK ,z0:K jω,θð Þ¼ P x0ð Þpðz0:K jθÞ
QK
k¼1

pðykjxkÞ

Pðxkjxk�1,zk�1:k,ωÞ:
(15)

The marginalization over the remaining variables x0, . . . ,xK then

reduces to a summation
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pðy1, . . .,yK ,z0:K jθ,ωÞ¼∑
x0
. . .∑

xK
p y1, . . .,yK ,x0, . . .,xK ,z0:K jω,θð Þ: (16)

Most conveniently, this summation can be solved iteratively, by

first summing over x0, subsequently over x1 and so forth. The first

summation yields

p y1, . . .,yK ,x1, . . .,xK ,z0:K jω,θð Þ¼∑
x0
P x0ð Þpðy1jx1ÞPðx1jx0,z0:1,ωÞpðz0:K jθÞ

� QK
k¼2

p ykjxkð ÞP xkjxk�1,zk�1:k,ωð Þ

¼ pðy1jx1ÞPðx1jz0:1,ωÞpðz0:K jθÞ

�
YK
k¼2

pðykjxkÞPðxkjxk�1,zk�1:k,ωÞ

¼ pðz0:K jθÞPðx1jy1,z0:1,ωÞpðy1jz0:1,ωÞ

�
YK
k¼2

pðykjxkÞPðxkjxk�1,zk�1:k,ωÞ, (17)

whereas the last step follows from the fact that

pðy1jx1ÞPðx1jz0:1,ωÞ¼ Pðx1jy1,z0:1,ωÞpðy1jz0:1,ωÞ via Bayes’ rule.

Repeating the same procedure for x1 yields

p y1, . . .,yK ,x2, . . .,xK ,z0:K jω,θð Þ
¼∑

x1
p z0:K jθð ÞP x1jy1,z0:1,ωð Þp y1jz0:1,ωð Þ

� QK
k¼2

p ykjxkð ÞP xkjxk�1,zk�1:k,ωð Þ

¼ p z0:K jθð Þp y2jx2ð Þ∑
x1
P x2jx1,z1:2,ωð ÞP y1,z0:1,ωð Þp y1jz0:1,ω

� �
� QK

k¼3

p ykjxkð ÞP xkjxk�1,zk�1:k,ωð Þ

¼ p z0:K jθð Þp y2jx2ð ÞP x2jy1,z0:2,ωð Þp y1jz0:1,ω
� �

� QK
k¼3

p ykjxkð ÞP xkjxk�1,zk�1:k,ωð Þ

¼ p z0:K jθð ÞP x2jy2,y1,z0:2,ωð Þp y2jy1,z0:2,ωð Þp y1jz0:1,ω
� �

� QK
k¼3

p ykjxkð ÞP xkjxk�1,zk�1:k,ωð Þ:

(18)

Continuing the above procedure for x2, . . . ,xK finally leads to.

p y1, . . .,yK ,z0:K jω,θð Þ¼ pðz0:K jθÞpðy1jz0:1,ωÞQK
k¼2

pðykjyk�1, . . .,y1,z0:k,ωÞ:
(19)

Therefore, the marginal posterior distribution over the transcrip-

tion dynamics z0:K is proportional to (19), which can also be

expressed recursively as.

p z0:K jy1, . . .,yK ,ω,θð Þ / p y1, . . .,yK ,z0:K jω,θð Þ
/ pðyK jyK�1, . . .,y1,z0:K ,ωÞ
pðzK�1:K jzK�1,θÞ
p z0:K�1jy1, . . .,yK�1,ω,θð Þ:

(20)

Importantly, using equation (20) we can perform a sequential

Monte Carlo algorithm on a significantly reduced sampling space,

where only the transcription dynamics z0:K have to be simulated

explicitly. However, in order to perform this algorithm, we need to

be able to calculate the marginal likelihood terms pðykjyk�1, . . . ,

y1,z0:k,ωÞ, which are given by

pðykjyk�1, . . .,y1,z0:k,ωÞ¼∑
xk
pðykjxkÞPðxkjyk�1, . . .,y1,z0:k,ωÞ

¼∑
xk
pðykjxkÞ∑

xk�1

Pðxkjxk�1,zk�1:k,ωÞ

Pðxk�1jyk�1, . . .,y1,z0:k�1,ωÞ: (21)

The two sums in (21) are gerally intractable, but analytical

solutions exist if the measurement likelihood function pðykjxkÞ
and the state transition kernel Pðxkjxk�1,zk�1:k,ωÞ belong to

certain classes of distributions. This is the case, for instance, if

both are Gaussian. However, this is likely not a good assumption

in the scenario considered here, since both the measurement and

state distributions are generally positive and asymmetric. As it

turns out, however, equation (11) has an analytical solution also

if both pðykjxkÞ and Pðxkjxk�1,zk�1:k,ωÞ are log-normally distrib-

uted. Log-normal distributions have been used previously to

model measurement noise in time-lapse fluorescence data (Zech-

ner et al, 2014) and gene product distributions (Taniguchi et al,

2010). We therefore assume

Ykj N tkð Þ¼nð Þ∼LN log nð Þ,η2ð Þ
X tð Þjzt ∼LN μ tð Þ,Σ tð Þð Þ, (22)

where η2 corresponds to the strength of the measurement noise

and μðtÞ∈3 and ΣðtÞ∈3�3 characterize the distribution over

XðtÞ¼ ðMðtÞ,NðtÞ,AÞ conditionally on a particular realization of zt.

More precisely, μðtÞ and ΣðtÞ are the mean and covariance of

logðX tð ÞÞ and we therefore refer to them as logarithmic moments

in the following.

Now, assuming that the posterior distribution over XðtÞ is log-

normally distributed at time tk�1,

pðxk�1jyk�1, . . .,y1,z0:k�1,ωÞ≈LN xk�1jμ tk�1ð Þ,Σ tk�1ð Þð Þ, (23)

it will—based on our assumption—remain log-normal upon apply-

ing the state transition kernel, i.e.,

pðxkjyk�1, . . .,y1,z0:k,ωÞ ≈
R
pðxkjxk�1,zk�1:k,ωÞ

LN xk�1jμ tk�1ð Þ,Σ tk�1ð Þð Þdxk�1

≈LN xkjμ tkð Þ,Σ tkð Þð Þ,
(24)

where the sum has now been replaced by an integral. In order to

calculate the logarithmic moments μðtkÞ and ΣðtkÞ for a given

μðtk�1Þ and Σðtk�1Þ, one first has to calculate all moments that

enter equation (8) from the log-normal distribution, propagate

those forward in time until tk using (8), and subsequently convert

them back into the logarithmic domain to obtain μðtkÞ and ΣðtkÞ.
For instance, the relationship between logarithmic and standard

moments of order one and two is given by

 Xi tð Þ½ � ¼ eμi tð Þþ
1
2Σii tð Þ

 Xi tð ÞXj tð Þ
� �¼ eμi tð Þþμ j tð Þþ1

2 Σii tð Þþ2Σij tð ÞþΣjj tð Þð Þ:
(25)

In order to determine the posterior distribution at the next

measurement time tk, we multiply (24) with the log-normal

measurement density such that
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pðxkjyk, . . .,y1,z0:k,ωÞ/ pðykjxkÞpðxkjyk�1, . . .,y1,z0:k,ωÞ
¼LN ykjlog nkð Þ,η2ð Þ�LN xkjμ tkð Þ,Σ tkð Þð Þ, (26)

with nk ¼NðtkÞ as the protein abundance at time tk. One can show

that the product of the two log-normal distributions in (26) is again

proportional to a log-normal distribution such that

pðxkjyk, . . .,y1,z0:k,ωÞ ¼LN xkjμþ tkð Þ,Σþ tkð Þð Þ, (27)

with

ΣþðtkÞ ¼ 1
η2ww

T þΣðtkÞ�1
h i�1

(28)

μþðtkÞ ¼ΣþðtkÞ 1

η2
logðykÞwþΣðtkÞ�1μðtkÞ

� �
,

(29)

and w¼ð0,1,0ÞT as a vector that reflects the fact that from

XðtÞ¼ ðMðtÞ,NðtÞ,AÞ, the second component (i.e., the protein abun-

dance) is measured experimentally.

For the likelihood term pðykjyk�1, . . . ,y1,z0:k,ωÞ we obtain

pðykjyk�1, . . .,y1,z0:k,ωÞ¼
R
pðykjxkÞpðxkjyk�1, . . .,y1,z0:k,ωÞdxk

¼ R
LN ykjlog nkð Þ,η2ð Þpðnkjyk�1, . . .,y1,z0:k,ωÞdnk

¼ R
LN ykjlog nkð Þ,η2ð ÞLN nkjμ2 tkð Þ,Σ22 tkð Þð Þdnk,

(30)

where the last line follows from the fact that each dimension i of a

multivariate log-normal distribution with logarithmic moments μ

and Σ is marginally log-normal with parameters μi and Σii. This

integral can be solved in closed form such that we obtain for the

logarithm of the marginal likelihood function

log p ykjyk�1, . . .,y1,z0:k,ωð Þ¼

�1

2

"
logyk�μ2 tkð Þð Þ2
η2þΣ22 tkð Þ � log

1

η2
þΣ22 tkð Þ�1

� 	

�log Σ22 tkð Þð Þ� log η2ð Þ� log ykð Þþ const:

# (31)

Together, equations (8), (28), (29), and (31) define a recursive

Bayesian filter, which allows us to eliminate the components XðtÞ
from the inference problem. As mentioned above, the remaining

component ZðtÞ can then be inferred efficiently using a conventional

sequential importance sampler. To this end, we define a set of J

particles, each of them consisting of a path zðiÞ, a set of logarithmic

moments μðiÞ and ΣðiÞ as well as a particle probability pðiÞ. This set of
particles serves as a finite sample approximation of the posterior

distribution at each iteration k. At the kth time step, J new particles

are drawn randomly according to the particle probabilities pðiÞ. For
each particle i, the path zðiÞ is first extended to the next measure-

ment tkþ1 using SSA. The new probability of this particle is then

determined by first propagating the corresponding logarithmic

moments until tkþ1 using equation (8) and then evaluating equa-

tion (31). The particle probabilities are then normalized across the J

particles such that they sum up to one. Subsequently, μðiÞ and ΣðiÞ

are updated using (28) and (29) and the algorithm proceeds with

the next iteration. At the final time tK , the paths zðiÞ associated with

the particles represent samples from the desired marginal posterior

distribution, which can be used for further analysis.

Quantitative characterization of promoter dynamics
The inference algorithm described above allows as to compute an

arbitrary number of samples z
ðiÞ
0:K from the desired posterior distribu-

tion. In order to compare the dynamics of the different promoters

under various experimental conditions, we extracted a number of

features from these samples that characterize the transcriptional

response for each individual cell. More technically, these features

can be defined as functionals that map a random path z
ðiÞ
0:K to a real

or discrete number. This functional can then be averaged with

respect to the posterior distribution associated with a particular

cell, i.e.,

 f z0:Kð Þjy1, . . .,yK½ �≈1

J
∑
J

j¼1

f z
jð Þ

0:K


 �
, (32)

with y1, . . . ,yK as the measurements of this cell and z
ðjÞ
0:K as samples

from the posterior distribution obtained from the inference method.

The following list summarizes the different features that were used

in this study.

• Responding/non-responding. A cell is considered a responder if it

resided in a state of significant transcriptional activity for at least

2 min. To this end, we defined a functional rðz0:KÞ∈f0,1g, which

is one only if this criterion is met. We define a transcriptionally

significant state as one that has a transcription rate of at least 20%

of the maximum transcription rate taken over all 50 min pulse

conditions. Depending on the promoter and condition, this could

encompass one, two, or none of the promoter states. We then

estimated the response probability pa ¼ rðz0:KÞjy1, . . . ,yK½ � for

each cell by averaging over all the individual samples paths z0:K
obtained from the sequential Monte Carlo algorithm. A cell was

then classified as a responder if pa>0:99. Subsequently, we calcu-

lated the percentage of responders for each promoter and condi-

tion.

• Time to activate. For all responding cells, we calculated the poste-

rior expectation of the time it took until the cell switched into a

transcriptionally significant state, i.e.,  τSðz0:KÞjy1, . . . ,yK½ � with

τSðz0:KÞ∈þ as a functional that measures the time until the first

transition into a responsive state happened. Paths for which the

promoter was in a responsive state for less than two minutes were

excluded from this expectation. We further calculated the mean

and variance of the time until activation over all cells in an exper-

iment.

• Total time active. Analogously to the time to activate, we quanti-

fied the total time the promoter was active, i.e.,

 τAðz0:KÞjy1, . . . ,yK½ � with τAðz0:KÞ∈þ as a functional that

extracts the total time the promoter spent in any of the active

states.

• Time spent in state i. We calculated the total time the promoter

spent in any of the three states, i.e.,  τiðz0:KÞjy1, . . . ,yK½ � with

τiðz0:KÞ∈þ:
• Maximum transcription. We calculated the maximum transcrip-

tion rate that the promoter achieved during a time-course experi-

ment. In particular, we computed the expected transcription rate

for each cell λðtÞ¼ ZðtÞjy1, . . . ,yK½ � and subsequently the corre-

14 of 18 Molecular Systems Biology 17: e9821 | 2021 ª 2021 The Authors

Molecular Systems Biology Anders S Hansen & Christoph Zechner



sponding population average hλðtÞi, whereas only cells that were

classified as responders were considered. We then determined the

maximum of this average, i.e, λmax ¼maxthλðtÞi.
• Time to maximum transcription. Next to the maximum transcrip-

tion, we also determined the time when this maximum was

achieved, i.e., τmax ¼ argmaxthλðtÞi.
• Transcriptional output. To quantify the amount of transcription

along a whole time course, we calculated the integral over the

inferred transcription rates, i.e., o¼
R t
0ZðsÞdsjy1, . . . ,yK

h i
.

Evaluation of the inference method using synthetic data
In order to study the accuracy of the proposed inference method,

we tested it using artificially generated data. In particular, we

considered two differently parameterized versions of the stochastic

model in Fig 1C. The first one resembled a fast promoter like DCS2

or HXK1 whereas the second one had slow and switch-like

promoter activation kinetics like SIP18 or TKL1. In particular, the

parameters of the system were chosen to be γ¼ 0:05, q10 ¼ 0:055,

q12 ¼ 0:001κ, q21 ¼ 0:004κ, z1 ¼ 0:0035, z2 ¼ 0:728, c1 ¼ 0:0013,

c2 ¼ 1:67e�5, hAi¼ 0:1, CV½A� ¼ 0:02, whereas κ¼f1,10g for the

slow and fast promoter model, respectively. All rate parameters are

given in units s�1.

For each promoter, we generated 30 single-cell trajectories

between time zero and tK ¼ 150min using SSA and sampled the

protein abundance at 55 equidistant time points t1, . . . , tK . For the

Msn2 activation function uðtÞ, we used the experimentally deter-

mined profile for a single-pulse experiment (75% Msn2 induction

level, 40min duration). The measurements were then simulated from

a log-normal measurement density LN ykjlog nkð Þ,η2ð Þ, with nk as

the protein copy number at time tk and η as the logarithmic standard

deviation of this density. For this study, we set η¼ 0:05.

We applied the hybrid sequential Monte Carlo algorithm to

reconstruct the promoter dynamics and compared it with the true

realization. In particular, we analyzed three of the path functionals

described in Section “Quantitative characterization of promoter

dynamics”: total time active, time to activate and transcriptional

output. We estimated posterior expectations of these functionals

using J ¼ 400 Monte Carlo samples and analyzed how they

compared with the true values extracted from the exact sample

paths z0:K . We first assumed perfect knowledge of all process

parameters. The top panels in Fig EV2A and B show the inferred

values plotted against the ground truth. For all three features, we

found a linear relationship with a slope k close to one. The corre-

sponding R2 indicates the reconstruction accuracy of the inference

method. For the slowly switching promoter, we found R2 values

close to one, indicating very high accuracy. For the fast-switching

promoter, the inference results become slightly less accurate

because individual switching events are more difficult to infer from

the relatively slow reporter dynamics. We furthermore analyzed the

robustness of the method with respect to parameter mismatch. To

this end, we randomly perturbed all of the parameters using a log-

normal distribution LN log bð Þ,0:12� �
with b as the underlying true

value. Note that the random parameter perturbation was performed

for each of the considered trajectories separately. In case of poor

robustness, we would thus expect a significantly reduced correlation

between the true and inferred values. However, we found for all

three features that both the R2 and slope k changed only marginally

indicating a relatively high robustness of the method. This is an

important feature in practical scenarios where knowledge about

process parameters is generally imperfect.

Statistical analysis of Msn2-dependent gene expression
In the following, we provide details on the statistical analysis of

Msn2-dependent gene expression as shown in the main text. In

this case, the function uðtÞ corresponds to the nuclear Msn2

level that was measured experimentally for each condition (Fig

EV1). In combination with the measured YFP time series, this

allowed us to infer the input–output relationship of different

promoters under different experimental conditions using the

recursive inference method described in Section “Hybrid sequen-

tial Monte Carlo”. However, before this method could be

applied, the stochastic model from Fig 1C had to be parameter-

ized. For this purpose, we used a portion of the experimental

single-cell trajectories to infer the kinetic parameters of the

model (Section “Statistical inference of kinetic parameters”).

Subsequently, we reconstructed the transcription dynamics of

each promoter and condition as described in Section “Statistical

inference of transcription dynamics”.

Statistical inference of kinetic parameters
In order to parameterize the stochastic gene expression model for

different promoters and experimental conditions, we used an estab-

lished moment-based inference method (Zechner et al, 2012). This

method uses a Markov chain Monte Carlo sampler to match the first

and second order moments of the stochastic gene network to the

experimentally determined ones. For detailed information on this

approach, the reader shall refer to (Zechner et al, 2012).

For each promoter, we first estimated the total set of parameters

ω and θ using the single-pulse experiments with maximum level

and duration (100% Msn2, 50 min). Since the promoter switching

dynamics can be concentration- and pulse length-dependent, we re-

estimated the promoter parameters θ for all other conditions, while

keeping ω fixed at the previously inferred values. The kinetics of the

same gene expression system have been previously quantified using

a deterministic model (Hansen & O’Shea, 2013). We incorporated

this additional information in the form of prior distributions over

some of the kinetic parameters. In particular, we considered Gamma

prior distributions pðc1Þ¼Γð20,20=1:3e�3s�1Þ and pðhAiÞ¼
Γð20,20=0:05s�1Þ for the mRNA degradation and average protein

translation rates, respectively. Additionally, the protein degradation

rate was fixed to c2 ¼ 1:67e�5s�1. For the switching parameters qij
and the transcription rates z1 and z2, we used prior distributions

pð�Þ¼Γð1,1=30s�1Þ. To infer the parameters, we applied a Metro-

polis-Hastings sampler with log-normal proposal distributions to

generate 2e4 samples from which we extracted maximum a poste-

rior (MAP) estimates of the model parameters.

Statistical inference of transcription dynamics
Using the calibrated models, we inferred the transcription and

promoter switching dynamics using the hybrid sequential Monte

Carlo inference scheme from Section “Hybrid sequential Monte

Carlo”. Based on our previous study (Zechner et al, 2014), which uses

a similar data processing and calibration pipeline, we set the measure-

ment noise parameter to η¼ 0:15 corresponding to an expected rela-

tive variation of roughly 15 percent. For each condition and

promoter, we processed each individual cell using J¼ 400 particles.
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From the resulting particles, we estimated the promoter features as

summarized in Section “Quantitative characterization of promoter

dynamics”. We note that in some circumstances, the hybrid SMC

algorithm can become numerically unstable. For instance, this may

be the case in the presence of outliers, where two consecutive data

points are very far away from each other. All cells that led to unstable

results were excluded from our analyses. The ratio of excluded cells

was fairly small for most promoters and conditions (i.e., for around

90% of the 270 experiments less than 15% of trajectories were

excluded). For a small fraction of around 3% of the experiments,

between 30 and 50% of the trajectories had to be dismissed.

However, all these experiments correspond to promoters and condi-

tions were gene expression signals were very low and close to back-

ground. Therefore, the exclusion of trajectories should affect our

analyses to no significant extent. Moreover, we performed a quantita-

tive analysis, which shows that the exclusion of trajectories did not

strongly affect the statistical properties of the gene expression levels

for individual promoters and conditions. The corresponding analysis

can be found in the provided GitHub repository.

As indicated in the main text, the overall analysis pipeline

depends on random number generation (e.g., splitting of data

between model calibration and reconstruction, MCMC sampling

during parameter estimation, sequential Monte Carlo inference),

and therefore, the inferred transcriptional features exhibit a certain

degree of variability between repeated runs of the analysis. To quan-

tify this uncertainty, we performed the overall analysis five times

and calculated averages and standard errors of the resulting tran-

scriptional features. Note that certain transcriptional features are

defined only for responding cells (e.g., time to activate). For condi-

tions that contain only a small number responding cells, it can

happen that in some of the repeated runs, no responders are

detected, which leaves those transcriptional features undefined. In

these cases, averages and standard errors were calculated over all

runs for which the number of responders was non-zero.

Toy model of interval-dependent promoter memory
For the simulations shown in Fig EV4, we considered a simple

promoter model described by a reaction network.

P0 ⇌
c1u tð Þ
c2

P1

P1 ⇌
c3 I1 tð Þ
c4

P2

P0 ⇌
c5 I2 tð Þ
c6

P3

P1 *
c7
P1þ I1

P0þ I1 *
c8
P0þ I2

(33)

with uðtÞ as the experimentally measured nuclear Msn2 abun-

dance. Transcription takes place with rate z when the promoter is

in state P2. The parameters used for simulation were chosen to be

c1 ¼ 0:02, c2 ¼ 0:06, c3 ¼ 0:003, c4 ¼ 0:02, c5 ¼ 0:0006, c6 ¼ 0:001,

c7 ¼ 0:9, c8 ¼ 7e�6, and z¼ 0:6 in units s�1.

Toy model of a complex, context-dependent promoter
We performed simulations of a four-state promoter model with

nonlinear Msn2-dependent switching rates. In summary, theodel is

described by a reaction network.

P0 ⇌
c1 tð Þ
c2

P1

P1 ⇌
c3 tð Þ

c4 tð Þ
P2

P2 ⇌
c5 tð Þ

P3

P3 *
c6
P0

P1 *
z1
P1þM

P3 *
z3
P3þM

(34)

with

c1 tð Þ¼ γ1u tð Þ (35)

c3ðtÞ¼ γ3 1� uðtÞn3

Vn3

3 þuðtÞn3

� 	
(36)

c4ðtÞ¼ γ4
uðtÞn4

Vn4

4 þuðtÞn4
(37)

c5ðtÞ¼ γ5
uðtÞn5

Vn5

5 þuðtÞn5
(38)

and γ1 ¼ c2 ¼ γ3 ¼ γ4 ¼ c6 ¼ 0:01=s, λ5 ¼ 0:1=s, n3 ¼ 6, n4 ¼ 2, n5 ¼ 3,

V3 ¼ 0:5, V4 ¼ 0:001, V5 ¼ 1:2. The symbol uðtÞ denotes the time-

varying Msn2 input in arbitrary units and the species M in (34)

corresponds to mRNA. The two transcription rates z1 and z3 are

considered to be non-zero but their specific value is irrelevant for

the purpose of this analysis. The promoter can be described by a

forward equation

d

dt

P1 tð Þ
P2 tð Þ
P3 tð Þ
P4 tð Þ

0
BBB@

1
CCCA¼

�c1 tð Þ c2 0 c6

c1 tð Þ � c2þ c3 tð Þþ c5 tð Þð Þ c4 tð Þ 0

0 c3 tð Þ �c4 tð Þ 0

0 c5 tð Þ 0 �c6

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
QðtÞ

P1 tð Þ
P2 tð Þ
P3 tð Þ
P4 tð Þ

0
BBB@

1
CCCA

(39)

with generator QðtÞ. From the solution of the forward equation, we

can directly calculate the expected number of state transitions by

multiplying the entries of QðtÞ with the respective state probabili-

ties and integrating over time. In particular, we calculated

HðtÞ¼
Z t

0

QðsÞPðsÞds, (40)

with matrix PðtÞ defined as

PðtÞ¼

P0ðtÞ 0 0 0

0 P1ðtÞ 0 0

0 0 P2ðtÞ 0

0 0 0 P3ðtÞ

0
BBB@

1
CCCA: (41)

The resulting matrix HðtÞ counts the expected number of transi-

tions between all states between time zero and t. The diagonal

elements of the matrix correspond to the (negative) total number of

transitions from one state to any other state. In Fig 4B in the main

text, we show the matrix HðtÞ for different dynamical inputs,

whereas the diagonal elements were set to zero for clarity.
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Data availability

All source data files and software code supporting this manuscript

are available from the following resources:

• Unprocessed and processed source data: Zenodo, http://doi.org/

10.5281/zenodo.2755026, (http://zenodo.org/record/2755026)

• Computer code: GitHub, https://github.com/zechnerlab/Promote

rManifest/

Expanded View for this article is available online.
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