
ORIGINAL RESEARCH ARTICLE
published: 03 April 2012

doi: 10.3389/fninf.2012.00007

The pipeline system for Octave and Matlab (PSOM):
a lightweight scripting framework and execution
engine for scientific workflows
Pierre Bellec1,2*, Sébastien Lavoie-Courchesne1,2,3, Phil Dickinson1,3, Jason P. Lerch4,5,
Alex P. Zijdenbos6 and Alan C. Evans3

1 Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
2 Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, QC, Canada
3 McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
4 Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
5 Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
6 Biospective Incorporated, Montréal, QC, Canada

Edited by:

Andrew P. Davison, Centre National
de la Recherche Scientifique, France

Reviewed by:

Ivo Dinov, University of California,
USA
Yann Cointepas, CEA - NeuroSpin,
France

*Correspondence:

Pierre Bellec, Centre de Recherche
de l’Institut Universitaire de
Gériatrie de Montréal, 4545 chemin
Queen-Mary, Montréal, QC H3W
1W5, Canada.
e-mail: pierre.bellec@criugm.qc.ca

The analysis of neuroimaging databases typically involves a large number of
inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM)
is a flexible framework for the implementation of pipelines in the form of Octave or
Matlab scripts. PSOM does not introduce new language constructs to specify the steps
and structure of the workflow. All steps of analysis are instead described by a regular
Matlab data structure, documenting their associated command and options, as well as
their input, output, and cleaned-up files. The PSOM execution engine provides a number
of automated services: (1) it executes jobs in parallel on a local computing facility as long
as the dependencies between jobs allow for it and sufficient resources are available; (2) it
generates a comprehensive record of the pipeline stages and the history of execution,
which is detailed enough to fully reproduce the analysis; (3) if an analysis is started multiple
times, it executes only the parts of the pipeline that need to be reprocessed. PSOM is
distributed under an open-source MIT license and can be used without restriction for
academic or commercial projects. The package has no external dependencies besides
Matlab or Octave, is straightforward to install and supports of variety of operating systems
(Linux, Windows, Mac). We ran several benchmark experiments on a public database
including 200 subjects, using a pipeline for the preprocessing of functional magnetic
resonance images (fMRI). The benchmark results showed that PSOM is a powerful
solution for the analysis of large databases using local or distributed computing resources.

Keywords: pipeline, workflow, Octave, Matlab, open-source, parallel computing, high-performance computing,

neuroimaging

1. INTRODUCTION
The rapid development of public databases in neuroimaging (e.g.,
Evans, 2006; Biswal et al., 2010; Burton, 2011) is opening excit-
ing avenues for data mining. The analysis of a neuroimaging
database typically involves a large number of inter-connected pro-
cessing steps, collectively referred to as a pipeline (or workflow)
(Deelman et al., 2009). Neuroimaging pipelines can be imple-
mented as a Matlab script, e.g., DPARSF (Chao-Gan and Yu-Feng,
2010), fMRIstat1 (Worsley et al., 2002), SPM2 (Ashburner, 2011),
or brainstorm3 (Tadel et al., 2011). Matlab is a programming
language for general scientific computing, well-adapted to the
rapid prototyping of new algorithms. It can also wrap heteroge-
neous tools implemented in a variety of languages. To facilitate
the inclusion of these computational tools in complex scientific
workflows, we developed a general-purpose pipeline system in

1http://www.math.mcgill.ca/keith/fmristat/
2www.fil.ion.ucl.ac.uk/spm/
3http://neuroimage.usc.edu/brainstorm/

Octave and Matlab (PSOM)4. To contrast PSOM against alter-
native projects, we reviewed key features of popular packages
within four areas of a pipeline life cycle (Deelman et al., 2009):
(1) composition of the pipeline; (2) mapping of the pipeline to the
underlying resources; (3) execution of the pipeline; (4) recording
of the metadata and provenance.

1.1. PIPELINE COMPOSITION
The composition of a pipeline is the generation of a (possibly
abstract) representation of all steps of analysis and associated
dependencies, including access to datasets. Many extensions of
existing languages have been developed for that purpose, such as
matlabbatch5 for Matlab, or Nipype6 (Gorgolewski et al., 2011)
and the Soma-workflow7 (Laguitton et al., 2011) for Python.

4http://code.google.com/p/psom/
5http://sourceforge.net/apps/trac/matlabbatch/wiki
6nipy.org/nipype
7http://brainvisa.info/soma-workflow

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2012.00007/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=4045&d=1&sname=PierreBellec&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=45019&d=2&sname=PhilipDickinson&name=Medicine
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=5101&d=1&sname=JasonLerch&name=Science
http://community.frontiersin.org/people/AlexZijdenbos/35805
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=4918&d=1&sname=AlanEvans&name=Science
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

Some scripting languages were also developed specifically to com-
pose pipelines, e.g., DAGMan8, Swift9 (Wilde et al., 2011) and
Pegasus (Deelman et al., 2005). All these systems differ by the
way the dependencies between jobs are encoded. DAGMan and
Soma-workflow are both based on an explicit declaration of
dependencies between jobs by users. The pipeline thus takes
the form of a directed acyclic graph (DAG) with jobs as nodes
and dependencies as (directed) edges. The Pegasus package also
uses a DAG as input, yet this DAG is represented in an XML
format called DAX. DAX graphs can be generated by any script-
ing language. By contrast, Nipype, Swift, and PSOM build on
the notion of futures (Baker and Hewitt, 1977), i.e., a list of
datasets (or variables) that will be generated by a job at run-time.
The data-flow then implicitly defines the dependencies: all the
inputs of a job have to exist before it can be started. An alter-
native to scripting approaches for pipeline composition is to rely
on graphical abstractions. A number of projects offer sophisti-
cated interfaces based on “box and arrow” graph representations,
e.g., Kepler10 (Ludäscher et al., 2006), Triana11 (Harrison et al.,
2008), Taverna12 (Oinn et al., 2006), VisTrails13 (Callahan et al.,
2006), Galaxy (Goecks et al., 2010) and LONI pipeline14 (Dinov
et al., 2009). Because the graph representations can get really
large, various mechanisms have been developed to keep the repre-
sentation compact, such as encapsulation (the ability to represent
a sub-pipeline as one box) and the use of control operations,
e.g., iteration of a module over a grid of parameters, instead of
a pure data-flow dependency system. Note that complex control
mechanism are also necessary in systems geared toward data-flow
dependencies to give the ability to, e.g., branch between pipelines
or iterate a subpart of the pipeline until a data-dependent con-
dition is satisfied. Finally, systems that put a strong emphasis on
pipeline composition and re-use, such as Taverna, Nipype, and
LONI pipeline, critically depend on the availability of a library
of modules to build pipelines. Taverna claims to have over 3500
such modules, developed in a variety of domains such as bioin-
formatics or astronomy. Nipype and LONI both offer extensive
application catalogue for neuroimaging analysis.

1.2. PIPELINE MAPPING
When a pipeline representation has been generated, it needs to
be mapped onto available resources. For example, in grid com-
puting, multiple production sites may be available, and a subset
of sites where the pipeline will run has to be selected. This selec-
tion process can simply be a choice left to the user, e.g., Kepler,
Taverna, VisTrails, Soma-workflow. It can also be automatically
performed based on the availability and current workload at each
registered production site, e.g., CBRAIN (Frisoni et al., 2011)
and Pegasus, as well as quality of service issues. Another typ-
ical mapping task is the synchronization of the datasets across

8http://research.cs.wisc.edu/condor/dagman/
9http://www.ci.uchicago.edu/swift/
10kepler-project.org
11http://www.trianacode.org/
12taverna.org.uk
13http://www.vistrails.org/
14http://pipeline.loni.ucla.edu/

multiple data servers to the production site(s), an operation that
can itself involve some interactions through web services with a
database system, such as XNAT (Marcus et al., 2007) or LORIS
(Das et al., 2012). The Pegasus project recompose pipelines at the
mapping stage. This feature proceeds by grouping tasks in order
to limit the over-head related to job submission and more gener-
ally optimize the pipeline for the infrastructure where it will be
executed. Such mapping operation is central to achieve high per-
formance in grid or cloud computing settings. Note that some
pipeline systems have no or limited mapping capabilities. The
PSOM project as well as matlabbatch, Nipype, and DAGMan for
example were designed to work locally on the production server.
The Soma-workflow can map pipelines in remote execution sites,
but does not recompose the pipeline to optimize the performance
of execution as Pegasus does. On the other end of the spec-
trum, CBRAIN is essentially a mapping/execution/provenance
tool where pipelines have to be first composed in another system
(such as PSOM).

1.3. PIPELINE EXECUTION
A dedicated execution engine is used to run the pipeline after
mapping on computational resources. It will detect the degree of
parallelism present in the pipeline at any given time, and process
jobs in parallel depending on available computational resources.
All pipeline systems reviewed here, including PSOM, can exe-
cute jobs in parallel on a multi-core machine or a supercomputer
through submissions to a queuing mechanism such as SGE qsub,
after a proper configuration has been set. Some of them (e.g.,
Taverna, Triana, Pegasus, CBRAIN) can also run jobs concur-
rently on one or multiple supercomputers in a computing grid,
and are able to accommodate the variety of queuing mecha-
nism found across production sites. Some execution engines, e.g.,
Nipype, will support a pipeline that builds dynamically, for exam-
ple with a data-dependent branching in the pipeline. Fault toler-
ance is also an important feature. A first level of fault-tolerance is
the notification of errors to the user, coupled with the ability to
restart the pipeline where it stopped (e.g., PSOM, Nipype, Soma-
workflow). The execution engine can also check that the expected
output files have properly been generated (e.g., Pegasus, PSOM).
In addition, after an error occurred, an execution engine may re-
submit a job a number of times before considering that it has
definitely failed (e.g., Swift, PSOM) because some random failures
can occur due to, e.g., improper configuration, memory, or disk
space exhaust on one execution node. An execution engine can
also feature the ability to perform a “smart update,” i.e., restart a
pipeline while re-using the results from prior executions as much
as possible (e.g., Kepler, Nipype, PSOM).

1.4. PIPELINE PROVENANCE
The final stage of a pipeline life cycle is provenance tracking,
which represents the comprehensive recording of the process-
ing steps applied to the datasets. This can also be extended to
the archiving of the computing environment used for production
(e.g., the version of the software that was used for process-
ing), and the origin of the datasets that were used as inputs
(MacKenzie-Graham et al., 2008). Provenance is a critical step
to achieve reproducible research, which is itself considered as a

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

cornerstone of the scientific method (Mesirov, 2010). A competi-
tion on provenance generation demonstrated that several pipeline
systems captured similar informations (Bose et al., 2006). How
these informations can be accessed easily and shared remains an
area of development15. The quality of provenance tracking also
depends on the quality of the interface between the pipeline sys-
tem and the tools applied by each job: a comprehensive list of
underlying parameters has to be generated before it is recorded.
The PSOM development framework was notably designed to
facilitate the systematic recording of the default job parameters as
part of the provenance, in a way that scales well with the number
of parameters. An innovative feature introduced by the VisTrails
package is the capacity to graphically represent the changes made
to a pipeline, not only providing a provenance mechanism for the
pipeline execution but also for the steps of pipeline generation
and/or variations in employed parameters.

1.5. PSOM FEATURES
The PSOM is a lightweight scripting solution for pipeline
composition, execution, and provenance tracking. The pack-
age is intended for scientists who prototype new algorithms
and pipelines using Octave or Matlab (O/M). PSOM is actively
developed since 2008, and it has been inspired by several PERL
pipeline systems (called RPPL, PCS, and PMP) used at the
McConnell Brain Imaging Centre, Canada, over the past fifteen
years (Zijdenbos et al., 1998). PSOM is based on a new stan-
dard to represent all steps of a pipeline analysis as a single O/M
variable. This representation defines dependencies between pro-
cessing steps implicitly by the data-flow. We established a limited
number of scripting guidelines with the goal of maintaining
a concise and modular code. These guidelines are suggestions
rather than mandates, and the pipeline representation can be gen-
erated using any coding strategy. PSOM comes with a generic
pipeline execution engine offering the following services:

1. Parallel computing: Automatic detection and execution of par-
allel components in the pipeline. The same code can run in a
single matlab session, on a multi-core machine or on a dis-
tributed architecture with hundreds of execution nodes just by
changing the PSOM configuration.

2. Provenance tracking: Generation of a comprehensive record of
the pipeline stages and the history of execution. These records
are detailed enough to fully reproduce an analysis, and profile
the components of the pipeline.

3. Fault tolerance: Multiple attempts will be made to run each job
before it is considered as failed. Failed jobs can be automati-
cally re-started by the user after termination of the pipeline.

4. Smart updates: When an analysis is started multiple times,
the parts of the pipeline that need to be reprocessed are
automatically detected and those parts only are executed.

1.6. COMPARISON BETWEEN PSOM AND OTHER PACKAGES
As reviewed above, there are several alternatives with broader
functionality than PSOM, such as LONI pipeline, VisTrails,
Pegasus, Kepler, Triana, Galaxy, and Taverna. These systems

15www.w3.org/2011/prov/

notably support a graphical composition of the pipeline, database
interfaces, and mapping capabilities. They, however, require users
to write dedicated interfaces for importing computational mod-
ules. The DAGMan and Soma-workflow systems even leave to the
user the task to generate the dependency graph of the pipeline
using a third-party software, and concentrate mainly on the
pipeline mapping, execution, and provenance. The aim of the
PSOM project was to propose a single environment where com-
putational modules and pipelines could be developed jointly. This
is achieved by building a pipeline representation using native data
structures of O/M. As our intended audience is developers, a
graphical tool for pipeline composition was not a priority and is
not currently available. PSOM also does not offer pipeline map-
ping capabilities because PSOM pipelines can be easily interfaced
after the development phase with projects specifically focused
on pipeline mapping, such as CBRAIN. By contrast, PSOM fea-
tures powerful pipeline execution capabilities, in terms of fault
tolerance and smart updates. Thanks to these features, users
can modify, debug, or optimize the computational modules of
a PSOM pipeline at the same time they are implementing (and
testing) it.

The closest alternatives to PSOM are matlabbatch and Nipype.
Both offer a simple scripting strategy to implement complex
pipelines using data structures that are native to Matlab and
Python, respectively. The pipeline composition is based on a set
of dedicated scripting constructs, which may result in a highly
concise code. Two projects have recently pursued this idea even
further by adding coding constructs inspired by the Swift script-
ing language to Python, the PYDflow (Armstrong, 2011) package,
and R, the SwiftR16 package. PSOM pipelines are not as con-
cise as the ones implemented with these systems, but they can be
constructed with common O/M operations only. This choice was
made to limit the learning curve for new users, who will hopefully
find PSOM syntax very intuitive if they are already familiar with
O/M. The distinctive features of PSOM are:

1. Minimally invasive: No new programming construct is intro-
duced to script a pipeline.

2. Portable: PSOM is distributed under an MIT open-source
license, granting the rights to modify, use and redistribute the
code, free of charge, as part of any academic or commercial
project. Moreover, the installation of PSOM is straightforward:
it has no dependency and does not require compilation. Any
system that supports Matlab or Octave (i.e., Linux, Windows,
and Mac OS X) will run PSOM.

3. Dual O/M compatibility: PSOM users can benefit of the com-
fort of the Matlab environment for development purposes
(graphical debugging tools, advanced profiling capabilities)
and of the free open-source Octave interpreter to execute a
code on hundreds of cores.

1.7. PAPER OUTLINE
The standard representation of a pipeline using a O/M variable is
first presented in Section 2. Section 3 provides an overview of the
key features of the execution engine on simple examples, while

16http://people.cs.uchicago.edu/∼tga/swiftR/

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

Section 4 details how these features were implemented. Section 5
provides further coding guidelines designed to keep the genera-
tion of pipelines concise, re-usable, and readable. Finally, Section
6 reviews some neuroinformatics projects that were implemented
with PSOM. A preprocessing pipeline for functional magnetic
resonance imaging (fMRI) was used for a benchmark evaluation
of PSOM execution perfomance with several computing envi-
ronments and execution configurations. The paper ends with a
discussion of current PSOM capabilities and directions for future
developments.

2. PIPELINE REPRESENTATION
A pipeline is a collection of jobs, which is implemented using
the so-called O/M structure data type. The fields used in the
pipeline are arbitrary, unique names for the jobs. Each job
can have up to five fields, in which all but the first one are
optional:

• command: (mandatory) a string describing the command that
will be executed by the job.

• files_in: (optional) a list of input files.
• files_out: (optional) a list of output files.
• files_clean: (optional) a list of files that will be deleted by

the job.
• opt: (optional) some arbitrary parameters.

The jobs are executed by PSOM in a protected environment
where the only available variables are files_in, files_out,
files_clean, and opt. The following code is a toy example
of a simple pipeline:

% Job "sample" : No input, generate a
random vector a

command = ’a = randn([opt.nb_samps 1]);
save(files_out,’’a’’)’;

pipeline.sample.command = command;
pipeline.sample.files_out = ’sample.mat’;
pipeline.sample.opt.nb_samps = 10;
% Job "quadratic" : Compute a.^2 and

save the results
command = ’load(files_in); b = a.^2;

save(files_out,’’b’’)’;
pipeline.quadratic.command = command;
pipeline.quadratic.files_in =

pipeline.sample.files_out;
pipeline.quadratic.files_out =

’quadratic.mat’;

The first job, named sample, does not take any input file, and
will generate one output file called ’sample.mat’. It takes one
parameter nb_samps, equals to 10. The field opt can be of any
of the O/M data types. The second job, named quadratic, uses
the output of sample as its input (quadratic.files_in
is filled using sample.files_out). This convention avoids
the generation of file names at multiple places in the script.
It also makes explicit the dependence between sample
and quadratic when reading the code: as the input of

quadratic is the output of sample, sample has to be
completed before quadratic can be started. This type of
dependency between jobs, called “file-passing,” is translated into
a directed dependency graph, see Figure 1A. The dependency
graph dictates the order of job execution. It can be represented
using the following command:

psom_visu_dependencies(pipeline)

Let’s now assume that the output of sample is regarded as an
intermediate file that does not need to be retained. A new job
cleanup is added to delete the output of sample, which is
declared using the field files_clean:

% Adding a job "cleanup" : delete the
output of "sample"

pipeline.cleanup.command =
’delete(files_clean)’;

pipeline.cleanup.files_clean =
pipeline.sample.files_out;

Because cleanup will delete the input file of quadratic,
it is mandatory to wait until quadratic is successfully exe-
cuted before cleanup is started. This type of dependency, called
“cleanup”, is again included as a directed link in the dependency
graph, see Figure 1B.

FIGURE 1 | Examples of dependency graphs. In panel (A), the input file
of the job quadratic is an output of the job sample; sample thus needs
to be completed before starting quadratic. This type of dependency
(“file-passing”) can be represented as a directed dependency graph. In
panel (B), the job cleanup deletes an input file of quadratic;
quadratic thus needs to be completed before starting cleanup.
Note that such “cleanup” dependencies may involve more than two
jobs: if cleanup deletes some input files used by both quadratic

and cubic, cleanup depends on both of them (panel C). The
same property holds for “file-passing” dependencies: if sum is using the
outputs of both quadratic and cubic, sum depends on both jobs
(panel D).

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

The order in which the jobs are added to the pipeline does not
have any implications on the dependency graph, and is thus inde-
pendent of the order of their execution. For example, if a new job
cubic is added:

% Adding a job "cubic" : Compute a.^3 and
save the results

command = ’load(files_in);
c = a.^3; save(files_out,’’c’’)’;

pipeline.cubic.command = command;
pipeline.cubic.files_in =

pipeline.sample.files_out;
pipeline.cubic.files_out =

’cubic.mat’;

the job cleanup will be dependent upon quadratic and
cubic, because the latter jobs are using the output of sample
as an input, a file that is deleted by cleanup (Figure 1C).

The type of files_in, files_out, and files_clean
is highly flexible. It can be a string, a cell of strings, or a nested
structure whose terminal fields are strings or cells of strings. The
following job for example uses two inputs, generated by two
different jobs (see Figure 1D):

% Adding a job "sum" : Compute a.^2+a.^3
and save the results

command = ’load(files_in{1});
load(files_in{2}); d = b+c, ...
save(files_out,’’d’’)’;

pipeline.sum.command = command;
pipeline.sum.files_in{1} =

pipeline.quadratic.files_out;
pipeline.sum.files_in{2} =

pipeline.cubic.files_out;
pipeline.sum.files_out = ’sum.mat’;

3. PIPELINE EXECUTION
3.1. A FIRST PASS THROUGH THE TOY PIPELINE
When a pipeline structure has been generated by the user,
PSOM offers a generic command to execute the pipeline:

psom_run_pipeline(pipeline,opt_pipe)

where opt_pipe is a structure of options that can be used
to set the configuration of PSOM, see Section 4.6. The main
configuration option is the name of a folder used to store the logs
of thepipeline,which is the“memory”of thepipelinesystem.When
invoked, PSOM first determines which jobs need to be restarted
using the logs folder. The jobs are then executed in independent
sessions, as soon as all their dependencies are satisfied. The next
section (Section 4) describes the implementation of all stages
of pipeline execution in details. This section outlines the key
mechanisms using simple examples, starting with the toy pipeline
presented in the last section without the cleanup job (see Figure 2).
Initially, only one job (sample) can be started because it does
not have any parent in the dependency graph (Figure 2A). As

FIGURE 2 | Pipeline execution: a first pass through the toy pipeline.

Each panel represents one step in the execution of the toy pipeline
presented in Section 2, without the cleanup job. This example assumes
that at least two jobs can run in parallel, and that the pipeline was not
executed before. All jobs are executed as soon as all of their dependencies
are satisfied, possibly with some jobs running in parallel.

soon as this job has been successfully completed, its two children
(quadratic andcubic) are started. This is assuming of course
that the configuration allows PSOM to execute at least two jobs
in parallel (e.g., background execution on a dual-core machine),
see Figure 2B. The job sum is started only when both of its
dependencies have been satisfied, see Figures 2C,D. When all jobs
are completed, the pipeline manager finally exits (Figure 2E).

3.2. UPDATING A PIPELINE (WITH A BUG)
This next example shows how the pipeline manager deals with
the update of a pipeline. That is to say that a pipeline is submitted
for execution after it was previously executed using the same logs
folder. If one of the jobs has changed since the last submission,
this job along with all of its children in the dependency graph
are scheduled to be reprocessed. Here, the job quadratic is
modified to introduce a bug, before restarting the pipeline:

% Changing the job quadratic to
introduce a bug

pipeline.quadratic.command = ’BUG!’;
% Restart the pipeline
psom_run_pipeline(pipeline,opt_pipe)

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

FIGURE 3 | Pipeline management, example 2: updating a pipeline

(with one bug). Each panel represents one step in the execution of the toy
pipeline presented in Section 2, without the cleanup job. This example
assumes that at least two jobs can run in parallel, and that the pipeline has
already been executed once as outlined in Figure 2. The pipeline is first
started after changing the job quadratic to introduce a bug (panels A–B).
When the execution of the pipeline fails, the job quadratic is modified to
fix the bug. The pipeline is then restarted and completes successfully
(panels C–E).

The pipeline manager first restarts the job quadratic because a
change is detected in its description (Figure 3A). After the execu-
tion of the job is completed, the job is tagged with a “failed” status
(panel B). The job sum is not started because it has a dependency
that cannot be solved, and the pipeline manager simply exits. It is
then possible to access the logs of the failed job, i.e., a text descrip-
tion of the job, start time, user name, system used as well as end
time and all text outputs:

>> psom_pipeline_visu
(opt.path_logs,’log’,’quadratic’);

Log of the (octave) job : quadratic
Started on 19-Jul-2011 16:01:36
User: pbellec
host : sorbier
system : unix

command = BUG!
files_in = /home/pbellec/database/

demo_psom/sample.mat
files_out = /home/pbellec/database/

demo_psom/quadratic.mat
files_clean = {}(0x0)
opt = {}(0x0)

The job starts now !

Something went bad ... the job has FAILED !
The last error message occured was :
parse error:
syntax error

>>> BUG!
File /home/pbellec/svn/psom/trunk/

psom_run_job.m at line 110

Checking outputs

The output file or directory ...

/home/pbellec/database/demo_psom/
quadratic.mat has not been generated!

19-Jul-2011 16:01:36 : The job has FAILED
Total time used to process the

job : 0.00 sec.

The pipeline is then modified to fix the bug in quadratic.
After restarting the pipeline, the jobs quadratic and sum run
sequentially and are successfully completed (Figures 3C–E).

3.3. ADDING A JOB
Updating the pipeline is not solely restricted to changing the
description of a job that was previously a part of the pipeline. It is
also possible to add new jobs and resubmit the pipeline. Figure 4
shows the steps of resolution of the full toy pipeline (including
the cleanup job) when the subpipeline (not including the clean-
up pipeline) had already been successfully completed prior to
submission. In that case, there is no job that depends on the out-
puts of cleanup, so the only job that needs to be processed
is cleanup itself and the pipeline is successfully completed
immediately after this job is finished.

3.4. RESTARTING A JOB AFTER CLEAN UP
It is sometimes useful to force a job to restart, for example a job
that executes a modified script while the job description remains
identical. PSOM is not able to detect this type of change in the
pipeline (it assumes that all libraries are identical across multi-
ple runs of the pipeline). The following option will force a job to
restart:

opt_pipe.restart = {’quadratic’};
psom_run_pipeline(pipeline,opt_pipe);

In this example, all jobs whose name includes quadratic will
be restarted by the pipeline manager. Further we will assume that
the full toy pipeline (including the cleanup job) has already

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

FIGURE 4 | Pipeline management, example 3: adding a (cleanup) job.

This example assumes that the toy pipeline (without the cleanup job) had
already been successfully completed. The full toy pipeline (with the
cleanup job) is then submitted for execution. The only job that is not yet
processed is cleanup, and the pipeline execution ends after cleanup
successfully completes.

been completed. In the absence of the cleanup job, the job
quadratic would be restarted as well as all of its children. The
inputs ofquadratic, however, have been deleted by cleanup.
It is therefore, not possible to restart the pipeline at this stage. The
pipeline manager will automatically detect that the missing inputs
can be re-generated by restarting the job sample. It will thus
restart this job as well as all of its children, including cubic (see
Figure 5 for a step-by-step resolution of the pipeline). Note that
this behavior is iterative, such that if some inputs from sample
had been missing, the pipeline manager would look for jobs that
could be restarted to generate those files.

3.5. PIPELINE HISTORY
When PSOM is solving a pipeline, it is not generating a color-
coded graph such as those presented in Figures 2–5. Rather, it
outputs a text summary of all operations, such as job submis-
sion, job completion, and job failure. Each event is reported along
with the time of its occurrence. This is presented in the following
example for the first execution of the toy pipeline (Figure 2):

The pipeline PIPE is now being processed.
Started on 21-Jul-2011 09:37:45
user: pbellec, host: berry, system: unix

21-Jul-2011 09:37:45 -
...The job sample has been submitted to the

queue (1 jobs in queue).
21-Jul-2011 09:37:48 -
...The job sample has been successfully

completed (0 jobs in queue).
21-Jul-2011 09:37:48 -
...The job quadratic has been submitted to

the queue (1 jobs in queue).
21-Jul-2011 09:37:48 -
...The job cubic has been submitted to the

queue (2 jobs in queue).

FIGURE 5 | Pipeline management, example 4: restarting a job after its

inputs have been cleaned up. This example assumes that the full toy
pipeline (including the cleanup job) has already been successfully
completed. The same pipeline is then submitted for a new run and the job
quadratic is forced to be restarted. Because the inputs of quadratic
(generated by sample) have been deleted by cleanup, the pipeline
manager also restarts the job sample (panel A). Because all jobs depend
indirectly on sample, all jobs in the pipeline have to be reprocessed
(panels B–D).

21-Jul-2011 09:37:52 -
...The job quadratic has been successfully

completed (1 jobs in queue).
21-Jul-2011 09:37:52 -
...The job cubic has been successfully

completed (0 jobs in queue).
21-Jul-2011 09:37:52 -
...The job sum has been submitted to the

queue (1 jobs in queue).
21-Jul-2011 09:37:55 -
...The job sum has been successfully

completed (0 jobs in queue).

The processing of the pipeline is
terminated.
See report below for job completion status.
21-Jul-2011 09:37:55

All jobs have been successfully completed.

These logs are concatenated across all instances of pipeline
executions, and they are saved in the logs folder. They can be
accessed using a dedicated M-command:

psom_pipeline_visu
(opt_pipe.path_logs,’monitor’)

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

The logs of individual jobs can also be accessed with the same
command, using a different option:

psom_pipeline_visu
(opt_pipe.path_logs,’log’,JOB_NAME)

as shown in Section 3.2. Finally, it is possible to get access to the
execution time for all jobs from the pipeline, which can be useful
for benchmarking purposes:

>> psom_pipeline_visu
(opt_pipe.path_logs,’time’,’’)

cleanup : 0.07 s, 0.00 mn,

0.00 hours, 0.00 days.
cubic : 0.07 s, 0.00 mn,

0.00 hours, 0.00 days.
quadratic : 0.08 s, 0.00 mn,

0.00 hours, 0.00 days.
sample : 0.13 s, 0.00 mn,

0.00 hours, 0.00 days.
sum : 0.11 s, 0.00 mn,

0.00 hours, 0.00 days.

Total computation time : 0.46 s, 0.01 mn,

0.00 hours, 0.00 days.

4. IMPLEMENTATION OF THE PIPELINE EXECUTION ENGINE
4.1. OVERVIEW
At the user level, PSOM requires two objects to be specified: (1) a
pipeline structure which describes the jobs, see Section 2;
(2) an opt_pipe structure which configures how the jobs will
be executed, see Section 4.6. The configuration notably includes
the name of a so-called logs folder, where a comprehensive record
of the pipeline execution is kept. The pipeline execution itself is
initiated by a call to the function psom_run_pipeline, which
comprises three distinct modules:

1. The initialization stage starts off with basic viability checks.
If the same logs folder is used multiple times, the current
pipeline is compared against older records. This determines
which jobs need to be (re)started.

2. When the initialization stage is finished, a process called the
pipeline manager is started. The pipeline manager remains
active as long as the pipeline is running. Its role is to create
small scripts to run individual jobs, and then submit those
scripts for execution as soon as their dependencies are satisfied
and sufficient resources, as determined by the configuration,
become available.

3. Each job is executed in an independent session by a job man-
ager. Upon termination of the job, the completion status
(“failed” or “finished”) is checked and reported to the pipeline
manager using a “tag file” mechanism.

This section describes the implementation of each module, as well
as the configuration of PSOM and the content of the logs folder.
An overview is presented in Figure 6.

4.2. PIPELINE INITIALIZATION
The initialization of pipeline execution includes the following
steps:

1. Check that the (directed) dependency graph of the pipeline is
acyclic. A dependency graph that includes a cycle is impossi-
ble to solve.

2. Check that all of the output files are generated only once (oth-
erwise the results of the pipeline may depend on an arbitrary
order of job executions).

3. If available, retrieve the history of previous pipeline execu-
tions. Determine which jobs need to be processed based on
the history. Update the pipeline history accordingly. This step
will be further detailed below.

4. Check that all of the input files that are not generated as part
of the pipeline are present on the disk. If not, issue a warning
because some jobs may fail when input files are missing. This,
however, depends on the behavior of the commands specified
by the user and cannot be tested by PSOM. The decision to
continue is thus left to the user who may decide to interrupt
the execution at this stage.

5. Create all the necessary folders for output files. This feature
circumvents the repetitive task of coding the creation of the
output folder(s) inside each individual job.

6. If some of the output files already exist, delete them. This
step is intended to avoid possible errors in the pipeline
execution due to some jobs not overwriting the output
files.

To determine what jobs from the pipeline actually need to
be processed, the jobs submitted for execution are compared
with those previously executed in the same logs folder (if any),
along with their completion status. There are three possible status
results:

• ’none’ means that the job has never been started (this is the
default if no previous status exists).

• ’finished’ means that the job was previously executed and
successfully completed.

• ’failed’ means that the job was previously executed and
had failed.

A job will be added to the “to-do list” (i.e., will be executed by the
pipeline manager) if it meets one of the following conditions:

• the job has a ’failed’ status.
• the job has a ’none’ status.
• the description of the job has changed.
• the user forced a restart of the job using opt_pipe.
restart. See Section 3.4.

Every time a job A is added to the to-do list, the following actions
are taken:

• Change the status of the job A to ’none’.
• Add all jobs with a dependency on A to the “to-do list”.
• If an input file of A is missing and a job of the pipeline can

generate this file, add this last job to the “to-do list”.

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

FIGURE 6 | Overview of the PSOM implementation. On the user’s side
(left panel), a structure pipeline is built to describe the list of jobs, and a
structure opt_pipe is used to configure PSOM. The memory of the pipeline
is a logs folder located on the disk space (right panel), in which a series of
files are stored to provide a comprehensive record of multiple runs of pipeline
execution. The PSOM proceeds in three stages (center panel). At the

initialization stage, the current pipeline is compared with previous executions
to set up a “to-do” list of jobs that needs to be (re)started. Then, the pipeline
manager is started, which constantly submits jobs for execution and
monitors the status of on-going jobs. Finally, each job is executed
independently by a job manager which reports the completion status upon
termination (either “failed” or “finished”).

Note that the process of adding a job to the to-do list is recursive
and it can lead to restarting a job with a ’finished’ status,
e.g., if that job has changed or if it is dependent on a job that has
changed.

4.3. PIPELINE MANAGER
After the pipeline has been initialized, a small process called the
“pipeline manager” is started. The pipeline manager is essentially
a long loop that constantly monitors the state of the pipeline,
and submits jobs for execution. The pipeline manager as well as
the individual jobs can run within the current O/M session, or
in an independent session running either locally (on the same
machine) or remotely (on another computer/node). At any given
point in time, the pipeline manager submits all of the jobs that do
not have an unsatisfied dependency, as long as there are enough
resources available to process the jobs. The following rules apply
to determine if the dependencies of a job are satisfied:

1. If a job has been successfully completed, the dependencies
to all the children in the dependency graph are considered
satisfied.

2. Conversely, the dependencies of a job are all satisfied if there
are no dependencies in the first place or if the parents in the
dependency graph all have a ’finished’ status.

Depending on the selected configuration, there may also be a
limit to the maximal number of jobs that can be submitted for

execution simultaneously. This was implemented because some
high-performance computing facilities impose such a limit. Upon
completion or failure, the jobs report their status using tag files
located in the logs folder. A tag file is an empty file with a name
of the form JOB_NAME.failed or JOB_NAME.finished,
which indicates the completion status. If the pipeline system was
fully based on tag files to store status, a pipeline with thou-
sands of jobs would create thousands of tag files. This would
cause very important delays when accessing the file system. The
pipeline manager thus monitors these tag files and removes them
as soon as their presence is detected. The tag files are used to
update a single O/M file coding for the status of all jobs in the
pipeline. As the tag files are empty files, there is no possible race
condition between their creation and their subsequent removal
by the pipeline manager. The pipeline manager also adds status
updates in a plain text “history” file which can be monitored while
being updated in a terminal or from O/M through the dedicated
command psom_pipeline_visu.

4.4. JOB MANAGER
When a job is submitted for execution by the pipeline man-
ager, the command specified by the user is always executed by
a generic job manager. The job manager is a matlab function
(psom_run_job) which automates the generation of a job pro-
file, logs, as well as the tag files that are used to report the

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

completion status to the pipeline manager. This function notably
executes the command in a try ... catch block, which
means that errors in the command will not crash the job man-
ager. When the command has finished to run, the job manager
will check that all of the output files have been properly gener-
ated. If an error occurs, or if one of the output files is missing,
then the job is marked as ’failed’. Otherwise it is considered
’finished’. The job manager reports back the completion
status of the job to the pipeline manager using a tag file mech-
anism already described in Section 4.3. The job manager also
automatically generates logs, i.e., a text record of the execution
of the command, as well as other automatically generated infor-
mations such as the user name, the date, the time, and the type of
operating system, see Section 3.5 for an example. Finally, the job
manager measures and saves the execution time of the command
for profiling purposes.

4.5. LOGS FOLDER
The logs folder contain the following files:

• PIPE_history.txt: A plain text file with the history of
the execution of the pipeline manager (see Section 3.5 for an
example).

• PIPE_jobs.mat: An O/M file were each job is saved as a
variable. This structure includes the latest version of all jobs
executed from the logs folder.

• PIPE_status.mat: An O/M file where the status of each
job is saved as one (string) variable.

• PIPE_logs.mat: An O/M file where the logs of each job is
saved as one (string) variable.

• PIPE_profile.mat: An O/M file where each job appears
as a variable. This variable is an O/M structure, notably includ-
ing the execution time of the command.

• PIPE.mat: An O/M file where PSOM configuration variables
are saved.

Importantly, using PIPE_jobs.mat, it is possible to re-execute
the pipeline from scratch at any point in time, or to access
any of the parameters that were used for the analysis. The logs
folder thus contains enough information to fully reproduce the
results of the pipeline. Moreover, with this information being
stored in the form of an M-structure, it is easy to access and
fully scalable. This can support jobs with potentially hundreds
or even thousands of parameters. Octave and Matlab both use
the HDF5 file format (Poinot, 2010). This format offers internal
compression, yet still allows PSOM to read or write individ-
ual variables without accessing the rest of the file. This is a
key technical feature that enables PSOM to quickly update the
logs/status/profile files for each job, regardless of the size of the
pipeline. Note that the logs folder also contain other files gen-
erated temporarily as part of the pipeline submission/execution
process, as well as backup files in the event the main files are
corrupted.

4.6. PSOM CONFIGURATION
The only necessary option to start a pipeline is setting where to
store the logs folder:

>> opt_pipe.path_logs =
’/home/pbellec/database/demo_psom/logs/’;

It is highly recommended that the logs folder be used solely for the
purposes of storing the history of the pipeline. Another impor-
tant, yet optional parameter is setting how the individual jobs of
the pipeline are executed:

>> opt_pipe.mode = ’batch’;

Five execution modes are available:

• ’session’: The jobs are executed in the current O/M ses-
sion, one after the other.

• ’background’: This is the default. Each job is executed
in the background as an independent O/M session, using
an “asynchronous” system call. If the user’s session is inter-
rupted, the pipeline manager and the jobs are interrupted
as well.

• ’batch’: Each job is executed in the background as an inde-
pendent O/M session, using the at command on Linux and
the start command on windows. If the user’s session is inter-
rupted, the pipeline manager and the jobs are not interrupted.
This mode is less robust than background and may not be
available on some platforms.

• ’qsub’: The jobs are executed on a remote execution server
through independent submissions to a queuing scheduler using
a qsub command (either torque, SGE, or PBS). Such queuing
schedulers are in general avalaible in high-performance com-
puting facilities. They need to be installed and configured by a
system administrator.

• ’msub’: The jobs are executed on a remote execution server
through independent submissions to a a queuing scheduler
using a msub command (MOAB). This is essentially equivalent
to the qsub mode.

Additional options are available to control the bash environment
variables, as well as O/M start-up options, among others. A func-
tion called psom_config can be used to assess whether the
configuration of PSOM is correct. This procedure includes multi-
ple tests to validate that each stage of a job submission is working
properly. It will provide some environment-specific suggestions
to fix the configuration when a problem is detected. PSOM release
0.9 has been tested in a variety of platforms (Linux, windows, Mac
OSX) and execution modes. More details can be found in PSOM
online resources, see the discussion section for links.

5. CODING GUIDELINES FOR MODULES AND PIPELINES
The pipeline structure that is used in PSOM is very flexible, as it
does not impose any constraints on the way the code executed
by each job is implemented or on the way the pipeline struc-
ture itself is generated. Additional coding guidelines and tools
have been developed to keep the code concise and scalable, in
the sense that it can be used to deal with functions with tens
or hundreds of parameters and thousands of jobs. These guide-
lines also facilitate the combination of multiple pipelines while
keeping track of all parameters: a critical feature to ensure full

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

provenance of a pipeline analysis. A generic tool is available to
test the presence of mandatory parameters and set up default
parameter values. Another tool is the so-called “brick” function
type, which can be used to run jobs. A last set of guidelines
and tools have been developed to generate the pipeline structures
themselves.

5.1. SETTING THE JOB PARAMETERS
There is no strict framework to set the default of the input
arguments in Octave/Matlab. We developed our own guidelines,
which have several advantages over a more traditional method
consisting in passing each parameter one by one. As can be seen
in the attributes of a job, our method consists of passing all
parameters as fields of a single structure opt. A generic function
psom_struct_defaults can be used to check for the pres-
ence of mandatory input arguments, set default values, and issue
warnings for unkown arguments. The following example shows
how to set the input arguments of a function using that approach:

opt.order = [1 3 5 2 4 6];
opt.slic = 1;
opt.timing = [0.2,0.2];
list_fields = { ’method’ , ’order’ ,

’slice’ , ’timing’ , ’verb’ };
list_defaults = { ’linear’ , NaN , [] ,

NaN , true };
opt = psom_struct_defaults

(opt,list_fields,list_defaults)
warning: The following field(s) were

ignored in the structure : slic
opt = {

method = linear
order = [1 3 5 2 4 6]
slice = [](0x0)
timing = [0.20000 0.20000]
verb = 1 }

Note that only three lines of code are used to set all the defaults,
and that a warning was automatically issued for the typo slic
instead of slice. Such unlisted fields are simply ignored. Also,
the default value NaN can be used to indicate a mandatory argu-
ment (an error will be issued if this field is absent). This approach
will scale up well with a large number of parameters. It also facil-
itates the addition of extra parameters in future developments
while maintaining backwards compatibility. As long as a new
parameter is optional, a code written for old specifications will
remain functional.

5.2. BUILDING MODULES FOR A PIPELINE : THE “BRICK”
FUNCTION TYPE

The bricks are a special type of O/M function which take files
as inputs and outputs, along with a structure to describe some
options. In brief, a brick precisely mimics the structure of a job
in a pipeline, except for the files_clean field. The command
used to call a brick always follows the same syntax:

[files_in,files_out,opt] =
brick_name(files_in,files_out,opt)

where files_in, files_out and opt play the same roles as
the fields of a job. The key mechanism of a brick is that there will
always be an option called opt.flag_test which allows the
programmer to make a test, or dry-run. If that (boolean) option is
true, the brick will not do anything but update the default param-
eters and file names in its three arguments. Using this mechanism,
it is possible to use the brick itself to generate an exhaustive list of
the brick parameters, and test if a subset of parameters are accept-
able to run the brick. In addition, if a change is made to the default
parameters of a brick, this change will be apparent to any piece of
code that is using a test to set the parameters, without a need to
change the code.

When the file names files_in or files_out are struc-
tures, a missing field will be interpreted either as a missing
input which can be replaced by a default dataset, or an output
that does not need to be generated. If the field is present but
empty, then a default file name is generated. Note that an option
opt.folder_out can generally be used to specify in which
folder the default outputs should be generated. Finally, if a field is
present and non-empty, the file names specified by the users are
used to generate the outputs. These conventions allow complete
control over the number of output files generated by the brick,
and the flexibility to use default names. The following example
is a dry-run with a real brick implemented in the neuroimaging
analysis kit17 (NIAK) (Bellec et al., 2011):

files_in =
’/database/func_motor_subject1.mnc’;

files_out.filtered_data = ’’;
files_out.var_low = ’’;
opt.hp = 0.01;
opt.folder_out = ’/database/filtered_data/’;
opt.flag_test = true;
>>[files_in,files_out,opt] = ... niak_brick

_time_filter(files_in,files_out,opt)
files_in =

/database/func_motor_subject1.mnc
files_out =
{
filtered_data = /database/filtered_data/

/func_motor_subject1_f.mnc
var_high = gb_niak_omitted
var_low = /database/filtered

_data//func_motor_subject1_var_low.mnc
beta_high = gb_niak_omitted
beta_low = gb_niak_omitted
dc_high = gb_niak_omitted
dc_low = gb_niak_omitted

}
opt =
{
hp = 0.010000
folder_out = /database/filtered_data/
flag_test = 1
flag_mean = 1

17code.google.com/p/niak

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

flag_verbose = 1
tr = -Inf
lp = Inf

}

The default output names have been generated in opt.
folder_out, and some of the outputs will not be gener-
ated (they are associated with the special tag ’gb_niak_
omitted’). A large number of other parameters that were not
used in the call have been assigned some default values.

5.3. PIPELINE IMPLEMENTATION
A so-called pipeline generator is a function that, starting from a
minimal description of a file collection and some options, gen-
erates a full pipeline. Because a pipeline can potentially create a
very large number of outputs, it is difficult to implement a generic
system that is as flexible as a brick in terms of output selection.
Instead, the organization of the output of the pipeline will fol-
low some canonical, well-structured pre-defined organization. As
a consequence, the pipeline generator only takes two input argu-
ments, files_in and opt (similar to those of a job), and does
not feature files_out. The following example shows how to
set files_in forniak_pipeline_corsica, implemented
in NIAK:

%% Subject 1
files_in.subject1.fmri{1} =

’/demo_niak/func_motor_subject1.mnc’;
files_in.subject1.fmri{2} =

’/demo_niak/func_rest_subject1.mnc’;
files_in.subject1.transf =

’/demo_niak/transf_subject1.xfm’;

%% Subject 2
files_in.subject2.fmri{1} =

’/demo_niak/func_motor_subject2.mnc’;
files_in.subject2.fmri{2} =

’/demo_niak/func_rest_subject2.mnc’;
files_in.subject2.transf =

’/demo_niak/transf_subject2.xfm’;

The argument opt will include the following standard fields:

• opt.folder_out: Name of the folder where the outputs
of the pipeline will be generated (possibly organized into
subfolders).

• opt.size_output: This parameter can be used to vary the
amount of outputs generated by the pipeline (e.g., ’all’:
generate all possible outputs; ’minimum’, clean all interme-
diate outputs, etc).

• opt.brick1: All the parameters of the first brick used in the
pipeline.

• opt.brick2: All the parameters of the second brick used in
the pipeline.

• ...

Inside the code of the pipeline template, adding a job to the
pipeline will typically involve a loop similar to the following
example:

% Initialize the pipeline to a structure
with no field

pipeline = struct();
% Get the list of subjects from files_in
list_subject = fieldnames(files_in);
% Loop over subjects
for num_s = 1:length(list_subject)

% Plug the ’fmri’ input files of the
subjects in the job

job_in = files_in.
(list_subject{num_s}).fmri;

% Use the default output name
job_out = ’’;
% Force a specific folder organization
for outputs

opt.fmri.folder_out = [opt.folder_out
list_subject{num_s} filesep];

% Give a name to the jobs
job_name =

[’fmri_’ list_subject{num_s}];
% The name of the employed brick
brick = ’brick_fmri’;
% Add the job to the pipeline
pipeline = ... psom_add_job(pipeline,
job_name,brick,job_in,job_out,opt.fmri);
% The outputs of this brick are just
intermediate outputs :

% clean these up as soon as possible
pipeline = psom_add_clean(pipeline,

[job_name ... ’_clean’],pipeline.
(job_name).files_out);

end

The command psom_add_job first runs a test with the brick
to update the default parameters and file names, and then adds
the job with the updated input/output files and options. By
virtue of the “test” mechanism, the brick is itself defining all
the defaults. The coder of the pipeline does not actually need
to know which parameters are used by the brick. Any mod-
ification made to a brick will immediately propagate to all
pipelines, without changing one line in the pipeline genera-
tor. Moreover, if a mandatory parameter has been omitted by
the user, or if a parameter name is not correct, an appropri-
ate error or warning will be generated at this stage, prior to
any work actually being performed by the brick. The command
psom_add_clean adds a cleanup job to the pipeline, which
deletes the specified list of files. Because the jobs can be speci-
fied in any order, it is possible to add a job and its associated
cleanup at the same time. Finally, it is very simple to combine
pipelines together: the command psom_merge_pipeline
simply combines the fields of two structures pipeline1 and
pipeline2.

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

6. APPLICATIONS IN NEUROIMAGING
The PSOM project is just reaching the end of its beta testing
phase, and as such it has only been adopted by a couple
of laboratories as a development framework. There are still
been several successful applications, including the generation of
simulated fMRI (Bellec et al., 2009), clustering in resting-state
fMRI (Bellec et al., 2010a,b), clustering in event-related fMRI
(Orban et al., 2011), simulations in electroencephalography and
optical imaging (Machado et al., 2011), reconstruction of fiber
tracts (Kassis et al., 2011), as well as non-parametric permutation
testing (Ganjavi et al., 2011). The PSOM framework has also
been used for the development of an open-source software
package called NIAK18 (Bellec et al., 2011). This software
package, which relies on the PSOM execution engine, has been
used in a number of recent studies (Dansereau et al., 2011;
Moeller et al., 2011; Schoemaker et al., 2011; Carbonell et al.,
2012). We used the fMRI preprocessing pipeline from the NIAK
package to run benchmarks of the parallelization efficiency of
the PSOM execution engine. This pipeline has been integrated
into the CBRAIN computing platform (Frisoni et al., 2011),
where it has been used to preprocess and publicly release19

fMRI datasets collected for about 1000 children and adolescents,
as part of the ADHD-200 initiative20 (Lavoie-Courchesne et al.,
2012).

6.1. THE NIAK FMRI PREPROCESSING PIPELINE
The NIAK fMRI preprocessing pipeline applies the follow-
ing operations to each functional and structural dataset in a
database. The first 10 s of the acquisition are suppressed to
allow the magnetization to reach equilibrium. The fMRI vol-
umes are then corrected of inter-slice difference in acquisi-
tion time, rigid body motion, slow time drifts, and physiolog-
ical noise (Perlbarg et al., 2007). For each subject, the mean
motion-corrected volume of all the datasets is coregistered with
a T1 individual scan using minctracc (Collins et al., 1994), which
is itself non-linearly transformed to the Montreal Neurological
Institute (MNI) non-linear template (Fonov et al., 2011) using
the CIVET pipeline (Ad-Dab’bagh et al., 2006). The functional
volumes are then re-sampled in the stereotaxic space and spatially
smoothed.

Most operations are implemented through generic medical
image processing modules, the MINC tools21. These tools are
coded in a mixture of C and C++ languages, as well as some PERL
scripts, and usually operate through the command line. Simple
PSOM-compliant “brick” wrappers have been implemented in
NIAK for the required MINC tools. Other bricks are also pure
O/M implementations for original methods or a port from other
O/M projects. Finally, some of the operations (motion correc-
tion, correction of physiological noise) are themselves pipelines
involving several steps, see Figure 7 for an example of a full
dependency graph. The code of the individual NIAK fMRI pre-
processing pipeline is 735 lines long, and only 321 lines after

18www.nitrc.org/projects/niak
19http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:NIAKPipeline
20http://fcon_1000.projects.nitrc.org/indi/adhd200/
21http://en.wikibooks.org/wiki/MINC

excluding header comments and variable initialization. The code
is thus concise enough to be easily reviewed, quality-checked, and
modified.

6.2. BENCHMARKS
We used the Cambridge resting-state fMRI database for the
benchmark, which is publicly available as part of the 1000 func-
tional connectome project22. This database (Liu et al., 2009)
includes 198 subjects with one structural MRI and one fMRI run
each (119 volumes, TR = 3 s). The processing was done in var-
ious computing environments and execution modes to test the
scalability of PSOM:

• peuplier-n: A machine with an Intel(R) CoreTM i7 CPU
(four computing cores, eight threads), 16 GB of memory, a
local file system and an Ubuntu operating system. For n = 1,
both the pipeline manager and individual jobs were executed
sequentially in a single Octave session. For n > 1, the pipeline
manager and individual jobs were executed in the background
in independent Octave sessions using an at command, with
up to n jobs running in parallel.

• magma-n: a machine with four six-Core AMD OpteronTM

Processor 8431 (for a total of 24 computing cores), 64 GB of
memory, an NTFS mounted file system and an openSUSE
operating system. For n = 1, both the pipeline manager and
individual jobs were executed sequentially in a single Octave
session. Forn> 1, the pipeline manager ran in the background
using an at command and individual jobs were executed in
the background in independent Octave sessions using an SGE
qsub command, with up to n jobs running in parallel.

• guillimin-n: a supercomputer with 14400 Intel Westmere-
EP cores distributed across 1200 compute nodes located at the
CLUMEQ-McGill data centre, Ecole de Technologie Superieure
in Montreal, Canada. guillimin ranked 83th in the top
500 list of the most powerful supercomputers, released in
November, 201123. Included in the facility is nearly 2 PB of disk
storage using the general parallel file system (GPFS). Forn= 1,
both the pipeline manager and individual jobs were executed
sequentially in a single Octave session. For n > 1, the pipeline
manager ran in the background using an at command and
individual jobs were executed on distributed computing nodes
in independent Octave sessions using a MOAB msub com-
mand, with up to n jobs running in parallel.

We investigated the performance of PSOM on
(peuplier-8, magma-{8,16,24,40} and guillimin-
{24,50,100,200}). For experiments on peuplier and
magma, Octave release 3.2.4 was used, with PSOM release 0.8.9
and NIAK release 0.6.4.3. On guillimin, octave release 3.4.2
was available and some development versions of NIAK (v1270
on the subversion repository) and PSOM (v656 of the subversion
repository) were used because they implemented some bug fix
for this release. During the time of the experiment, the PSOM
jobs were the only ones running on the execution servers for

22http://fcon_1000.projects.nitrc.org/
23www.top500.org/lists/2011/11

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

FIGURE 7 | An example of dependency graph for the NIAK fMRI

preprocessing pipeline. This example includes two subjects with
two fMRI datasets each. The pipeline includes close to 100 jobs,

and cleanup jobs have been removed to simplify the represen-
tation. Colors have been used to code the main stages of the
preprocessing.

peuplier and magma, while guillimin had about 75%
processors in use.

6.3. RESULTS
The raw Cambridge database had a size of 7.7 GB, with a
total of 21 GB generated by the pipeline (output/input ratio
of 273%). The NIAK pipeline included 5153 jobs featuring
8348 unique input/output files (not including temporary files).
Figure 8A shows the distribution of execution times for all jobs
on peuplier-8. The pipeline included about 1500 “cleanup”
jobs deleting intermediate files, with an execution time of less
than 0.2 s. The other jobs lasted anywhere between a few sec-
onds and 15 min, with hundreds of jobs of less than 2 min.
Because of the large number of very short jobs, the pipeline
manager was not able to constantly submit enough jobs to
use n cores at all time, even when it would have been pos-
sible in theory. This effect was small on peuplier, magma
or guillimin-{24,50} see Figure 8B–C. It became pro-
nounced on guillimin-{100,200}, see Figure 8D. The
serial execution time of the pipeline (sum of execution time of all
jobs) varied a lot from one configuration to the other: from 120 h
(5 days) on guillimin-24 to almost double (220 h, 9 days) on
magma-8. The serial execution time, however, increased quickly
on guillimin with an increasing n, see Figure 8E. Despite this

effect, and thanks to parallelization, the parallel execution time
(time elapsed between the beginning and the end of the pipeline
processing) steadily decreased with an increasing n, see Figure 8F.
The speed-up factor (defined as the ratio between the serial and
parallel execution time) still departed from the optimal value n.
Consistent with our observations on the effective number of cores
used on average, the departure between the speed-up factor and n
increased with n, and became pronounced for n greater than 100,
see Figure 8G. This result can be expressed as a parallelization
efficiency, defined as the ratio between the empirical speed-up
factor and n. Parallelization efficiency was excellent (over 90%)
on peuplier-8 and gradually decreased with an increasing n
to reach about 80% on peuplier-24 or guillimin-24 and
60% on guillimin-200. In this last setting, the fMRI datasets
and structural scans of about 200 subjects were still processed in
a little bit more than 2 h.

7. DISCUSSION
7.1. OVERVIEW
We propose a new PSOM to implement, run, and re-run pipeline
analysis on large databases. Our approach is well-suited for
pipelines involving heterogeneous tools that can communicate
through a file system in a largely parallel fashion. This notably
matches the constraints found in neuroimaging. The PSOM

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

FIGURE 8 | Benchmark experiments with the NIAK fMRI preprocessing

pipeline. The distribution of execution time for all jobs on one server
(peuplier) is shown in panel (A). The number of jobs running at any given
time across the whole execution of the pipeline (averaged on 5 min time
windows) is shown in panels (B–D) for servers peuplier, magma and
guillimin, respectively. The user-specified maximum number of
concurrent jobs is indicated by a straight line. The serial execution time of the

pipeline, i.e., the sum of execution times for all jobs, is shown in panel (E).
The parallel execution time, i.e., the time elapsed between the beginning and
the end of the pipeline processing, is shown in panel (F). The speed-up
factor, i.e., serial time divided by parallel time, is presented in panel (G), along
with the ideal speed-up, equal to the user-specified maximal number of
concurrent jobs. Finally, the parallelization efficiency (i.e., the ratio between
the empirical speed-up and the ideal speed-up) is presented in panel (H).

coding standards produce concise, readable code which in our
experience is easy to maintain and develop over time. It is also
highly scalable: a pipeline can incorporate thousands of jobs, each
one featuring tens to hundreds of parameters. From a developer’s
perspective, using PSOM does not limit the scope of distribution
of the software, as pipelines can be executed inside an O/M ses-
sion as would any regular O/M code. The very same code can
also be deployed on a multi-core machine or in a supercomputing
environment simply by changing the PSOM configuration.

7.2. ONLINE DOCUMENTATION
The main body of documentation is available on a wiki hosted
online by google code, see Table 1. This resource is updated for
each new release of PSOM. It covers selected topics such as the

Table 1 | Online resources for PSOM.

Ressources URL

Developer’s site code.google.com/p/psom

User’s site nitrc.org/projects/psom/

Downloads nitrc.org/frs/?group_id = 316

Forum nitrc.org/forum/forum.php?forum_id= 1316

Wiki overview code.google.com/p/psom/w/list

PSOM short tutorial code.google.com/p/psom/wiki/HowToUsePsom

Coding guidelines code.google.com/p/psom/wiki/CodingGuidelines

PSOM configuration code.google.com/p/psom/wiki/ConfigurationPsom

PSOM tests code.google.com/p/psom/wiki/TestPsom

configuration of the pipeline manager more extensively than this
paper. The “short PSOM tutorial” reproduces step-by-step all the
experiments reported in Section 3.

7.3. THE BENEFITS OF PIPELINE ANALYSIS
Parallel computing is a central feature of PSOM, as it allows to
reduce the time necessary to complete an analysis. The pipeline
system can be beneficial even when used within a single session.
PSOM automatically keeps a record of all the steps and parame-
ters of the pipeline. These logs are detailed enough to reproduce
an entire analysis (as long as the production environment itself
can be reproduced). This is an essential feature in the perspec-
tive of reproducible research. The pipeline logs can also be used
for profiling the execution time of the whole pipeline as well as
its subparts. This can be useful to run a benchmark or to iden-
tify computational bottlenecks. It is finally possible to restart the
pipeline at any stage, or even to add stages or change parameters.
Over multiple executions, PSOM will restart only the pipeline
stages impacted by the changes. This ability to properly handle
pipeline updates is critical in the development phase, and can
also be useful to test alternative choices of parameter/algorithmic
selection.

7.4. PARALLEL COMPUTATION CAPABILITIES
The benchmark experiments demonstrated that PSOM is able to
handle pipelines featuring thousands of jobs and tens of giga-
bytes of data. It can also dramatically reduce the execution time:
an fMRI database including almost 200 subjects could be pre-
processed in less than 3 h. The parallelization efficiency was

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 15

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

excellent with a small or moderate number of computing cores
(under 50), yet it dropped past a hundred cores. This is because
the NIAK pipeline features hundreds of very short jobs (less than
0.2 s). The pipeline manager thus needs to submit jobs at a very
high pace to use all resources. PSOM would behave better with
longer jobs. Some alternative pipeline systems, e.g., Swift (Stef-
Praun et al., 2007), scale efficiently up to thousands of cores even
with short jobs (30 s long). Swift implements for this purpose a
multi-level pipeline execution engine: the jobs are grouped into
small sub-pipelines that are then processed independently. We are
planning to add this feature to the pipeline execution engine in
the next major release of PSOM.

7.5. QUALITY CONTROL
Quality control is a challenge when processing large databases.
This step is, however, critical to establish the scientific credibil-
ity of the results. Quality control is too problem-specific to be
implemented as a general tool in a pipeline system. It is, however,
possible to integrate ad-hoc steps of quality control in a pipeline.
The NIAK fMRI preprocessing pipeline for instance includes a
group summary of the individual motion parameters as well
as measures of the quality of coregistration between the struc-
tural and functional images, amongst others. This approach was
found to greatly facilitate the quality control of the preprocess-
ing of ADHD-20024, a database including close to 1000 subjects
(Lavoie-Courchesne et al., 2012).

7.6. FILES COLLECTION
Neuroimaging datasets often come as collections of files. The
DICOM format for example may store individual slices as sep-
arate files. A variant of the NIFTI format (used by the SPM
software) stores each brain volume of an fMRI dataset as one
or two separate files. As hundreds of fMRI brain volumes are
typically collected on an individual, both formats represent a
large file collection. The structures used to describe input/output
files in PSOM is very versatile, and can include an exten-
sive file collection. There are, however, performance penalties
for doing so. Those penalties are in part internal to PSOM,
because analyzing the dependencies with DICOM or 3D NIFTI
will take tens of seconds. Some operations on the file system
may also slow down because of the number of files, indepen-
dently of their size. This can be observed for example during
the internet synchronization of file collections between sites.
By contrast with the DICOM and 3D NIFTI formats, MINC
or NIFTI have the ability to store a full 3D+t dataset into a
single file. For computational efficiency, it is thus advisable to
start a pipeline by converting the input database into such a
3D+t format.

7.7. PSOM CONFIGURATION
An important choice was made in the design of PSOM: the inter-
actions between the pipeline manager and the execution controler
(at, qsub, msub, etc.) are kept to a bare minimum. The main
benefit of this approach is the ability of PSOM to interact eas-
ily and robustly with a variety of execution environments for the

24http://fcon_1000.projects.nitrc.org/indi/adhd200/

jobs. However, when a queuing scheduler is employed, PSOM has
no means to interrogate the state of a particular job. It assumes
that submitted jobs will be able to run, and if that assumption is
met, each job will report its completion status using a file-based
mechanism internal to PSOM. If this assumption is not met, the
users may not get any useful feedback on the cause of failures. For
this reason, a dedicated psom_config function is available to
test each stage of job submission one by one, and will guide users
when setting up their configuration.

7.8. DYNAMIC PIPELINE COMPOSITION
In its current form, PSOM supports pipelines that can be
described as a static DAG. Static means that the full pipeline rep-
resentation has to be generated by the user prior to execution.
In alternative pipeline systems such as Taverna, a pipeline can
branch or iterate depending on data-dependent conditions that
are dynamically evaluated during the execution. This is not cur-
rently possible in PSOM. A future development will address this
issue by allowing jobs to regenerate themselves new jobs. This
will be achieved by writing a description of these new jobs in a
dedicated folder constantly monitored by the pipeline manager.
This generic mechanism will enable a dynamic, data-dependent
composition of the pipeline.

7.9. INTEROPERABILITY
The PSOM framework fosters a modular organization of the
code that is well adapted to a specific pipeline. Such organization
will facilitate the subsequent implementation of the pipeline in
any workflow system. Porting a pipeline from PSOM to another
system may even become a largely automated task. We recently
demonstrated the feasibility of this approach by building an inter-
face between the NIAK fMRI preprocessing pipeline and CBRAIN
(Lavoie-Courchesne et al., 2012). CBRAIN is a computing plat-
form that offers transparent multipoint data transfers from var-
ious network storage nodes (file servers, S3 API, databases),
transparent access to grid computing facilities, as well as a secured
management of the access to a project by multiple users. This type
of integration is made possible by the simplicity of the pipeline
representation adopted by PSOM. This representation is more-
over very similar to the ones used by Nipype and Swift and
is also compatible with DAG-based representations (e.g., Soma-
workflow, DAGMan, Pegasus) as long as a dependency graph is
generated with PSOM. We will work in the future on a library
of interfaces to allow PSOM users to select the execution engine
that is the most adapted to their needs in the context of a given
application.

8. CONCLUSION
In this paper we propose a PSOM. PSOM provides a solu-
tion to implement, run and re-run multi-stage processing on
large databases. It automatically keeps track of the details of the
pipeline in order to make the results reproducible. It also provides
tools for profiling the pipeline execution. PSOM handles updates
made to the pipeline: only the jobs impacted by changes will be
restarted. The pipeline execution can be deployed in a variety of
computing environments and can take advantage of parallel com-
puting facilities. The same code can run in any of the supported

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

execution environments simply by changing the PSOM config-
uration. On a benchmark using real neuroimaging datasets, the
processing time for 198 subjects was reduced from over a week
down to less than 3 h with 200 computing cores. PSOM supports
a variety of operating systems (Linux, Windows, Mac OSX) and is
distributed under an open-source (MIT) license. We believe that
this package is a valuable resource for researchers working in the
neuroimaging field, and especially those who are regular users of
Octave or Matlab.

ACKNOWLEDGMENTS
The authors are grateful to the members of the 1000 functional
connectome consortium for publicly releasing the “Cambridge”
data sample, and would like to thank Dr. Guillaume Flandin,
Dr. Salma Mesmoudi, and M. Pierre Rioux for insightful discus-
sions. Several authors of existing pipeline solutions have reviewed
the introduction section and provided very valuable feedback:

Dr. Satrajit Gosh, Dr. Soizic Laguitton, Dr. Michael Wilde, Mr.
Marc-Etienne Rousseau, Dr. Ewa Deelman, Dr. Ivo Dinov, and
Dr. Volkmar Glauche. Google code and the “Neuroimaging
Informatics Tools and Resources Clearinghouse” (NITRC) are
generously hosting PSOM’s developers and users site, respec-
tively. The alpha-testers of the project (Pr. Grova’s lab, Dr.
Gaolong Gong, M. Christian Dansereau, and Dr. Guillaume
Marrelec) also provided valuable contributions. SLC was partly
supported by a pilot project grant of the Quebec bioimaging
network (QBIN), “fonds de recherche en santé du Québec”
(FRSQ). The computational resources used to perform the data
analysis were provided by ComputeCanada25 and CLUMEQ26,
which is funded in part by NSERC (MRS), FQRNT, and McGill
University.

25https://computecanada.org/
26http://www.clumeq.mcgill.ca/

REFERENCES
Ad-Dab’bagh, Y., Einarson, D.,

Lyttelton, O., Muehlboeck, J. S.,
Mok, K., Ivanov, O., Vincent,
R. D., Lepage, C., Lerch, J.,
Fombonne, E., and Evans, A.
C. (2006). “The CIVET image-
processing environment: a fully
automated comprehensive pipeline
for anatomical neuroimaging
research,” in Proceedings of the 12th
Annual Meeting of the Human Brain
Mapping Organization. Neuroimage,
ed M. Corbetta (Florence, Italy).

Armstrong, T. G. (2011). Integrating
Task Parallelism into the Python
Programming Language. Master’s
thesis, The University of Chicago.

Ashburner, J. (2011). SPM: a
history. Neuroimage. doi:
10.1016/j.neuroimage.2011.10.025.
[Epub ahead of print].

Baker, H. G., and Hewitt, C. (1977).
“The Incremental Garbage
Collection of Processes. Technical
Report,” in Proceedings of the 1977
symposium on Artificial intelligence
and programming languages archive.
(New York, NY: ACM).

Bellec, P., Carbonell, F. M., Perlbarg, V.,
Lepage, C., Lyttelton, O., Fonov, V.,
Janke, A., Tohka, J., and Evans, A.
C. (2011). “A neuroimaging analy-
sis kit for Matlab and Octave,” in
Proceedings of the 17th International
Conference on Functional Mapping
of the Human Brain. (Quebec, QC,
Canada).

Bellec, P., Perlbarg, V., and Evans, A.
C. (2009). Bootstrap generation and
evaluation of an fMRI simulation
database. Magn. Reson. Imaging 27,
1382–1396.

Bellec, P., Petrides, M., Rosa-Neto, P.,
and Evans, A. C. (2010a). “Stable
group clusters in resting-state fMRI
at multiple scales: from systems

to regions,” in Proceedings of the
16th International Conference on
Functional Mapping of the Human
Brain. (Barcelona, Spain).

Bellec, P., Rosa-Neto, P., Lyttelton, O.
C., Benali, H., Evans, A. C. (2010b).
Multi-level bootstrap analysis of sta-
ble clusters in resting-state fMRI.
Neuroimage 51, 1126–1139.

Biswal, B. B., Mennes, M., Zuo, X.-
N. N., Gohel, S., Kelly, C., Smith,
S. M., Beckmann, C. F., Adelstein,
J. S., Buckner, R. L., Colcombe, S.,
Dogonowski, A.-M. M., Ernst, M.,
Fair, D., Hampson, M., Hoptman,
M. J., Hyde, J. S., Kiviniemi, V. J.,
Kötter, R., Li, S.-J. J., Lin, C.-P. P.,
Lowe, M. J., Mackay, C., Madden,
D. J., Madsen, K. H., Margulies,
D. S., Mayberg, H. S., McMahon,
K., Monk, C. S., Mostofsky, S. H.,
Nagel, B. J., Pekar, J. J., Peltier, S. J.,
Petersen, S. E., Riedl, V., Rombouts,
S. A., Rypma, B., Schlaggar, B. L.,
Schmidt, S., Seidler, R. D., Siegle, G.
J., Sorg, C., Teng, G.-J. J., Veijola, J.,
Villringer, A., Walter, M., Wang, L.,
Weng, X.-C. C., Whitfield-Gabrieli,
S., Williamson, P., Windischberger,
C., Zang, Y.-F. F., Zhang, H.-Y. Y.,
Castellanos, F. X., and Milham, M.
P. (2010). Toward discovery science
of human brain function. Proc. Natl.
Acad. Sci. U.S.A. 107, 4734–4739.

Bose, R., Foster, I., and Moreau, L.
(2006). Report on the International
Provenance and Annotation
Workshop: (IPAW’06). 3–5 May
2006, Chicago, IL: SIGMOD Rec.
35, 51–53.

Burton, A. (2011). Big science for a
big problem: ADNI enters its second
phase. Lancet Neurol. 10, 206–207.

Callahan, S. P., Freire, J., Santos, E.,
Scheidegger, C. E., Silva, C. T., and
Vo, H. T. (2006). “VisTrails: visu-
alization meets data management,”

in Proceedings of the 2006 ACM
SIGMOD International Conference
on Management of Data. SIGMOD
’06. ACM, (New York, NY: USA),
745–747.

Carbonell, F. M., Bellec, P., and
Shmuel, A. (2012). Global and
system-specific resting-state
BOLD fluctuations are uncor-
related: principal component
analysis reveals anti-correlated
networks. Brain Connect. doi:
10.1089/brain.2011.0065. [Epub
ahead of print].

Chao-Gan, Y., and Yu-Feng, Z. (2010).
DPARSF: a MATLAB Toolbox for
“Pipeline” data analysis of resting-
state fMRI. Front. Syst. Neurosci.
4:13 doi: 10.3389/fnsys.2010.00013

Collins, D. L., Neelin, P., Peters, T. M.,
and Evans, A. C. (1994). Automatic
3D intersubject registration of MR
volumetric data in standardized
Talairach space. J. Comput. Assist.
Tomogr. 18, 192–205.

Dansereau, C. L., Pittau, F., Bellec, P.,
Gotman, J., and Grova, C. (2011).
“Detection of abnormal resting state
networks in epileptic patients,” in
17th International Conference on
Functional Mapping of the Human
Brain. (Quebec, QC, Canada).

Das, S., Zijdenbos, A. P., Vins, D.,
Harlap, J., and Evans, A. C. (2012).
LORIS: a web-based data manage-
ment system for multi-center stud-
ies. Front. Neuroinform. 5:37. doi:
10.3389/fninf.2011.00037

Deelman, E., Gannon, D., Shields, M.,
and Taylor, I. (2009). Workflows
and e-Science: an overview of
workflow system features and
capabilities. Future Generation
Comput. Syst. 25, 528–540.

Deelman, E., Singh, G., Su, M. H.,
Blythe, J., Gil, Y., Kesselman, C.,
Mehta, G., Vahi, K., Berriman,

G. B., Good, J., Laity, A., Jacob,
J. C., and Katz, D. S. (2005).
Pegasus: a framework for mapping
complex scientific workflows onto
distributed systems. Sci. Program.
13, 219–237.

Dinov, I. D., van Horn, J. D., Lozev, K.
M., Magsipoc, R., Petrosyan, P., Liu,
Z., Mackenzie-Graham, A., Eggert,
P., Parker, D. S., and Toga, A. W.
(2009). Efficient, distributed and
interactive neuroimaging data anal-
ysis using the LONI pipeline. Front.
Neuroinform. 3:22. doi: 10.3389/
neuro.11.022.2009

Evans, A. C. (2006). The NIH MRI
study of normal brain development.
Neuroimage 30, 184–202.

Fonov, V., Evans, A. C., Botteron,
K., Almli, C. R., McKinstry,
R. C., Collins, D. L., Brain
Development Cooperative Group.
(2011). Unbiased average age-
appropriate atlases for pediatric
studies. Neuroimage 54, 313–327.

Frisoni, G. B., Redolfi, A., Manset,
D., Rousseau, M.-E. E., Toga, A.,
and Evans, A. C. (2011). Virtual
imaging laboratories for marker
discovery in neurodegenerative
diseases. Nat. Rev. Neurol. 7,
429–438.

Ganjavi, H., Lewis, J. D., Bellec, P.,
MacDonald, P. A., Waber, D. P.,
Evans, A. C., Karama, S., Brain
Development Cooperative Group.
(2011). Negative associations
between corpus callosum midsagit-
tal area and IQ in a representative
sample of healthy children and
adolescents. PloS One 6:19698. doi:
10.1371/journal.pone.0019698

Goecks, J., Nekrutenko, A., Taylor,
J., Galaxy Team. (2010). Galaxy:
a comprehensive approach for
supporting accessible, reproducible,
and transparent computational

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bellec et al. The pipeline system for Octave and Matlab

research in the life sciences. Genome
Biol. 11, R86.

Gorgolewski, K., Burns, C. D.,
Madison, C., Clark, D., Halchenko,
Y. O., Waskom, M. L., and Ghosh,
S. S. (2011). Nipype: a flexi-
ble, lightweight and extensible
neuroimaging data processing
framework in python. Front.
Neuroinformatics 5:13. doi: 10.3389/
fninf.2011.00013

Harrison, A., Taylor, I., Wang, I.,
and Shields, M. (2008). WS-
RF Workflow in Triana. Int.
J. High Perform. Comput. Appl. 22,
268–283.

Kassis, N., Gong, G., Rousseau, M.
E., Adalat, R., and Evans, A. C.
(2011). “BrainBrowser: Web-based
3D Visualization for the maCaCC
Dataset and other Surface Data,”
in 17th International Conference on
Functional Mapping of the Human
Brain. (Quebec, QC, Canada).

Laguitton, S., Rivière, D., Vincent, T.,
Fischer, C., Geffroy, D., Souedet,
N., Denghien, I., and Cointepas, Y.
(2011). “Soma-workflow: a unified
and simple interface to par-
allel computing resources,” in
MICCAI 2011 Conference, eds
T. Peters, G. Fichtinger, and A.
Martel (Toronto: Springer LNCS),
(in press).

Lavoie-Courchesne, S., Rioux, P.,
Chouinard-Decorte, F., Sherif, T.,
Rousseau, M. E., Das, S., Adalat, R.,
Doyon, J., Craddock, C., Margulies,
D., Chu, C., Lyttelton, O., Evans, A.
C., and Bellec, P. (2012). Integration
of a neuroimaging processing
pipeline into a pan-canadian com-
puting grid. J. Phys. Conf. Ser. 341,
012032.

Liu, H., Stufflebeam, S. M., Sepulcre,
J., Hedden, T., and Buckner, R.

L. (2009). Evidence from intrin-
sic activity that asymmetry of the
human brain is controlled by mul-
tiple factors. Proc. Natl. Acad. Sci.
U.S.A.106, 20499–20503.

Ludäscher, B., Altintas, I., Berkley, C.,
Higgins, D., Jaeger, E., Jones, M.,
Lee, E. A., Tao, J., and Zhao, Y.
(2006). Scientific workflow man-
agement and the Kepler system:
research articles. Concurr. Comput.
Pract. Exper. 18, 1039–1065.

Machado, A., Lina, J. M., Tremblay, J.,
Lassonde, M., Nguyen, D. K., Lesage,
F., and Grova, C. (2011). Detection of
hemodynamic responses to epileptic
activity using simultaneous Electro-
EncephaloGraphy (EEG)/Near Infra
Red Spectroscopy (NIRS) acquisi-
tions. Neuroimage 56, 114–125.

MacKenzie-Graham, A. J., Van Horn, J.
D., Woods, R. P., Crawford, K. L.,
and Toga, A. W. (2008). Provenance
in neuroimaging. Neuroimage 42,
178–195.

Marcus, D., Olsen, T., Ramaratnam, M.,
and Buckner, R. (2007). The exten-
sible neuroimaging archive toolkit.
Neuroinformatics 5, 11–33.

Mesirov, J. P. (2010). Accessible repro-
ducible research. Science 327,
415–416.

Moeller, F., Maneshi, M., Pittau, F.,
Gholipour, T., Bellec, P., Dubeau, F.,
Grova, C., and Gotman, J. (2011).
Functional connectivity in patients
with idiopathic generalized epilepsy.
Epilepsia 52, 515–522.

Oinn, T., Greenwood, M., Addis, M.,
Alpdemir, M. N., Ferris, J., Glover,
K., Goble, C., Goderis, A., Hull,
D., Marvin, D., Li, P., Lord, P.,
Pocock, M. R., Senger, M., Stevens,
R., Wipat, A., and Wroe, C. (2006).
Taverna: lessons in creating a
workflow environment for the life

sciences. Concurr. Comput. Pract.
Exper. 18, 1067–1100.

Orban, P., Doyon, J., Hoge, R.,
and Bellec, P. (2011). “Stable
clusters of brain regions associated
with distinct motor task-evoked
hemodynamic responses,” in
Proceedings of the 17th International
Conference on Functional Mapping
of the Human Brain.

Perlbarg, V., Bellec, P., Anton, J.-L.,
Pélégrini-Issac, M., Doyon, J., and
Benali, H. (2007). CORSICA: cor-
rection of structured noise in fMRI
by automatic identification of ICA
components. Magn. Reson. Imaging
25, 35–46.

Poinot, M. (2010). Five good reasons
to use the hierarchical data format.
Comput. Sci. Eng. 12, 84–90.

Schoemaker, D., Soder, R. B., Sziklas,
V., Rowley, J., Carbonnell, F.,
Mohades, S., Fonov, V., Bellec, P.,
Dagher, A., Schmuel, A., Gauthier,
S., and Rosa Neto, P. (2011).
“Hippocampal resting connectivity
lateralize memory function in aMCI
brain networks,” in Alzheimer’s
Association 2011 International
Conference on Alzheimer’s Disease
(ICAD). (Paris, France).

Stef-Praun, T., Clifford, B., Foster, I.,
Hasson, U., Hategan, M., Small, S.
L., Wilde, M., and Zhao, Y. (2007).
Accelerating medical research using
the swift workflow system. Stud.
Health Technol. Informatics 126,
207–216.

Tadel, F., Baillet, S., Mosher, J. C.,
Pantazis, D., and Leahy, R. M.
(2011). Brainstorm: a user-friendly
application for MEG/EEG analysis.
Comput. Intell. Neurosci. 2011,
1–13.

Wilde, M., Hategan, M., Wozniak,
J. M., Clifford, B., Katz, D. S., and

Foster, I. (2011). Swift: a language
for distributed parallel scripting.
Parallel Comput. 37, 633–652.

Worsley, K. J., Liao, C. H., Aston, J.,
Petre, V., Duncan, G. H., Morales, F.,
and Evans, A. C. (2002). A general
statistical analysis for fMRI data.
Neuroimage 15, 1–15.

Zijdenbos, A. P., Jimenez, A., and
Evans, A. C. (1998). “Pipelines:
large scale automatic analysis of 3d
brain data sets,” in Proceedings of
the 4th International Conference on
Functional Mapping of the Human
Brain.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 07 November 2011; accepted:
05 March 2012; published online: 03
April 2012.
Citation: Bellec P, Lavoie-Courchesne S,
Dickinson P, Lerch JP, Zijdenbos AP
and Evans AC (2012) The pipeline sys-
tem for Octave and Matlab (PSOM):
a lightweight scripting framework and
execution engine for scientific workflows.
Front. Neuroinform. 6:7. doi: 10.3389/
fninf.2012.00007
Copyright © 2012 Bellec, Lavoie-
Courchesne, Dickinson, Lerch, Zijdenbos
and Evans. This is an open-access
article distributed under the terms of
the Creative Commons Attribution Non
Commercial License, which permits
non-commercial use, distribution, and
reproduction in other forums, provided
the original authors and source are
credited.

Frontiers in Neuroinformatics www.frontiersin.org April 2012 | Volume 6 | Article 7 | 18

http://dx.doi.org/10.3389/fninf.2012.00007
http://dx.doi.org/10.3389/fninf.2012.00007
http://dx.doi.org/10.3389/fninf.2012.00007
http://dx.doi.org/10.3389/fninf.2012.00007
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows
	Introduction
	Pipeline Composition
	Pipeline Mapping
	Pipeline Execution
	Pipeline Provenance
	PSOM Features
	Comparison Between PSOM and Other Packages
	Paper Outline

	Pipeline Representation
	Pipeline Execution
	A First Pass Through the Toy Pipeline
	Updating a Pipeline (with a bug)
	Adding a Job
	Restarting a Job After Clean Up
	Pipeline History

	Implementation of the Pipeline Execution Engine
	Overview
	Pipeline Initialization
	Pipeline Manager
	Job Manager
	Logs Folder
	PSOM Configuration

	Coding Guidelines for Modules and Pipelines
	Setting the Job Parameters
	Building Modules for a Pipeline : the ``Brick'' Function Type
	Pipeline Implementation

	Applications in Neuroimaging
	The NIAK fMRI Preprocessing Pipeline
	Benchmarks
	Results

	Discussion
	Overview
	Online Documentation
	The Benefits of Pipeline Analysis
	Parallel Computation Capabilities
	Quality Control
	Files Collection
	PSOM Configuration
	Dynamic Pipeline Composition
	Interoperability

	Conclusion
	Acknowledgments
	References

