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Abstract: There have been critical problems in the non-surgical treatment for bladder cancer, espe-
cially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based
chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role
of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activa-
tion of the androgen receptor and estrogen receptor pathways has been implicated in modulating
sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility
of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function
as sensitizers of such conventional treatment. This article summarizes available data suggesting the
involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen
receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of
conventional therapy, and discusses their potential of overcoming therapeutic resistance.

Keywords: androgen receptor; estrogen receptor; bladder cancer; chemotherapy; BCG immunother-
apy; radiotherapy; urothelial cancer

1. Introduction

Urinary bladder cancer, predominantly urothelial carcinoma, has been one of the
commonly diagnosed malignancies, especially in men [1]. In addition, the number of
deaths from bladder cancer throughout the world has risen from approximately 165,000
in 2012 [2] to 200,000 in 2018 [1]. Interestingly, in contrast to its incidence, the mortality
rate among female patients with bladder cancer is higher [1,2]. Intravesical therapy with
bacillus Calmette-Guérin (BCG), attenuated bacterial strains derived from Mycobacterium
bovis, or chemotherapeutic agents, such as mitomycin C and doxorubicin, has been widely
used in the management of non-muscle-invasive (NMI) bladder cancer after transurethral
surgery [3]. In those with localized muscle-invasive (MI) bladder cancer, systemic cisplatin-
based chemotherapy and/or radiotherapy have been employed before or after radical
cystectomy [4–7]. Meanwhile, newly developed immunotherapy with immune checkpoint
blockade has been expected to improve the survival of patients with advanced bladder
cancer [5–7].

Sex hormone receptors, such as androgen receptor (AR), estrogen receptors (ERs)
(i.e., ERα, ERβ), and progesterone receptor (PR), are a group of steroid receptors that
are activated upon binding of cognitive ligands, androgens, estrogens, and progestogens,
respectively. Recent findings indicate a vital role of sex hormone receptor signals in the
pathogenesis of urothelial cancer, which may be the underlying reasons for the sex-related
disparity in bladder cancer. Specifically, AR activation has been implicated in urothelial
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tumorigenesis, whereas conflicting results exist as to the estrogen effects that may be
dependent on the functional activity of ERα versus ERβ in urothelial cells (reviewed in [8]).
Particularly, it has been documented, using preclinical models for bladder cancer induced
by known carcinogens in humans such as amine [9] and tobacco smoking [10], that AR
knockdown results in strong prevention in its development. Moreover, emerging data
suggest the association of androgen/estrogen-mediated receptor activity with not only the
progression of urothelial tumors, but also the therapeutic efficacy in patients with bladder
cancer. By contrast, to the best of our knowledge, no studies have demonstrated direct
evidence to indicate the role of PR in bladder cancer [11], although an animal study [12] and
a case–control study [13] have implied the preventive effects of progestogens on urothelial
tumorigenesis. In this article, we mainly reviewed preclinical and clinical data implying
the involvement of sex hormone receptors, particularly AR and ER signals, in modulating
sensitivity to conventional non-surgical therapy for bladder cancer.

2. Sex Hormone Receptor Signaling and Bladder Cancer Progression
2.1. AR

AR expression in bladder cancer has been assessed by immunohistochemistry in
surgical specimens. The overall immunoreactivity in bladder tumors has been reported
to range from 13% to 54% [11]. Some of these studies have compared the rates of AR
positivity in low-grade vs. high-grade tumors and/or NMI vs. MI tumors [14–24] (Table 1).
Of them, four [14,17,18,24] and one [21] studies showed significant or insignificant down-
regulation and significant up-regulation of AR expression, respectively, in high-grade
tumors, while, in others [16,19,20,23], there were no significant differences in AR positivity
between low-grade and high-grade tumors. Similarly, five [14,15,17,18,24] and two [16,21]
studies showed significant or insignificant down-regulation and insignificant up-regulation,
respectively, in MI tumors. Our meta-analysis published in 2017 [25] also demonstrated that
AR positivity was significantly lower in high-grade tumors than in low-grade tumors [odds
ratio (OR) = 0.575; 95% confidence interval (CI) = 0.421–0.785; p < 0.001], but that there
was no significant difference between NMI and MI tumors (p = 0.356). These discordant
findings on AR levels in various grades/stages of bladder cancer might be due to the use
of different antibodies and/or protocols for staining as well as the lack of standardization
in scoring. The prognostic value of AR expression in bladder tumors has additionally been
assessed in some of these studies, showing conflicting findings. Specifically, AR positivity
was significantly or insignificantly associated with better [17,20] and worse [18,23,24]
outcomes, while two other studies [16,21] failed to show its prognostic significance. In
our meta-analysis [25], AR expression in NMI bladder tumors was found to associate with
better recurrence-free survival [hazard ratio (HR) = 0.593; 95% CI = 0.408–0.860; p = 0.006],
but not with progression-free survival (p = 0.223).

The impact of androgens on tumor progression have been assessed in pre-clinical
models for bladder cancer. Specifically, androgens, such as dihydrotestosterone (DHT)
and methyltrienolone (R1881), induced cell proliferation, migration, and invasion in
bladder cancer lines expressing a functional AR [9,26–32]. Correspondingly, gene silenc-
ing/knockdown of AR or treatment with AR antagonists, such as flutamide, bicalutamide,
and enzalutamide, in these cell lines showed the inhibitory effects [9,26–31,33]. Epidermal
growth factor (EGF) has also been shown to promote the growth of bladder cancer cells
via the AR pathway [28]. Additionally, in mouse xenograft models for bladder cancer, AR
inactivation resulted in the retardation of tumor growth [9,26,31]. In a transgenic mouse
model where bladder cancer spontaneously developed, bilateral orchiectomy repressed
tumor growth, which was restored by DHT supplementation [34].

Potential downstream targets of AR signals in bladder cancer cells have been explored
(Figure 1). These molecules/pathways, some of which are transcription factors, include
ATF2 [35], β-catenin/Wnt and its downstream c-myc and cyclin D1 [26,30,36], CD24 [29,33],
EGF receptor (EGFR)/ERBB2/AKT/ERK [27], ELK1 [37], FOXO1 [32], IL-6 [31,38], matrix
metalloproteinases (MMPs) [9,26,31,33], NF-κB [39], and vascular endothelial growth factor
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(VEGF) [9,33]. Indeed, most of these have been implicated in bladder cancer cell prolifer-
ation/apoptosis, cell invasion/metastasis, and/or epithelial-to-mesenchymal transition.
These observations may thus represent underlying molecular mechanisms for how AR
signals promote urothelial cancer progression.

Table 1. Immunoreactivity for AR in low-grade vs. high-grade and NMI vs. MI bladder cancers and its prognostic significance.

Author, Year [Ref]
Tumor Grade Tumor Stage Prognostic

SignificanceLow-Grade High-Grade p a NMI MI p a

Boorjian, 2004 [14] 8/9 (89%) 16/33 (48%) 0.055 21/28 (75%) 3/14 (21%) 0.002 NA

Boorjian, 2009 [15] NA NA NA 13/22 (59%) 11/33 (33%) 0.095 NA

Mir, 2011 [16] 11/90 (12%) 50/382 (13%) 0.864 11/126 (9%) 46/305 (15%) 0.086 NS

Tuygun, 2011 [17] 46/72 (64%) 25/67 (37%) 0.002 64/106 (60%) 7/33 (21%) <0.001 p = 0.095
(RFS/NMI)

Miyamoto, 2012 [18] 31/56 (55%) b 48/132 (36%) 0.023 49/97 (51%) 30/91 (33%) 0.018 p = 0.0705
(PFS/MI)

Jing, 2014 [19] 22/40 (55%) 9/18 (50%) 0.781 22/45 (49%) 9/13 (69%) 0.225 NA

Nam, 2014 [20] 47/120 (39%) b 16/49 (33%) 0.485 NA NA NA p = 0.001 (RFS)

Elzamy, 2018 [21] 7/48 (15%) b 30/58 (52%) <0.001 5/27 (19%) 32/79 (41%) 0.060 NS

Tyagi, 2019 [22] NA NA NA 17/38 (45%) 22/34 (65%) 0.103 NA

Yonekura, 2019 [23] 11/26 (42%) 9/14 (64%) 0.320 NA NA NA p < 0.05
(RFS&PFS/NMI)

Toren, 2020 [24] 76/121 (63%) c 79/194 (41%) c <0.001 95/150 (63%) 61/167 (37%) <0.001 p = 0.03
(RFS/RC)

NMI, non-muscle-invasive; MI, muscle-invasive; NA, not available; NS, not significant; RFS, recurrence-free survival; PFS, progression-free
survival; RC, radical cystectomy cases. a We calculated two-tailed p values, using Fisher’s exact test. b Cases of papillary urothelial
neoplasm of low malignant potential (PUNLMP) are included. c Low-grade = Grades 1–2 vs. High-grade = Grade 3.

Figure 1. AR signaling in bladder cancer cells. Androgens have been suggested to induce tumor progression, as well as
resistance to conventional non-surgical therapy, through the AR pathway via up-regulating (red) or down-regulating (blue)
the molecules listed. A, androgen; ARE, androgen response element; HSP, heat shock protein.
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2.2. ERs

As aforementioned, two classes of nuclear ERs exist in humans: ERα and ERβ encoded
by ESR1 and ESR2, respectively. The binding affinity of the major estrogen, 17β-estradiol
(E2), for the ERα vs. ERβ is similar, while some ER agonists and antagonists preferentially
bind to one (e.g., estrone/raloxifene to ERα) [40]. More importantly, these two receptors
may have different biological functions.

The expression of ERα and ERβ in bladder tumors has been immunohistochemically
investigated in surgical specimens. The overall positive rates of ERα and ERβ ranged from
1% to 38% and 22% to 100%, respectively [11,41]. Tables 2 and 3 summarize the findings
from studies comparing the rates of ERα/ERβ positivity in low-grade vs. high-grade tu-
mors and/or NMI vs. MI tumors [17,18,20,41–47]. The expression of ERα was significantly
down-regulated [18] or slightly up-regulated [41] in high-grade/MI tumors, while another
study [42] showed no differences in its positivity. In addition, no prognostic role of ERα
expression in bladder cancer has been documented [18,42]. Significant or insignificant
up-regulation of ERβ expression in high-grade and/or MI tumors have been reported
in more than half of the studies [18,20,43,44,47], whereas the other study [45] oppositely
showed significant down-regulation. ERβ expression was also strongly associated with
worse prognosis [17,18,20], while in one study [46], strong ERβ expression tended to be
associated with better outcomes. In our meta-analysis [25], ERβ expression was found to
be significantly up-regulated in high-grade (OR = 2.169; 95% CI = 1.583–2.971; p < 0.001) or
MI (OR = 3.104; 95% CI = 2.081–4.631; p < 0.001) tumors, compared with low-grade or NMI
tumors, respectively, and was associated with the risk of disease recurrence (HR = 1.573;
95% CI = 1.102–2.247; p = 0.013) or progression (HR = 2.236; 95% CI = 1.189–4.205; p = 0.089)
in patients with NMI tumor.

Inconsistent data on the immunoreactivity for the ERα and ERβ in bladder tumor
samples have thus been reported. Remarkably, the specificity of ER antibodies has been
questioned [48,49]. In particular, only a few of commercially available anti-ERβ antibodies
have been found to specifically target ERβ in immunostaining (and/or immunoblotting).
Accordingly, many of the studies described above, including one [46] showing 100%
positivity in a total of 313 tumors using PPG5/10, which has been found to not even target
ERβ [48,49], as well as some of others, particularly with ERβ knockdown in cell lines
described below, may not be credible.

The effects of ER ligands on tumor growth have been assessed, using preclinical mod-
els for bladder cancer. In ERα-positive bladder cancer lines, E2 induced cell proliferation,
while selective ER modulators, including tamoxifen and raloxifene, as well as a pure ER
antagonist ICI 182,780, inhibited it [45,50,51]. Tamoxifen and raloxifene have also been
shown to inhibit the growth of ERα-negative/ERβ-positive bladder cancer cells and their
xenograft tumors [44,51–53], while raloxifene failed to significantly affect that of ERα/ERβ
knockdown lines [51]. Thus, activation of ER signals overall appears to be associated
with the promotion of urothelial cancer progression. More specifically, selective agonists
for ERα (i.e., propyl-pyrazole-triol) and ERβ (i.e., diatylpropionitrile) increased the cell
proliferation of ERα-positive/ERβ-positive bladder cancer lines, but not those expressing
an ERα-siRNA and an ERβ-siRNA, respectively [50]. Moreover, treatment with a selective
ERβ antagonist (i.e., PHTPP) or knockdown of ERβ resulted in the suppression of cell
growth [54,55]. By contrast, ERα knockdown was found to induce the growth of bladder
cancer cells and their xenografts in mice [56], suggesting the inhibitory role of ERα in
urothelial cancer progression. In accordance with these findings, a positive correlation
between the expression of UGT1A, which was known to function as a tumor suppressor,
and ERα levels in a urothelial cell line and bladder cancer specimens were observed, while
UGT1A and ERβ expression was inversely correlated [57]. In addition, diatylpropionitrile
could inhibit the migration and invasion of bladder cancer cells [58], suggesting the oppo-
site function of ERβ in urothelial cancer. In addition, at least two prospective clinical trials
have been conducted to assess the efficacy of tamoxifen in bladder cancer patients without
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(NCT02197897) or with (NCT00710970) prior chemotherapy, but no favorable effects have
been reported.

Table 2. Immunoreactivity for ERα in low-grade vs. high-grade and NMI vs. MI bladder cancers and its prognostic significance.

Author, Year [Ref]
Tumor Grade Tumor Stage Prognostic

SignificanceLow-Grade High-Grade p a NMI MI p a

Miyamoto, 2012 [18] 21/56 (38%) b 30/132 (23%) 0.048 34/97 (35%) 17/91 (19%) 0.014 NS

Imai, 2019 [41] 20/63 (32%) c 28/62 (45%) c 0.143 26/81 (32%) 22/44 (50%) 0.056 NA

Bernardo, 2020 [42] 2/12 (17%) 12/68 (18%) 1.000 7/40 (18%) 7/40 (18%) 1.000 NS

NMI, non-muscle-invasive; MI, muscle-invasive; NS, not significant; NA, not available. a We calculated two-tailed p values, using Fisher’s
exact test. b Cases of papillary urothelial neoplasm of low malignant potential (PUNLMP) are included. c Low-grade = Grades 1–2 vs.
High-grade = Grades 3–4.

Table 3. Immunoreactivity for ERβ in low-grade vs. high-grade and NMI vs. MI bladder cancers and its prognostic significance.

Author, Year [Ref]
Tumor Grade Tumor Stage Prognostic

SignificanceLow-Grade High-Grade p a NMI MI p a

Croft, 2005 [43] 6/50 (12%) b 14/42 (33%) b 0.021 NA NA NA NA

Shen, 2006 [44] 66/114 (58%) b 67/96 (70%) b 0.085 78/145 (54%) 47/59 (80%) <0.001 NA

Kontos, 2010 [45] 54/57 (95%) b 30/54 (56%) b <0.001 25/30 (83%) 22/41 (54%) 0.011 NA

Tuygun, 2011 [17] 16/72 (22%) 21/67 (31%) 0.253 28/106 (26%) 12/33 (36%) 0.279 p = 0.035
(PFS/NMI)

Miyamoto, 2012 [18] 16/56 (29%) c 77/132 (58%) <0.001 39/97 (34%) 60/91 (66%) <0.001
p < 0.01

(PFS/NMI);
p < 0.01

(PFS&CSS/MI)

Nam, 2014 [20] 32/120 (27%) c 20/49 (41%) 0.098 NA NA NA p < 0.05
(RFS&PFS)

Tan, 2015 [46] 28/28 (100%) d 262/262 (100%)
d 1.000 95/95 (100%) 216/216

(100%) 1.000 p = 0.055–0.087
(CSS)

Nguyen, 2017 [47] 2/6 (33%) 16/24 (67%) 0.184 3/11 (27%) 15/19 (79%) 0.009 NS

Bernardo, 2020 [42] 11/12 (92%) 62/68 (91%) 1.000 36/40 (90%) 37/40 (93%) 1.000 NA

NMI, non-muscle-invasive; MI, muscle-invasive; NA, not available; NS, not significant; RFS, recurrence-free survival; PFS, progression-free
survival; CSS, cancer-specific survival. a We calculated two-tailed p values, using Fisher’s exact test. b Low-grade = Grades 1–2 vs.
High-grade = Grade 3. c Cases of papillary urothelial neoplasm of low malignant potential (PUNLMP) are included. d Low-grade = Grades
1–2 vs. High-grade = Grades 3–4.

Underlying molecular mechanisms for ER function in bladder cancer have further
been investigated (Figure 2). The oncogenic molecules/pathways potentially modulated
by ER signaling in bladder cancer cells include AKT/ERK [50,55,56] and E-cadherin/N-
cadherin [58], as well as MCM2 [59], which involves the initiation of DNA replication.
The increase in apoptosis by raloxifene was also shown to mediate via inducing the
cleavage of caspase-3 and BAD [51,52]. In our recent study described above [32], we
demonstrated that ERβ could bind to the promoter region of FOXO1, a transcription factor
functioning as a tumor suppressor, in bladder cancer cells, and that E2 treatment inactivated
FOXO1 in ERα-negative/ERβ-positive cells, resulting in the up-regulation of MMP-2 and
VEGF as well as down-regulation of p21 and p27. Recent studies have also indicated the
link between ERα/ERβ activation and the modulation of microRNA, circular RNA, and
enhancer RNA [60–64], all of which are known to involve bladder cancer progression.



Cells 2021, 10, 1169 6 of 15

Figure 2. ER signaling in bladder cancer cells. Estrogens have been suggested to modulate tumor progression, as well as
chemoresistance, through the ERα and/or ERβ pathways via up-regulating (red) or down-regulating (blue) the molecules
listed. E, estrogen; ERE, estrogen response element; HSP, heat shock protein.

3. Sex Hormone Receptor Signaling and Sensitivity to Conventional Non-Surgical
Treatment for Bladder Cancer

Conventional non-surgical therapy against bladder cancer includes systemic chemother-
apy, intravesical pharmacotherapy with anti-cancer agents or BCG, radiotherapy, and im-
munotherapy with immune checkpoint inhibitors. Although these are quite effective in
some patients, bladder cancer, especially MI disease, remains lethal [65]. The development of
strategies for not only overcoming therapeutic resistance where underlying mechanisms are
poorly understood, but also predicting its sensitivity, is thus urgently required. Meanwhile,
sex hormone receptor signals have been implicated in modulating sensitivity to conventional
therapy for bladder cancer. The main findings in preclinical studies [22,30,32,37,55,66–79]
suggesting this are summarized in Table 4.
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Table 4. Preclinical studies suggesting the involvement of AR/ER signaling in modulating sensitivity to conventional
therapy for bladder cancer.

Author, Year [Ref] Conventional
Therapy Receptor Design/Model Main Findings Molecules/Pathways

Involved

Pu, 1995 [66] CT (CIS, DOX, MTX,
VBL) ER T24/NTUB1/BFTCC905

cell viability
TAM ↑growth

inhibition NA

Pu, 1996 [67] CT (DOX, MMC,
TTP) ER TSGH8301/HTB9

cell viability
TAM ↑growth

inhibition NA

Shiota, 2012 [30] CT (DOX) AR UMUC3 cell viability
DHT ↓sensitivity

AR-siRNA
↑sensitivity

NA

Kawahara, 2015 [37]
Kawahara, 2015 [68] CT (CIS) AR UMUC3 cell viability

DHT ↑ELK1
ELK1-inactivation

↑sensitivity
ELK1

Shang, 2015 [69] BCG AR

253J/T24 cell
viability

BBN-induced tumor
in mice

ASC-J9/HF ↑growth
inhibition integrin α5β1

Takeuchi, 2015 [70] CT (GEM) ER 5637/RT4/TCCSUP
cell viability

TAM ↑growth
inhibition NA

Kashiwagi, 2016 [71] CT (CIS) AR 5637/647V/UMUC3
cell viability

AR-overexpression
↓sensitivity

AR-knockdown/HF
↑sensitivity

NF-κB

Kameyama, 2017 [72] CT (GEM) AR T24 cell viability ENZ ↑sensitivity cyclin D1

Ide, 2018 [73] RT AR 5637/647V/UMUC3
cell viability

AR overexpres-
sion/DHT
↓sensitivity

AR-knockdown/HF
↑sensitivity

ATR, CHEK1, PARP1

Huang, 2019 [55] CT (CIS, DOX, MMC) AR
J82/TCCSUP cell

viability
J82 mouse xenograft

ASC-J9 ↑sensitivity BAX, BCL2, p21

Long, 2019 [74] CT (CIS) ERβ 5637/T24 cell
viability

Co-culture of CAF
↑ERβ expression

↓sensitivity
IGF1

Sekino, 2019 [75] CT (CIS) AR RT112/UMUC3 cell
viability

AR-overexpression
↓sensitivity Uc.63+

Tyagi, 2019 [22] CT (CIS) AR TCCSUP cell viabil-
ity/migration/invasion ENZ ↑sensitivity EMT

Goto, 2020 [76] CT (CIS) ERβ 5637/647V/UMUC3
cell viability

ERβ-
knockdown/TAM

↑sensitivity
β-catenin

Ide, 2020 [32]
Ide, 2020 [77] CT (CIS) AR/ERβ 5637/647V/UMUC3

cell viability

AR/ERβ inactivate
FOXO1

FOXO1-inactivation
↓sensitivity

FOXO1

Mizushima, 2020 [78] BCG AR 5637/MB49/UMUC3
cell viability

AR-
overexpression/R1881

↓sensitivity
AR-knockdown
↑sensitivity

Rab27b

Jiang, 2021 [79] CT (CIS) AR 5637/UMUC3 cell
viability

AR-
overexpression/DHT

↓BXDC2
BXDC2-knockdown

↓sensitivity

BXDC2

↑: increase; ↓: decrease; BBN: N-butyl-N-(4-hydroxybutyl)nitrosamine; BCG: intravesical bacillus Calmette-Guérin immunotherapy; CAF:
cancer-associated fibroblasts; CIS: cisplatin; CT: chemotherapy; DHT: dihydrotestosterone; EMT: epithelial-to-mesenchymal transition;
ENZ: enzalutamide; DOX: doxorubicin; GEM: gemcitabine; HF: hydroxyflutamide; MMC: mitomycin C; MTX: methotrexate; NA, not
available or not assessed; RT: radiotherapy; TAM: tamoxifen; TTP: thiotepa; VBL, vinblastine.

3.1. Chemotherapy

Cisplatin-based combination chemotherapy (e.g., MVAC: methotrexate/vinblastine/
doxorubicin/cisplatin; GC: gemcitabine/cisplatin) remains the standard of care in patients
with locally advanced or metastatic bladder cancer. These regimens are also widely used
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prior to radical cystectomy as neoadjuvant therapy. However, a considerable number
of patients either fail to respond or eventually acquire resistance. In addition, several
chemotherapeutic agents, such as doxorubicin, mitomycin C, and thiotepa, have been
given intravesically to those with superficial bladder tumor following transurethral surgery
primarily as prophylactic therapy.

In bladder cancer specimens from patients who had subsequently received cisplatin-
based neoadjuvant chemotherapy, there was a correlation between AR immunoreactivity
and chemosensitivity (i.e., AR-positive in 21% of responders vs. 45% of non-responders,
p = 0.087) [72]. In bladder cancer sublines resistant to cisplatin [71,80], as well as gemc-
itabine [72], AR expression has been found to be considerably elevated, compared to control
or parental cells. These findings suggest the involvement of AR signals in chemoresistance
in bladder cancer.

Cell proliferation assay data indeed showed that bladder cancer lines with AR over-
expression [75] or androgen treatment [71] were more resistant to cisplatin. Correspond-
ingly, AR silencing/knockdown or antagonist (e.g., hydroxyflutamide, enzalutamide)
treatment enhanced the cytotoxic effects of cisplatin in bladder cancer cells, even resistant
sublines [22,71]. Enzalutamide was also shown to induce apoptosis and prevent cell migra-
tion/invasion in the presence of cisplatin [22]. Mechanistically, enzalutamide treatment
was associated with increases in the expression of BAX, cleaved caspase-3, cleaved PARP,
and an epithelial marker E-cadherin, and decreases in that of Bcl-2 and mesenchymal
markers (e.g., β-catenin, N-cadherin, Slug, vimentin), although there appeared to be no
significant differences in their expression between cisplatin + enzalutamide vs. cisplatin or
enzalutamide alone [22].

Similar findings have been reported with other anti-cancer agents. Specifically, AR-
positive bladder cancer cells with DHT treatment or AR silencing were shown to be less
or more, respectively, sensitive to doxorubicin, compared with controls [30]. Additionally,
in a gemcitabine-resistant bladder cancer subline, enzalutamide was found to restore its
sensitivity while reducing the expression of cyclin D1 [72]. A more recent study demon-
strated that ASC-J9®, an AR degradation enhancer, could increase sensitivity to not only
cisplatin and doxorubicin, but also mitomycin C in AR-positive bladder cancer cells [55].
These findings indicate that activation of AR signaling is associated with chemoresistance
in bladder cancer.

We have further explored how AR signals modulate chemosensitivity. There were
close correlations of AR expression/activity with those of NF-κB, which is considered
to be a key molecule for cisplatin resistance, in bladder cancer cells [39,72]. We have
also found that androgen up-regulates the expression of a c-fos proto-oncogene regula-
tor ELK1 in bladder cancer cells [37] and that ELK1 inactivation via stable expression
of a shRNA or treatment with a selective α1-blocker silodosin increases sensitivity to
cisplatin [68]. Immunohistochemistry in surgical specimens form patients subsequently
undergoing cisplatin-based neoadjuvant chemotherapy, phospho-ELK1 positivity was
significantly (p = 0.039) higher in those from non-responders (71%) than in those from
responders (38%) [68]. We recently demonstrated that androgen/AR could down-regulate
the expression of BXDC2, also named BRIX1, which involves ribosome biogenesis, in blad-
der cancer cells, and loss of BXDC2 in cell lines and surgical specimens was associated with
cisplatin resistance [79]. Furthermore, an ERK activator reduced BXDC2 expression in blad-
der cancer cells, while BXDC2 knockdown failed to affect phospho-ERK expression [79],
suggesting cisplatin resistance via the AR → ERK → BXDC2 signaling pathway.

Similar to our immunohistochemistry data on AR [71], we recently demonstrated that
the rate of ERβ positivity in transurethral resection specimens was significantly lower in
responders to cisplatin-based neoadjuvant chemotherapy than in non-responders (37%
vs. 71%, p = 0.016), especially in female patients (20% of responders vs. 100% of non-
responders, p = 0.048), but not in males (42% of responders vs. 65% of non-responders,
p = 0.142) [76]. Meanwhile, elevated ERβ expression in adjacent normal bladder tissues
was strongly associated with a worse prognosis in patients undergoing cisplatin-based
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chemotherapy [74]. Two early studies in bladder cancer lines by one group showed that
treatment with tamoxifen, along with methotrexate, vinblastine, doxorubicin, cisplatin,
mitomycin C, or thiotepa, more strongly inhibited their proliferation, compared to that
with each chemotherapeutic drug alone [66,67]. However, in these assays, the combination
effects were not directly compared with that of tamoxifen alone, and it might therefore be
unable to conclude that tamoxifen could increase sensitivity to each cytotoxic agent. The
same group conducted a clinical trial of MVAC plus a high dose (200 mg/m2/day, days
1–4) of tamoxifen in 30 patients with advanced bladder cancer, showing the comparable
response rate to that known for conventional MVAC therapy, but no control arm with
MVAC alone was compared [81]. In an additional in vitro study, gemcitabine combined
with tamoxifen showed stronger inhibitory effects on the growth of bladder cancer cells
than gemcitabine or tamoxifen alone [70], but the rates of inhibition by tamoxifen in the
absence versus presence of gemcitabine were not directly compared. In a recent study,
co-culture of cancer-associated fibroblasts was shown to induce ERβ expression in bladder
cancer cells while reducing the cytotoxicity of cisplatin [74]. We further demonstrated that
tamoxifen treatment or ERβ knockdown in ERα-negative bladder cancer cells resulted in
the enhancement of cisplatin sensitivity [76]. Moreover, in the cisplatin-resistant sublines,
ERβ expression was considerably elevated, while E2 induced the expression and activity
of β-catenin which was known to involve cisplatin resistance [76]. Thus, activation of
ER, especially ERβ, is likely associated with chemoresistance. Additionally, in a study
showing that ERα could induce the expression of miR-4324 via binding to its promoter
in bladder cancer cells, overexpression of miR-4324 significantly induced the cytotoxic
effects of doxorubicin [63], suggesting an association between ERα activation and increased
sensitivity to doxorubicin.

As aforementioned, both androgen and estrogen could inactivate a tumor suppressor
FOXO1 via the AR and ERβ pathways, respectively, in bladder cancer cells [32]. We further
found that silencing of FOXO1 or treatment with an FOXO1 inhibitor in bladder cancer cells
resulted in the reduction of sensitivity to cisplatin [77]. The expression of an inactivated
form phospho-FOXO1 was considerably up-regulated in cisplatin-resistant cells, compared
with control cells, and phospho-FOXO1 expression in transurethral resection specimens
from patients undergoing cisplatin-based neoadjuvant chemotherapy was more often seen
in non-responders (67.9%) than in responders (38.9%) [77]. FOXO1 inactivation could thus
be an underlying mechanism for chemoresistance in bladder cancer induced by AR and/or
ERβ signals.

A phase 1/1b clinical trial has been conducted to assess if AR modulation enhances
the efficacy of chemotherapy (NCT02300610; completed in December 2012). In a total of
10 patients with urothelial cancer receiving standard doses of gemcitabine and cisplatin,
oral enzalutamide (80 or 160 mg) was added. Although some of the patients with 160 mg
enzalutamide showed partial response, no control arm with no enzalutamide treatment
was compared.

3.2. Radiotherapy

In selected patients with MI bladder cancer, radiotherapy combined with chemother-
apy led to survival rates comparable to those undergoing radical cystectomy [4]. Specif-
ically, in these patients, trimodal therapy consisting of either transurethral resection or
partial cystectomy followed by radiotherapy with concurrent chemotherapy is currently
considered to yield the best oncologic outcomes [4,65]. Although the trimodal therapy
may increase quality-adjusted life years, current data on overall survival or disease-specific
survival are still in favor of radical cystectomy [82]. Thus, the development of the novel
radiosensitization strategies is required to replace radical cystectomy with radiotherapy as
a gold standard option for some MI bladder cancers.

We showed that bladder cancer lines endogenously or exogenously expressing a
full-length wild-type human AR were significantly less sensitive to irradiation, compared
with AR knockdown or control AR-negative sublines, respectively [73]. Correspondingly,
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DHT or hydroxyflutamide treatment in AR-positive bladder cancer lines significantly
reduced or induced, respectively, the cytotoxic effects of irradiation. Meanwhile, radiation-
resistant sublines established following 2 Gy ionizing radiation six times/two weeks
showed significant elevation in the expression of not only DNA repair genes, such as
ATR, CHEK1, and PARP-1, but also AR mRNA/protein. In mouse xenograft models
for bladder cancer, considerable increases in radiosensitivity by AR knockdown or anti-
androgen treatment were verified. Mechanistically, AR inactivation via knockdown or
hydroxyflutamide treatment was found to be associated with a delay in DNA double-strand
break repair (e.g., γH2AX resolution) 4–24 h after irradiation. Additionally, in irradiated
AR-positive cells, DHT induced the expression of the DNA repair genes, which was restored
by hydroxyflutamide. Our findings suggest that AR activity is inversely associated with
radiosensitivity in bladder cancer and that concurrent androgen deprivation may function
as a sensitizer of irradiation, especially in patients with AR-positive tumor.

In a recent prospective trial (NCT04282876; started in February 2020), patients with
MI bladder cancer undergoing radiotherapy are being recruited. A group of these patients
is randomized to simultaneously receive a gonadotropin-releasing hormone antagonist
(i.e., degarelix) as chemical castration. Primary outcome measures include bladder fibrosis
3 months after irradiation, but oncologic outcomes will not appear to be compared.

3.3. Immunotherapy

Intravesical BCG immunotherapy has been widely used for the treatment of urothelial
carcinoma in situ and the prevention of disease recurrence after transurethral resection
of NMI tumors. Interestingly, although data are conflicting, male [83] or female [84]
bladder cancer patients have been shown to be considerably less sensitive to BCG therapy,
suggesting the involvement of sex hormone receptor signals in BCG sensitivity.

In an earlier study, DHT was found to inhibit the expression and transactivation of
IL-6 induced by BCG treatment in bladder cancer cells [38]. Another study showed that
hydroxyflutamide and ASC-J9 increased the expression level of BCG-mediated integrins
(e.g., α5β1) and intake of BCG in bladder cancer cells, as well as recruitment of mono-
cytes/macrophages [69]. BCG, along with each AR inhibitor, also more strongly inhibited
the growth of bladder cancer cells and chemical carcinogen N-butyl-N-(4-hydroxybutyl)
nitrosamine-induced bladder tumors in mice, compared with BCG or AR inhibitor alone [69].
These findings implied that AR signaling might contribute to modulating sensitivity to
BCG therapy. We then demonstrated direct evidence to indicate the link between AR
activation and BCG resistance [78]. AR knockdown or overexpression in bladder cancer
lines was associated with considerable induction or reduction, respectively, in intracellular
BCG quantity and BCG cytotoxicity. AR expression was considerably higher in BCG-
resistant bladder cancer cells following repeating exposure to BCG for over six months,
compared with control cells, and AR positivity immunohistochemically determined in
NMI bladder cancer specimens from patients who had subsequently undergone intrav-
esical BCG immunotherapy was strongly associated with worse outcomes, compared
to those with AR-negative tumor. We also performed DNA microarray screening and
identified Rab27b, a small GTPase known to mediate bacterial exocytosis, which was
up-regulated in BCG-resistant cells and down-regulated in AR knockdown cells. Indeed,
knockdown/overexpression of Rab27b or its known effector SYTL3, as well as treatment
with GW4869 known to inhibit Rab27b-dependent secretion, was found to considerably
modulate BCG quantity in bladder cancer cells, as well as its cytotoxicity in vitro and
in vivo. In addition, Rab27b positivity in the same cohort of patients with BCG therapy
was associated with a significantly higher risk of tumor recurrence. Thus, our findings
suggest that AR signaling reduces the efficacy of BCG therapy, presumably via modulating
Rab27b-induced exocytosis in bladder cancer cells.

The impact of ER signaling on the efficacy of BCG therapy in bladder cancer has also
been investigated. In ERα-positive/ERβ-positive bladder cancer cells, E2 reduced BCG
attachment and internalization as well as monocyte/macrophage recruitment, whereas
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tamoxifen and a pure anti-estrogen ICI 182,780 reversed the estrogen effect [85]. These
anti-estrogens were also found to enhance the cytotoxic effects of BCG in cell line and
mouse models for bladder cancer [85]. In addition, a phase 2 randomized clinical trial
is ongoing to assess if genistein, a biologically active isoflavone and a phytoestrogen
with structure similar to that of E2, not only helps alleviate the adverse of intravesical
BCG therapy but also improves its efficacy (NCT01489813; started in May 2017). In this
study, either genistein supplement or placebo is given to the patients with NMI bladder
tumor for 10 weeks (i.e., during BCG therapy and one-month post-therapy). Several
antibodies against programmed cell death-1 (PD-1) or its ligand (PD-L1) have recently
been approved by the U.S. Food and Drug Administration, and there are a number of
PD-1/PD-L1 inhibitors entering clinical trials [65]. These drugs, as immune checkpoint
inhibitors that attack tumor cells via enhancing the host immune response, are expected to
considerably improve the prognosis of various types of malignancies, including bladder
cancer. Importantly, the efficacy of PD-1/PD-L1 inhibitors is often associated with the levels
of PD-L1 expression [86]. In an immunohistochemical study in MI bladder cancers, PD-L1
expression was shown to be inversely correlated with the levels of AR expression [87].
We have confirmed this inverse correlation in bladder cancer cell lines (Teramoto and
Miyamoto, unpublished data). In breast cancer specimens, an inverse correlation of ERα
status with PD-L1 mRNA expression has also been documented [88].

4. Conclusions

Current evidence indicates a critical role of sex hormone receptor signaling in bladder
cancer progression, supporting that urothelial cancer is an endocrine-related neoplasm.
However, it remains uncovered how AR and ERs function in urothelial cancer cells. Vari-
ous studies have also suggested the involvement of sex hormone receptors in modulating
sensitivity to conventional non-surgical therapy for bladder cancer. Specifically, activation
of AR and ER signals appears to be associated with resistance to chemotherapy, radio-
therapy, and BCG immunotherapy, although limited data, especially those on ERα, are
available. Accordingly, concurrent inactivation of these, using, for example, anti-AR or
anti-ER agents widely used for the treatment of other pathologic conditions such as prostate
and breast cancers, is anticipated to improve patient outcomes via sensitizing the efficacy
of the conventional therapy, in addition to direct inhibitory effects of androgen/estrogen
deprivation. Meanwhile, eventual resistance to standard hormonal therapy remains a
critical issue in patients with prostate or breast cancer. Indeed, an AR variant, which is
implicated in the development of castration-resistant prostate cancer, has recently been
identified in bladder cancer [89]. Further investigation of AR and ERs, as well as other
molecules directly or indirectly regulated by AR/ER signals, is required for determining
the precise actions of androgens/estrogens in bladder cancer cells, in relation to their
impact on modulating sensitivity to conventional therapy, as well as underlying molecular
mechanisms for their actions.
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