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Abstract

In the production of fermented foods, microbes play an important role. Optimization of fermentation processes or starter
culture production traditionally was a trial-and-error approach inspired by expert knowledge of the fermentation process.
Current developments in high-throughput ‘omics’ technologies allow developing more rational approaches to improve fer-
mentation processes both from the food functionality as well as from the food safety perspective. Here, the authors themat-
ically review typical bioinformatics techniques and approaches to improve various aspects of the microbial production of
fermented food products and food safety.
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Background

Food is an indispensable part of our daily life. Many food products
undergo some form of processing before they reach the consumer,
ranging from fermentation to packaging. In many of these proc-
esses, microorganisms play important roles, either in transform-
ing the food into the desired end product (e.g. fermentation of
olives, rice, bread, alcoholic beverages such as beer and wine, fer-
mented meat, kimchi and various fermented dairy products such
as cheese and yogurt) or in spoiling or contaminating the food.

The type of microorganisms used in a fermentation process
greatly influences the properties of the fermented product [1]. For ex-
ample, yeasts produce ethanol as the main fermentation product,
whereas the main fermentation product of lactic acid bacteria is lac-
tic acid. The food industry is very active in optimizing strain perform-
ance with respect to diversification of product properties such as
flavour and texture and with respect to controlling fermentation, by
using defined starter cultures to initiate the fermentation process [1].

Strain optimization is an expert-knowledge-guided process
involving trial-and-error approaches that are nowadays increas-
ingly backed up by recent high-throughput ‘omics’

developments to improve fermentation processes [2] and to as-
sess safety of food products [3].

Bioinformatics plays an increasing role in predicting and as-
sessing the desired and undesired effects of microorganisms on
food [4]. A combination of bioinformatics with laboratory verifi-
cation of selected findings is particularly powerful. In this re-
view, we focus on bioinformatics methods that can be used to
improve the microbial production of fermented food products.
These include genomics-based functional predictions, the cre-
ation of genome-scale metabolic models and prediction of com-
plex food properties, such as taste and texture, and properties
of complex fermentations. All application areas (outlined in the
paragraphs below) and their relation to data streams and bio-
informatics are described in Figure 1. A glossary of the bioinfor-
matics concepts, methods and tools is provided in Table 1.

Translating genome information into
functional predictions

The prediction of function from sequence information is one of
the fundamental roles of bioinformatics. The large variety of
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sequencing techniques generates a large amount of genomics
data. Harnessing the power of these data requires careful iden-
tification of functional elements in these data and associating
the sequence information with function, for example by com-
paring predicted protein sequences to sequences with known
functions. This type of analysis can identify functions for genes
(crucial information for metabolic modelling; see below), e.g.
prediction of laccases [53]; predict functions for most genes in a
bacterial genome [23, 54]; and suggest properties for specific
strains of bacteria by projecting the predicted functions of all its
genes on pathway databases [55, 56], predicting properties of,
e.g., Bifidobacteria in the gut environment [57] or even predict
functionalities of complex microbial communities [22, 32]. For
genes where a sequence similarity search does not yield a good
prediction, their function may be deduced by correlating the
presence and absence of the gene in organisms with the pres-
ence and absence of a certain phenotypic trait in the same set
of organisms (also referred to as gene–trait matching; GTM) [42,
58]. For example, a set of proteins was predicted to be involved
in the degradation of plant (oligo-) saccharides by linking isola-
tion source of bacteria to gene presence/absence [59].
Comparative analysis of the genome sequences of a species
where some strains have a positive impact (e.g. flavour en-
hancement) while others are detrimental (e.g. spoilage) can be
used to identify genetic elements potentially underlying these
differences, as was done for the yeast Brettanomyces bruxellensis
[60]. Tools that can be used to link -omics data to phenotypes
are PhenoLink [58] and DuctApe [43]. These approaches require
a genome sequence, which might be relatively difficult to obtain
for microbes that are difficult to grow in culture. Techniques
like multiple displacement amplification [61] can be used to
amplify DNA from a single cell, and a range of genome assembly
tools can be used to assemble the reads obtained from single-
cell sequencing [62].

Mobile elements such as transposons, plasmids or phages
can carry functionality from one bacterial strain to another. An
example is the galactose utilization operon transfer between
Lactococcus lactis strains studied by next-generation sequencing
and bioinformatics techniques [63]. Identifying potential
transposon insertion sites is crucial to this end and can be facili-
tated by bioinformatics tools such as transposon insertion
finder [64].

Improving metabolite production and biomass

Improvement of the food production process by optimizing bio-
mass yield is a topic of continuous attention. A technique to ra-
tionally improve fermentation yield is genome-scale metabolic
modelling [65]. In this process, the genome sequence of the or-
ganism is used as an inventory of the metabolic potential of the
strain of interest. Metabolic models have been made for many
microbes, including several of food-relevant microorganisms [66–
69]. Although the quality of a genome sequence can be a limiting
factor (e.g. missed gene due to low sequencing coverage), the
metabolic model can be completed by identifying metabolic reac-
tions that are missing in the model, but likely present due to the
fact that they are part of metabolic reaction cascades or ‘path-
ways’ [70]. Complete genome-scale metabolic models together
with algorithms such as flux balance analysis allow the in silico
simulation of growth of the organism under the (metabolic) re-
strictions provided by the substrate availability in the medium.
These growth simulations can then be used to optimize medium
composition to better fit the organism requirements [71]. In add-
ition, the models can suggest alternative or cheaper substrates
for fermentation [69], and improve the production of compounds
such as amino acids [72] or succinic acid [73], taking into account
possible changes in activity with respect to flavour or texture ac-
tivity of the strain. These models have also been implemented in
complex (multistrain) fermentation processes, providing insight
in the interactions between different species/strains in a complex
fermentation [74].

A second factor that improves the overall yield is the robust-
ness of strains after harvesting. Also, this factor can signifi-
cantly be influenced by changing fermentation conditions
under which starter cultures are prepared. By correlating gene
expression levels to the survival of L. lactis, an application of
transcriptome–trait matching (TTM), a number of genes that
were potentially causative related to survival were identified.
Subsequent knock-out of the genes proved that these genes
were indeed important for the strains’ phenotype. This shows
that not only gene content but also expression of genes is im-
portant for a given phenotype. In other words, preconditioning
L. lactis strains, followed by GTM and TTM, allows improving
their survival to heat and oxidative stresses, typically encoun-
tered during spray drying [46, 47].

Figure 1. Data and bioinformatics applied in food application areas. Central in this figure are the food application areas (right panel). From organisms, different data

sets can be obtained (data reservoir); their abbreviation is given within parentheses. Middle panel: one (of many important) methods and other methods/data sources

(see Table 1 for an explanation) relevant for a main application area shown. Interpretation example: for safety assessment, genomes (G), literature (L) and phenotypes

(H) are used with the gene function annotation (2.3), orthology (2.4), comparative genomics (2.5) and predicting phenotypes (4) techniques (see Table 1).
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Improving texture and flavour

The fermentation process also influences the texture and fla-
vour properties of the food product. These characteristics are
microorganism-specific [75] and can be changed by fermenta-
tion, e.g. the production of flavours by adding adjunct strains to
cheese fermentations [76], or the addition of
exopolysaccharide-producing organisms to improve the texture
of yoghurt [77, 78]. Also, flavour profiles of wine can be modified
by either altering fermentation conditions or changing the wine
starter cultures [79]. Whereas improvements can be made by
testing a variety of experimental settings, bioinformatics and
data analytics may be used to optimize the experimental de-
signs [80–82].

The performance of a microorganism under particular fer-
mentation conditions may be deduced from gene content of
these microorganisms. Using a metabolic model, L. lactis
MG1363 flavour formation could be predicted and was subse-
quently experimentally verified [67]. Likewise, the genomic se-
quence of Lactobacillus delbrueckii subsp. bulgaricus revealed how
this organism is adapted to for the fermentation of milk and the
production of yoghurt [83]. Similar analyses have been carried
out for Oenococcus oeni [84] and yeast genomes [85] and their re-
lation to wine fermentation. Due to the larger complexity of
yeast genomes, this analysis is more challenging [86].

Using GTM growth on various sugars can relatively well be
predicted based on gene content, e.g. for L. lactis, Lactobacillus
plantarum, Lactobacillus paracasei and Bifidobacterium breve [58, 87–
89]. In the same studies it became apparent that predicting
more complex phenotype such as stress tolerance is less
straight-forward to predict based on gene content alone [58, 87].
Information on the transcript levels of the genes (see above)
might be taken into account to better predict these phenotypes.
TTM can similarly be used to associate the expression of micro-
organism genes to texture and flavour characteristics of a prod-
uct, such as improving the production of organic acids by
knowledge-based altering fermentation conditions [48].

The effects on taste and texture are mainly caused by the
metabolites that are produced or converted during fermenta-
tions. Rather than associating gene content with effects on taste
texture, metabolite patterns may be used directly to predict
final sensory characteristics. The golden standard test for sen-
sory characteristics of a fermented product is a quantitative de-
scriptive analysis by a trained sensory panel. These tests are
elaborate and require production of substantial amounts of the
product. The results are dependent on the panel experience and
the attributes that are used to describe the product properties
[51]. With metabolomics profiling techniques, it is now possible
to simultaneously measure hundreds of metabolites in food
samples [50]. This, together with the development of small-
scale product screening methods [90], has led to the develop-
ment of many new statistical methods to associate instrumen-
tal data, such as, for example, gas chromatography–mass
spectrometry, to sensory data [51, 52, 91–94].

Risk assessment

Rather than predicting functions for all genes in a bacterial gen-
ome, selectively screening microbial genome sequences for
genes with specific functionalities can be a highly sensitive and
computationally efficient way of identifying potential health or
safety risks of microbial strains present in a sample. The poten-
tial of a specific bacterium for antibiotic resistance or virulence
can be investigated by comparing its genome sequence to a

reference database containing known resistance genes and
virulence factors [95]. Similar approaches have been described
for the identification of persistence of bacteria in food products
[45], anaerobic spore-forming organisms in food [96] and poten-
tial pathogens in metagenomics data [97]. This (meta)genomics-
based methodology can be extended to a wide range of func-
tionalities, e.g. production of antimicrobial peptides [98–100]
and resistance to cleaning procedures commonly used in food
production settings [101, 102]. A requirement for getting useful
results out of metagenomics experiments is a dedicated data-
base with gene–function relations and access to domain know-
ledge on the specific functionality to specify gene functions.

Mixed culture fermentations characterization

Complex fermentations involve an (un)defined (wild) starter
culture with different microbes (bacteria, yeasts and fungi) that
together ferment a substrate to the product. Examples are
cheese, malolactic wine, soy and seafood fermentations [103,
104]. In these fermentations, strong succession of microbes can
occur, for instance in wine fermentation, the microbes
Saccharomyces cerevisiae and Oenococcus oenii [105, 106]. Similar to
the above-described GTM and TTM approaches to associate
(transcription of) genes to phenotypes, presence and absence of
(combinations of) microorganisms (or their functionality) can be
associated to fermentation product characteristics.

The first step in characterizing a fermentation is to deter-
mine what microorganisms are present at the different stages
of the fermentation and to correlate these to other measure-
ments such as metabolomics [107] or the presence of phages
[108]. The properties of microbial consortia are determined by
the functional potential encoded in all microbial genomes.
Metagenomics has an advantage over conventional sequencing
of single isolates from consortia because it also reveals DNA of
otherwise unculturable organisms. Based on the sequences
found in a consortium, functionalities of the microbes can be
predicted. Due to the succession of microbes in a fermentation,
it is important to omit DNA from dead microbes before building
predictive models based on sequences. One way to sequester
‘dead’ DNA, and therefore not sequencing it, is the use of propi-
dium mono azide [109]. Next-generation sequencing techniques
that profile, e.g., the 16S gene present in all bacteria are increas-
ingly used over molecular biology techniques, e.g. gel-based
methods [110, 111]. The bioinformatics analysis of 16S data
from food fermentations is quite well-established (Table 1), re-
sulting in descriptions of the taxa present in a particular fer-
mentation at best at the species level, but for some taxa, the
genus level is challenging to obtain [112].

There is a large biodiversity beyond the species level that is
not taken into account with, e.g., 16S sequencing. Even within a
bacterial species, there is considerable biodiversity. For ex-
ample, all genes present in strains of the Lactobacillus genus (its
pan-genome) comprise over 14 000 gene families, with a single
genome encoding �3 000 proteins [113]. A gene family typically
consists of genes that are evolutionary conserved, but that
might have different enzymatic functions depending on the
specific protein sequence [114]. Comparative genomics, in com-
bination with molecular strain typing, techniques have been
used to uncover strain-level diversity in complex, yet relatively
defined, fermentations in general [41] and specifically for L. lac-
tis and Leuconostoc mesenteroides from cheese [108], Lactobacillus
sakei from meat fermentations [115], Lactobacillus sanfranciscensis
in sourdough fermentations [116] and wine yeasts [86].
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With shotgun metagenomics, the DNA in the mixed-culture
fermentation is profiled, but strain-level diversity is extremely
difficult to deduce from shotgun metagenomics sequence frag-
ments [108]. On the other hand, due to the enormous biodiver-
sity, the actual presence of any strain isolate thought to be of
importance in a particular mixed-culture fermentation should
be established. The combination of shotgun metagenomics and
comparative genomics could prove to be particularly powerful,
as the shotgun metagenome DNA sequences can be aligned to
the genomes of isolates in order to prove that the functionality
present in the isolates covers that of the metagenome [41, 108].

Metatranscriptomics approaches allow profiling the mRNA-
derived sequences of a complex fermentation. An advantage of
metatranscriptomics over metagenomics approaches is that the
gene expression measurement allows determining what genes
are actually expressed in a mixed culture. Application of ‘meta-
transcriptomics’ using microarrays with the genomes of several
species to determine global gene expression across species has
been reported for Kimchi [117]. Only recently, metagenome and
metatranscriptome sequencing of bacterial communities
involved in cheese rind fermentations has been reported [118].
The strength of this study is that the metagenomics and meta-
transcriptomics profiles were traced to their likely sources (gen-
ome sequences of isolates from the rind cheese fermentation).
Using experimental setups like the latter in combination with
metabolomics measurements and appropriate follow-up stud-
ies should strengthen the point to use metagenomics/metatran-
scriptomics techniques to characterize and potentially optimize
fermentations.

Bacteriophages play an important role in industrial fermen-
tations due to the phenomenon of maintaining biodiversity
through phage predation [119], but also because phage sweeps
disrupt fermentation processes [120, 121]. Currently, however,
predicting the specificity of bacteriophages and the interactions
between microbes in mixed-culture fermentation are time-con-
suming tasks [108, 121–123].

Bioinformatics techniques that analyse the interaction of
microbes and bacteriophages, and in-depth knowledge of the
metabolic requirements of the microbial consortia present dur-
ing fermentation could in the future lead to knowledge-based
improvements of fermentation stability. This could be achieved
by performing experiments with synthetic microbial consortia.
The design of these consortia is currently being developed [81],
and cross-kingdom interactions are being studied [124]. In a
study where cheese rind bacterial communities were created
based on various -omics data, knowledge of the fermentation
and dedicated follow-up experiments, the potential of predict-
ing properties of complex fermentations [118] was demon-
strated. This study did not explicitly describe whether the
selected strains (or close relatives) were actually present in a
real fermentation. This has been described for representative L.
lactis and L. mesenteroides strains of a complex cheese fermenta-
tion [108] and an L. lactis strain from a defined consortium [125].

Branding, tracing and detection

Food production and food consumption take place in complex
environments in which next to the microorganisms present in
the natural environment, many other sources of proteins, fat
and carbohydrates are present. The presence of the endogenous
flora as well as the macromolecular structures of the food can
cause a lot of difficulty in detection and tracing of specific
microorganisms, such as potential food pathogens or probiotic
strains added to the food product for enhanced functionality.

Next to classical detection DNA-based techniques such as
(q)PCR [126], new methods based on genomic data have been
developed that allow for a fast and accurate tracking or detec-
tion of specific species or even strains among the natural micro-
flora. By specific amplification and sequencing of a locus that
was identified to be discriminatory between different L. planta-
rum strains, it was shown that one could quantify the relative
presence of different strains through the passage of the gastro-
intestinal tract [40]. This same approach can also be followed to
design specific primers to discriminate between pathogenic and
non-pathogenic populations of specific species [127] and to de-
tect a strain of interest in food products, allowing dedicated
branding of a specific product.

Next to dedicated tracing of a single strain, metagenome
approaches as described for studying complex fermented prod-
ucts, for example in cheese [118] and fermented foods of plant
origin [128, 129], will also have their benefit in the detection of
spoilage bacteria. Especially as these methods allow for direct
profiling of the product, and do not require a culture step that
could create bias in the results, they could very well prove to be
more specific to detect spoilage bacteria from a product.
Culturing steps will always have their merit due to limited costs
and requirement of limited amounts of material. Especially in
fermented products, 16s community profiling approaches will
allow detecting low abundant microbes that might be over-
grown in culture-dependent detection methods.

Perspectives

Bioinformatics is increasingly applied in food fermentation and
safety. Below we describe some new and exciting developments
in this field.

Sequence-based prediction of microbial functionality is just
starting. An inventory is needed of which functionality for
which bacteria can reliably be determined using sequence data.
New publicly available data sets with genotype/phenotype/tran-
scriptome such as those available for L. lactis and L. plantarum
could help to develop new sequence-based functional predic-
tion strategies such as further specified protein domains to
more specifically screen for, e.g., carbohydrate active enzymes
[130] and relating promoters or regulatory binding sites to
phenotype [42].

By consolidating the above information, a knowledge-based
in silico screening of culture collections for desired traits can be
established. This would require databases that use controlled
vocabularies to integrate data from genomics, systems biology,
phenotypes, ingredient information, properties of batches of
foods, on-line measuring of parameters during the food making
process and ‘biomarkers’ for functionality in specific taxa (based
on, e.g., GTM). Specific emphasis should be put in propagating
the FAIR (findable, accessible, interoperable, re-usable; http://
datafairport.org/) principle in storing data. Given that analyses
will become more standardized and computer resource-inten-
sive, the software and databases could be set up in a virtual ma-
chine that can subsequently be run on computer clusters or in
the cloud. First steps towards data consolidation are being
made in the EU-funded project GenoBox (www.genobox.eu) that
aims to create a database that consolidates genotype and
phenotype data that allow screening microbial genomes for
functionality and safety risk factors.

Similarly, IBM and MARS have established a consortium that
aims to sequence the food supply chain (http://www.research.
ibm.com/client-programs/foodsafety/). Their aim is to deter-
mine nominal levels of microbial components in many food
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products across the globe. The resulting database can be used to
assess risks of the presence of certain microbes/functionality in
a given food product. Given that sufficient biodiversity has been
recorded into this database, it could also be used for branding
products based on unique microbiota signatures present in fer-
mented products or foods that contain a microbiome.

Another important factor to consider in steering the per-
formance of fermentations is the interactions between mi-
crobes and their environment. This new layer of complexity has
been studied, for instance, for microbe–plant interactions for
rice or coconut [131, 132] and the use of systems biology beyond
genome-scale metabolic models by using kinetic models to de-
scribe interactions between microbes and their matrix [133].
These studies require a substantial knowledge base on both the
properties of the microorganisms and the physical properties of
the matrix in which the organism operate.

In conclusion, the increasing amount of data on food fer-
mentation and safety encourages consolidating this informa-
tion in databases that with the right experimental design,
algorithms, expertise and follow-up experiments should allow
enhancing the prediction of fermentation performance and
safety.

Key Points

• Exploiting the vast biodiversity to create new food
products or to optimize existing ones is gaining
momentum.

• Sequence-based prediction of microbial functionality
is a powerful tool, with a clear application in screening
biobanks.

• Increased availability of public data sets of fermenta-
tions will allow developing better predictive models
for microbial functionality.

• Detection of spoilage strains on the basis of genotype.
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