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Nicotinic receptor activation induces NMDA receptor
independent long-term potentiation of glutamatergic
signalling in hippocampal oriens interneurons
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Key points
� Long-term potentiation of glutamatergic transmission to hippocampal interneurons in stratum
oriens does not require NMDA receptors and the induction mechanisms are incompletely under-
stood.

� Extracellular stimulation, conventionally used tomonitor synaptic strength and induce long-term
potentiation (LTP), does not exclusively recruit glutamatergic axons.

� We used optogenetic stimulation of either glutamatergic or cholinergic afferents to probe the
relative roles of different signalling mechanisms in LTP induction.

� Selective stimulation of cholinergic axons was sufficient to induce LTP, which was prevented by
chelating postsynaptic Ca2+ or blocking nicotinic receptors.

� The present study adds nicotinic receptors to the list of sources of Ca2+ that induce NMDA
receptor independent LTP in hippocampal oriens interneurons.

Abstract Many interneurons located in stratum oriens of the rodent hippocampus exhibit a form
of long-term potentiation (LTP) of glutamatergic transmission that does not depend on NMDA
receptors for its induction but, instead, requires Ca2+-permeable AMPA receptors and group I
metabotropic glutamate receptors. A role for cholinergic signalling has also been reported. However,
electrical stimulation of presynaptic axons, conventionally used to evoke synaptic responses, does
not allow the relative roles of glutamatergic and cholinergic synapses in the induction of LTP to
be distinguished. Here, we show that repetitive optogenetic stimulation confined to cholinergic
axons is sufficient to trigger a lasting potentiation of glutamatergic signalling. This phenomenon
shows partial occlusion with LTP induced by electrical stimulation, and is sensitive to postsynaptic
Ca2+ chelation and blockers of nicotinic receptors. ACh release from cholinergic axons is thus
sufficient to trigger heterosynaptic potentiation of glutamatergic signalling to oriens interneurons
in the hippocampus.
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Introduction

Many hippocampal interneurons exhibit a form of
long-term potentiation (LTP) that does not require
NMDAreceptors (NMDARs) for its induction (Perez et al.
2001; Kullmann and Lamsa, 2007; Lamsa et al. 2007;
Galván et al. 2008; Pelletier and Lacaille, 2008; Oren et al.
2009; Sambandan et al. 2010; Le Duigou and Kullmann,
2011; Hainmüller et al. 2014). NMDAR independent LTP
is especially prominent in stratum oriens interneurons,
at synapses made by axon collaterals of local pyramidal
neurons (Perez et al. 2001; Lamsa et al. 2007; Roux et al.
2013). Postsynaptic Ca2+ is required for LTP induction,
and this can arise from several ion channels and signalling
cascades, including rectifying Ca2+-permeable AMPA
receptors, group I metabotropic glutamate receptors
(mGluRs) and voltage-gated Ca2+ channels (Lamsa et al.
2007; Lapointe et al. 2004; Nicholson andKullmann, 2014,
2017; Oren et al. 2009; Perez et al. 2001; Roux et al. 2013;
Topolnik et al. 2006, 2009).
Considerable evidence also implicates acetylcholine

receptors (AChRs) in NMDAR independent LTP. Both
muscarinic and nicotinic receptors are expressed by
stratum oriens interneurons (Lawrence et al. 2006;
McQuiston & Madison, 1999), and at least some receive
a direct cholinergic innervation from subcortical afferents
(Leão et al. 2012). M1 muscarinic receptors share
signalling mechanisms with group I mGluRs, and these
receptors can partially replace one another in LTP
induction (Le Duigou et al. 2015). Regarding nicotinic
receptors, in one study, tetanic stimulation was reported
only to induce LTP in oriens interneurons when nicotine
was co-applied, acting through non-α7 nicotinic AChRs
(Jia et al. 2010). However, another study showed that LTP
induction (without agonist co-application) was impaired
in α7 knockout mice (Griguoli et al. 2013).
Most studies investigating LTP mechanisms in

stratum oriens interneurons have used extracellular
electrical stimulation of axons in the alveus or in
stratum oriens; but see Alle et al. (2001) and Croce
et al. (2010). Because cholinergic fibres are intermixed
with glutamatergic axons, this approach does not allow the
relative roles of glutamatergic and cholinergic signalling
cascades to be disentangled. We therefore attempted
to resolve whether nicotinic AChRs are necessary or
sufficient for LTP induction by selectively expressing
the optogenetic actuator channelrhodopsin-2 (ChR2) in
either glutamatergic or cholinergic axons. We developed
a stimulation protocol that efficiently induces LTP when
applied electrically to a mixed population of axons.
The same protocol applied to the isolated glutamatergic
input failed to elicit LTP, whereas, when applied to
the cholinergic input, it successfully induced LTP of
glutamatergic transmission. Taken together with the data
obtained using pharmacological blockers of nicotinic

receptors, the results suggest that Ca2+ influx via nicotinic
receptors is sufficient for LTP induction.

Methods

Ethical approval

All experiments followed the Animals (Scientific
Procedures) Act, 1986 and guidelines laid down by
our animal welfare committee. The mice were bred in
house under conditions specified in the UK Animal
Welfare Act 2006 and The Welfare of Farm Animals
(England) Regulations 2007, with free access to food and
water.

Surgical procedures

Male C57 mice (postnatal day 21) were anaesthetized
with 5% isoflurane in a closed chamber and then
transferred to a stereotaxic frame where anaesthesia
was maintained with 1−2% isoflurane by mask.
Breathing was continuously monitored throughout
the procedure to check the depth of anaesthesia.
AAV2/5-CaMKIIa-hChR2(H134R)-mCherry (UNC
Vector Core, ChapelHill, NC,USA)was injected into both
hemispheres of the brain. The anteroposterior injection
co-ordinate was taken as two-thirds of the distance from
bregma to lambda. The lateral co-ordinates were 3.0 mm
from the midline, and the ventral co-ordinates were 3.5,
3.0, 2.5 and 2.0 mm from the surface of the brain, with
250 nL of adeno-associated virus (AAV) (titre 1–8 × 1012
vg mL–1) being injected at each site. Mice were allowed to
recover for at least 2 weeks prior to death.

Brain slices

Three groups of mice were used: (i) wild type C57BL/6J
mice; (ii) C57BL/6J mice that had been injected with
AAV-CaMKIIa-hChR2(H134R)-mCherry to express
ChR2 in glutamatergic axons; and (iii) mice obtained by
crossing ChAT-IRES-Cre and Ai32 mice (Madisen et al.
2012) to express ChR2 in cholinergic axons. Mice were
at postnatal day (P)21–P40 at death. They were culled by
cervical dislocation if aged <P30. Mice older than P30
were overdosed with i.p. pentobarbital and transcardially
perfused with slicing solution. The slicing solution
contained (in mm): 92 N-methyl-d-glucamine-Cl; 2.5
KCl; 1.25 NaH2PO4; 2 thiourea; 5 ascorbic acid; 3 Na
pyruvate; 10 MgCl2; 25 d-glucose; 30 NaHCO3; 0.5 CaCl2
and 1 sucrose, and was continuously gassed with 95% O2
and 5% CO2 (Ting et al. 2014). Horizontal 300–400 μm
hippocampal slices were cut on a vibrating micro-
tome (VT1200S, Leica Biosystems, Wetzlar, Germany;
Vibroslice, Campden Instruments, Loughborough, UK)
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in slicing solution at 0°C. Slices were then kept at 37°C for
10 min and subsequently submerged at room temperature
in a solution containing (in mm): 119 NaCl; 2.5. KCl;
0.5 CaCl2; 1.3 MgSO4; 1.25 NaH2PO4; 25 NaHCO3;
and 10 glucose, gassed with 95% O2 and 5% CO2.
Brain slices were shielded from light throughout the
procedure.

Electrophysiology

Slices were placed in a recording chamber mounted on
anuprightmicroscope (BX51W1;Olympus, Tokyo, Japan)
and perfused with solution containing (in mm): 119
NaCl; 2.5 KCl; 2.5 CaCl2; 1.3 MgSO4; 1.25 NaH2PO4;
25 NaHCO3; and 10 glucose, continuously bubbled with
95% O2 and 5% CO2, at a rate of 3 mL min–1 at 32°C.
NMDA, GABAA and GABAB receptors were routinely
blocked with 50 μm d-aminophosphonovalerate, 100 μm
picrotoxin and 1 μm CGP 52432. Cells were visualized
using infrared differential interference contrast via a ×20
0.5NAwater immersion objective. CA1 interneuronswith
horizontal dendrites in stratumorienswere patch clamped
in whole cell mode with 4−6 M� resistance recording
pipettes, filled with (in mm): 145 K-gluconate; 8 NaCl;
20 KOH-Hepes; 0.2 EGTA; and 0.5 biocytin. Current
was injected, if necessary, to maintain the membrane
potential between −70 and −75 mV. Hyperpolarizing
and depolarizing current steps were injected to elicit a
‘sag’ potential and action potentials, and interneurons that
displayed a regular firing pattern typical of oriens inter-
neurons were selected for the experiments. Fast-spiking
interneurons, with a spike frequency >20 Hz, were
rejected.

For extracellular electrical stimulation of afferents,
concentric bipolar electrodes, connected to a constant
current isolated stimulator (Digitimer, Welwyn Garden
City, UK), were positioned in the alveus/stratum oriens
border, 100–500 μm from the patched cell. The stimulus
duration was 100 μs and the intensity set between 20
and 320 μA, eliciting excitatory postsynaptic potentials
(EPSPs) that were subthreshold for action potential
generation (baseline amplitude in the range 2–6mV). The
stimulation frequency was typically 0.03 Hz.

For optogenetic stimulation in slices from mice
injected with AAV-CaMKIIa-hChR2(H134R)-mCherry,
we first verified expression of the fluorescent tag with
epifluorescence. Excitation of ChR2 was achieved by
wide field illumination delivered via a 455 nm LED
(M455L2; Thorlabs, Newton, NJ, USA), controlled by a
DC2100 driver (Thorlabs) coupled to the epifluorescence
illuminator of the microscope with a mirror (LAS-11-504
MP; Laser 2000,Huntingdon,UK) in place of the dichroic.
The light intensity was typically less than <1 mW mm–2,
delivered as 1mspulses to elicit EPSPs inChR2-expressing

slices. LTP induction protocols involved either pairing
postsynaptic hyperpolarization for 2 min with 5 Hz
stimulation (electric or light) or 1 s-long 100 Hz stimulus
trains delivered via the electrode, twice, separated by 20 s.
Data were acquired using a PCI-6221 interface

(National Instruments, Austin, TX, USA) and custom
software (LabVIEW; National Instruments). Currents or
voltages were low-pass filtered (4–5 kHz), digitized at
10–20 kHz and analysed off-line using LabVIEW and
Pclamp, version 10 (Molecular Devices, San Jose, CA,
USA). The initial slope of EPSPs was measured over a
2 ms window to avoid contamination by polysynaptic
responses.
Slices were fixed in 4% paraformaldehyde for 12–15 h

at 0–4°C, and then washed in PBS, and transferred to a
phosphate-buffered solution containing 0.3% triton and
0.1% streptavidin-Alexa-488 for 3 h at room temperature.
After washing, slices were mounted with Vectashield
mountingmedium (Vector Laboratories, Burlingame, CA,
USA). Cells were visualized and photographed using
an AxioImager microscope (Carl Zeiss, Oberkochen,
Germany).

Statistical analysis

Electrophysiology data are shown as the mean ± SD.
Paired or unpaired t tests were applied where data
were normally distributed, and non-parametric tests were
applied if not. In experiments where a control pathway
was not available, EPSP slopes were compared between a
5 min baseline before the plasticity protocol was applied
and another period 25–30min later. In experiments where
a control pathway was available, the two pathways, each
normalized by their baseline, were compared 25–30 min
after the plasticity protocol was applied.

Results

Optogenetic stimulation of glutamatergic axons
paired with hyperpolarization fails to evoke LTP

To isolate activity in glutamatergic axons from other
afferents, we expressed mCherry-tagged ChR2, under
the CaMKIIa promoter, in pyramidal neurons of the
hippocampus. ChR2 channel kinetics are not sufficiently
fast to follow the 100 Hz stimulation often used to evoke
LTP (Chater et al. 2010). We therefore initially performed
a control experiment in untransduced hippocampal
slices to confirm that LTP could be induced using an
‘anti-Hebbian’ low-frequency pairing protocol (Lamsa
et al. 2007). NMDA, GABAA and GABAB receptors were
routinely blocked pharmacologically. AMPA/kainate
receptor-mediated EPSPs were evoked in regular-spiking
oriens interneurons with horizontal dendrites by
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stimulating in the alveus via a concentric electrode at
0.03 Hz. After obtaining a baseline, alveus stimulation at
5 Hz was paired with continuous post-synaptic hyper-
polarization for 2 min, holding the cell at −90 mV
by injecting negative current via the recording pipette
(Lamsa et al. 2007; Roux et al. 2013). This protocol reliably

induced LTP of the EPSP initial slope (178± 53% of base-
line, mean ± SD, n = 6, P <0.01, paired t test) (Fig. 1A).
Having confirmed that a low-frequency pairing protocol
using electrical stimulation is effective, we investigated
whether LTP could be elicited when the same protocol
was used with optogenetic stimulation.

Figure 1. Pairing optogenetic
stimulation of glutamatergic afferents
with hyperpolarization fails to evoke
LTP in stratum oriens interneurons
A, left: pairing protocol. Electrical
stimulation at 5 Hz (lower trace schematic)
when holding the postsynaptic cell close to
−90 mV (upper sample trace from one cell).
Right: EPSP initial slope normalized to
baseline and averaged across six cells (±
SD). Inset: initial phase of EPSP in a
representative example before (thin trace)
and 20 min after (thick trace) pairing. Scale
bars = 1 mV, 2 ms. B, pairing optogenetic
stimulation of glutamatergic axons with
hyperpolarization in an example stratum
oriens interneuron. Top, left: voltage
response to 100 pA positive and negative
current injection. Top, middle and right:
biocytin staining of the interneuron
revealed with streptavidin Alexa-488
(green), and mCherry ChR2 tag (red). The
borders of the alveus (Alv), stratum oriens
(SO), stratum pyramidale (SP) and stratum
radiatum (SR) are indicated. Scale bar = 50
μm. Below: timecourse of EPSPs evoked by
light (blue) or electrical stimulation (red).
Left: the 5 Hz pairing protocol delivered to
the light pathway, indicated by the blue
arrow, failed to induce LTP (filled points). In
the same cell, after renormalizing the
baseline, the same pairing protocol
delivered to the electrical pathway induced
LTP (right). Traces show the averages of five
trials before (thin lines) and after pairing
(thick lines). Scale bars = 1 mV, 2 ms. C,
summary plot from six cells (mean ± SD)
where optogenetic (left) and electrical
stimulation (right) were sequentially paired
with hyperpolarization. [Colour figure can
be viewed at wileyonlinelibrary.com]
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EPSPs were evoked by alternating electrical and
optogenetic stimuli in hippocampal slices from mice
previously injected with AAV-CaMKIIa-hChR2(H134R)-
mCherry. We used epifluorescence to verify expression of
mCherry in the alveus (Fig. 1B) and focused on neurons
with a sag response to hyperpolarizing current and a
regular firing pattern in response to depolarizing current.
Pairing 5 Hz stimulation of the optogenetic pathway with
hyperpolarization to −90 mV failed to elicit LTP (Fig. 1B
and C). In the illustrated example, in the same cell, we
subsequently paired electrical stimulation with the same
postsynaptic hyperpolarization, using the protocol pre-
viously shown to elicit LTP in untransduced slices. Pairing
electrical stimulation with postsynaptic hyperpolarization
elicited a stable potentiation. When repeated in six oriens
interneurons, there was no significant increase in the
light-stimulated pathway (115 ± 106%), whereas the
electrically stimulated pathway increased to 172% ± 68%
of baseline (P = 0.038, paired t test) (Fig. 1C). The EPSP
slope amplitudes were similar in both pathways (light
evoked EPSP slope: 0.47 ± 0.10 mV ms–1, electrically
evoked EPSP slope: 0.60 ± 0.36 mV ms–1) and the
control pathways that were not stimulated during the

pairing remained stable whether evoked electrically or
optogenetically.
We tentatively conclude that LTP cannot reliably be

elicited by glutamatergic stimulation alone, and that
co-stimulation of other axons is required to induce LTP.
Cholinergic axons are a strong candidate, given the
prior evidence for involvement of nicotinic receptors
in LTP in oriens interneurons (Griguoli et al. 2013;
Jia et al. 2010).

Optogenetic stimulation of cholinergic fibres
increases evoked EPSPs

To investigate the role of cholinergic axons in LTP
induction more directly, we used an optogenetic
strategy to stimulate them without glutamatergic axons.
ChAT-IRES-Cre mice were crossed with Ai32 mice
to allow conditional expression of ChR2-YFP in
cholinergic neurons (Hedrick et al. 2016). Brief pulses
of blue light at an intensity and duration similar
to those used to evoke glutamatergic responses in
AAV-CaMKIIa-hChR2(H134R)-mCherry injected
animals failed to elicit a fast monosynaptic EPSP in

A

B

C

Figure 2. Optogenetic stimulation of
cholinergic axons potentiates
glutamatergic EPSPs
A, LTP induced by pairing 5 Hz light pulses
with hyperpolarization of stratum oriens
interneurons in Chat-Cre x Ai32 mice
(pairing protocol indicated by arrow) in 36
cells. Black filled symbols and error bars:
mean ± SD. Red open symbols: data from
one cell. Inset: average EPSPs before (pink)
and 25−30 min after (red) pairing. B,
optogenetic cholinergic stimulation in
Chat-Cre x Ai32 mice (left) induced a
potentiation (n = 9, P = 0.002, paired t
test), which was followed by a smaller
potentiation induced by subsequent tetanic
electrical stimulation (right). Black and red
symbols and traces as for (A). C, tetanic
electrical stimulation in Chat-Cre x
Ai32 mice (left) led to LTP of EPSPs in oriens
interneurons (n = 6, P = 0.009, paired t
test), which was followed by a smaller
effect of subsequent optogenetic
cholinergic stimulation (right). Black and
red symbols and traces as for (A). Scale
bars = 2 mV, 2 ms. [Colour figure can be
viewed at wileyonlinelibrary.com]
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oriens interneurons. We patched regular spiking inter-
neurons in stratum oriens and evoked EPSPs by electrical
stimulation in the alveus, and then paused stimulation
for 2 min, during which 1 ms light pulses were applied
at 5 Hz at resting membrane potential in current clamp.
When electrical stimulation was re-started, the EPSP
initial slope showed a large increase compared to baseline
(197 ± 132 %; n = 36), which persisted for at least 25 min
(P < 0.001) (Fig. 2A).
We looked for occlusion between LTP induced

by tetanic electrical stimulation and by optogenetic
activation of cholinergic afferents. When the optogenetic
cholinergic protocol was delivered first, the potentiation
(199± 101%, n= 9) was followed by a small LTP induced
by tetanic electrical stimulation (126 ± 38%) (Fig. 2B).
Electrically-induced LTP was smaller if preceded by
light-induced LTP (unpaired t test, P = 0.007). When
tetanic stimulation was delivered first, LTP (229 ± 85%,
n = 6) did not fully occlude subsequent optogenetically
evoked potentiation (155 ± 52%) (Fig. 2C).

Cholinergic optogenetically-evoked LTP requires Ca2+

influx and is prevented by nicotinic receptor
antagonists

The potentiation elicited by optogenetic stimulation of
cholinergic fibres was abolished when 25 mm BAPTA
was included in the pipette solution (114 ± 46%,
n = 14) compared to the interleaved control experiment
(222± 176%, n= 16, P= 0.039,Mann–Whitney) (Fig. 3).
These results are consistent with Ca2+ influx via nicotinic
receptors triggering the LTP induction cascade.
Finally, we investigated whether optogenetically evoked

LTP in interneurons fromChAT-Cre xAi32mice depends
on nicotinic receptors, akin to electrically evoked LTP.
In control cells LTP was again robustly induced after a

period of optogenetic stimulation (160 ± 60%, P = 0.01)
(Fig. 4A). Neither 1 μm DHβE (178 ± 128%) (Fig. 4B),
nor 10 nm MLA (165 ± 111%) (Fig. 4C) fully pre-
vented optogenetically evoked LTP (compared to controls:
DHβE P = 0.044, MLA P = 0.074). However, LTP was
blocked when both 1 mm DHβE and 10 nm MLA were
bath-applied together (113 ± 47% compared to controls:
P = 0.023) (Fig. 4D).

Discussion

The present study suggests that ACh release from
cholinergic axons, leading to Ca2+ influx via nicotinic
receptors, is sufficient to induce LTP of glutamatergic
transmission to oriens interneurons. A clue with respect
to the involvement of cholinergic axons came from
the dissociation between the effects of optogenetic
stimulation of glutamatergic axons and of extracellular
electrical stimulation at 5 Hz, paired with postsynaptic
hyperpolarization. Although electrical stimulation
successfully evoked LTP, optogenetic glutamatergic
stimulation failed. Because electrical stimulation would
be expected to recruit not only glutamatergic axons,
but also cholinergic axons, we repeated the experiments
with ChR2 conditionally expressed in ChAT-Cre positive
neurons. Surprisingly, repetitive optogenetic stimulation
alone was sufficient to induce a long-lasting potentiation
of glutamatergic transmission. This potentiation exhibited
two-way partial occlusion with electrically evoked LTP,
and was prevented by postsynaptic Ca2+ chelation and
blockade of nicotinic receptors.
The use of optogenetics as a tool to investigate LTP

has previously uncovered a left-right brain asymmetry
related to differences in NMDAR composition at synapses
made by CA3 afferents from either hemisphere (Kohl
et al. 2011; Shipton et al. 2014) (but see also Martin
et al. 2019). However, this asymmetry most probably

A B

Figure 3. BAPTA attenuated LTP elicited by optogenetic stimulation of cholinergic axons
A, LTP induced by optogenetic stimulation of cholinergic fibres in interleaved control experiments. Black filled
symbols and error bars: mean ± SD. Red open symbols: data from one cell. Inset: average EPSPs before (pink) and
25−35 min after (red) pairing. B, inclusion of 25 mM BAPTA in the pipette solution profoundly attenuated LTP
(P = 0.047, unpaired t test comparing potentiation elicited in both conditions). Black and red symbols and traces
as for (A). Scale bars = 1 mV, 2 s. [Colour figure can be viewed at wileyonlinelibrary.com]
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does not explain the dissociation between the effects of
electrical and optogenetic stimulation in the present study
because AAV-CaMKIIa-hChR2 was injected bilaterally
and NMDARs were routinely blocked.

Of note, we did not elicit robust EPSPs in oriens
interneurons by optogenetic stimulation of cholinergic
axons, although an increase in frequency of spontaneous
glutamatergic currents was observed in some cells.
This contrasts with studies that used viral expression of
ChR2 to evoke monosynaptic fast optogenetic nicotinic
responses in layer 1 neocortical interneurons mediated
by α7 receptors (Bennett et al. 2012; Letzkus et al.
2011). Nicotinic responses mediated by either α4β2 or
α7 receptors have also been reported in hippocampal
interneurons using electrical or optogenetic stimulation
(Alkondon et al. 1998; Bell et al. 2013; Frazier et al.
1998; Haam et al. 2018; Stone, 2007; Takács et al. 2018).

However, we expressedChR2 by crossingChAT-IRES-Cre
mice with Ai32 mice, which may have led to relatively low
expression. The absence of detectable phasic nicotinic
response upon stimulation is consistent with ACh acting
via volume transmission, as suggested by ultrastructural
evidence for non-synaptic release sites (Descarries et al.
1997) (but see also Takács et al. 2018). Indeed, we pre-
viously reported an α7 receptor-mediated modulation
of GABAA receptors in hippocampal interneurons,
evoked by stimulation of cholinergic axons, despite
failing to detect a clear monosynaptic nicotinic response
(Wanaverbecq et al. 2007). The ability of cholinergic
activity to trigger an intracellular cascade that modulates
GABAergic transmission without a robust depolarizing
response is consistent with the high Ca2+ permeability of
α7 nicotinic AChRs and their frequent co-location with
synaptic GABAA receptors (Fabian-Fine et al. 2001).

A B

C D

Figure 4. Nicotinic receptor antagonists prevented optogenetic cholinergic LTP
A, control experiments, showing LTP induced by optogenetic stimulation of cholinergic afferents (n= 12, P= 0.01,
paired t test). Black filled symbols and error bars: mean ± SD. Red open symbols: data from one cell. Inset: average
EPSPs before (pink) and 25−30 min after (red) pairing. B, DHβE (1 μM) did not prevent optogenetic LTP (n = 8,
P = 0.039, paired t test). C, 10 nM MLA also failed to completely block LTP (n = 8, P = 0.018, paired t test). D,
LTP was blocked when both 1 mM DHβE and 10 nM MLA were bath-applied (comparison with controls: n = 11,
P = 0.009, unpaired t test). Scale bars = 1 mV, 2 s. Stimulation artefacts have been removed for clarity. [Colour
figure can be viewed at wileyonlinelibrary.com]
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Nicotinic receptors also occur presynaptically and
have been implicated in the plasticity of glutamatergic
transmission in many brain regions (Role & Berg,
1996; Wonnacott, 1997). However, postsynaptic Ca2+
chelation prevented the effect of optogenetic stimulation
of cholinergic afferents on glutamatergic transmission,
implying a postsynaptic induction mechanism which is
consistent with previous studies of NMDAR independent
LTP in hippocampal interneurons (Alle et al. 2001;
Lamsa et al. 2007; Nicholson and Kullmann, 2014;
Ouardouz & Lacaille, 1995). The effect of Ca2+ chelation
does not exclude the possible involvement of astrocytic
intermediaries as proposed for other actions of septal
cholinergic afferents in the hippocampus (Pabst et al.
2016).
NMDAR independent LTP in oriens interneurons

can be triggered by several sources of Ca2+, including
Ca2+-permeable AMPARs (Lamsa et al. 2007; Oren
et al. 2009), group I mGluRs (Lapointe et al. 2004; Perez
et al. 2001), which trigger dendritic Ca2+ elevation
(Topolnik et al. 2009) and T-type Ca2+ channels
(Nicholson & Kullmann, 2017). Trains of postsynaptic
action potentials alone, in certain circumstances, can also
trigger potentiation that occludes NMDAR independent
LTP (Nicholson & Kullmann, 2014). The present study
adds nicotinic AChRs to the list of sources of Ca2+ that
are able to induce synaptic potentiation. The absence
of profuse dendritic spines in oriens interneurons may
explain the convergence of multiple Ca2+ sources on the
LTP induction cascade. The relative importance of each
of these sources of Ca2+ in more physiological situations
remains to be determined.
Oriens interneurons with axons that project to stratum

lacunosum/moleculare (O-LM cells) exhibit NMDAR
independent LTP (Oren et al. 2009; Szabo et al. 2012),
express abundant nicotinic receptors (Hagger-Vaughan
& Storm, 2019; Lawrence et al. 2006; Leão et al. 2012;
McQuiston & Madison, 1999) and receive an especially
large cholinergic innervation (Bell et al. 2013; Haam et al.
2018). Although we did not systematically reconstruct the
axonal arborization of the oriens interneurons in the pre-
sent study, their regular firing pattern and horizontally
oriented dendrites suggest that at least some of them
were O-LM cells. Such interneurons have been suggested
to have two developmental lineages (Chittajallu et al.
2013) (but see also Asgarian et al. 2019; Winterer et al.
2019) and have been shown to facilitate LTP at Schaffer
collateral inputs to CA1 pyramidal cells at the same time
as inhibiting LTP at the temporoammonic input, thereby
affecting information flow through the hippocampal
formation (Leao et al., 2012). The cholinergic innervation
of O-LM cells has also been implicated in modulating
theta oscillations (Gu et al. 2020). The present study
further suggests that the influence of O-LM cells on
hippocampal signalling can be persistently altered by a

cholinergic afferent input. It also provides a potential
mechanism by which degeneration of the cholinergic
innervation of the hippocampus in Alzheimer’s disease
(Geula & Mesulam, 1996) interferes with information
processing (Griguoli & Cherubini, 2012).
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