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Summary

B lymphocyte-induced maturation protein-1 (Blimp-1), the transcription

factor encoded by the gene Prdm1, plays a number of crucial roles in the

adaptive immune system, which result in the maintenance of key effector

functions of B- and T-cells. Emerging clinical data, as well as mechanistic

evidence from mouse studies, have additionally identified critical func-

tions of Blimp-1 in the maintenance of immune homeostasis by the

mononuclear phagocyte (MNP) system. Blimp-1 regulation of gene

expression affects various aspects of MNP biology, including developmen-

tal programmes such as fate decisions of monocytes entering peripheral

tissue, and functional programmes such as activation, antigen presenta-

tion and secretion of soluble inflammatory mediators. The highly tissue-,

subset- and state-specific regulation of Blimp-1 expression in MNPs sug-

gests that Blimp-1 is a dynamic regulator of immune activation, integrat-

ing environmental cues to fine-tune the function of innate cells. In this

review, we will discuss the current knowledge regarding Blimp-1 regula-

tion and function in macrophages and dendritic cells.
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transcriptional regulation.

Introduction

B-lymphocyte-induced maturation protein-1 (Blimp-1)

was first described in 1991 as a potent virus-induced

interferon b (IFNb) repressor in humans. The 88-kD pro-

tein containing five zinc-finger motifs was designated

PRDI-BF1 (positive regulatory domain 1-binding factor

1), due to its specific binding to the PRDI element in the

IFNb promotor.1 Shortly thereafter, Mark Davis and col-

leagues identified a transcriptional repressor in the mouse

expressed in late-stage mature B-cells and plasma cells,

and named it Blimp-1.2 The mouse and human versions

of Blimp-1, encoded by the gene Prdm1 (positive regula-

tory domain containing 1, with zinc-finger domain), are

highly homologous.3 Blimp-1 serves as a transcriptional

and epigenetic regulator of target genes across multiple

cell types. It can directly bind DNA and recruit chro-

matin-modifying factors associated with inhibition of

gene transcription, including histone deacetylases 1 and 2

(HDAC1/2), G9a histone methyltransferase and Groucho
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lymphoma 6; Blimp-1, B lymphocyte-induced maturation protein-1; BMDC, bone marrow-derived dendritic cell; BMP, bone
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family proteins.4–6 In this review, we will discuss the role

of Blimp-1 in regulating mononuclear phagocyte (MNP)

development and function in health and disease. Unless

otherwise stated, we focus this review on knowledge

derived from murine experiments.

Blimp-1 is broadly expressed, and fulfills many
different roles across various cell types

Blimp-1 is expressed across many haematopoietic and

non-haematopoietic cell types, and fulfills a broad array

of functions. A growing body of literature covers the role

of Blimp-1 as an important regulator during early devel-

opmental processes, across vertebrate species (reviewed in

detail in Ref. [7]). Murine embryos deficient for Blimp-1

die at about embryonic day 10�5 due to placental insuffi-

ciency.8,9 Dose-dependent bone morphogenetic protein

(BMP)/Smad-induced Blimp-1 expression is essential for

primordial germ cell specification,8,10 where it acts in

concert with the transcription factors AP2c and

PRDM14�11 Blimp-1 is also broadly expressed in multipo-

tent progenitor cells during tissue development, and

guides morphogenesis of various tissues, including the

posterior forelimb, the caudal pharyngeal arches, the car-

diac outflow tract and the sensory vibrissae.12

Blimp-1 specifically plays important roles in epithelial

cell differentiation and polarization. During the suckling

phase, Blimp-1 is essential in maintaining the neonatal

phenotype of intestinal epithelial cells. Epithelial cell-

specific Blimp-1 deficiency leads to neonatal growth retar-

dation and mortality owing to dysregulated expression of

genes associated with metabolic functions.13,14 Blimp-1

also represses expression of MHC Class I pathway genes,

by directly competing with interferon regulatory factor

(IRF)1 in the neonatal intestinal epithelium, thereby con-

tributing to neonatal immune tolerance.15 Outside of the

intestine, Blimp-1 is also important for mammary gland

formation by supporting proliferation and polarization of

rare luminal progenitors.16 Based on experiments using

in vitro organoids, this is in part due to elevated IFNk
expression in the epithelial cells.17 In the cancerous mam-

mary epithelium-derived cell line MCF7, high RelB/NFjB
levels induce Blimp-1 expression, which in turn sup-

presses the estrogen receptor a (ERa), driving elevated

migratory capacity due to reduced levels of E-cadherin

and c-catenin.18 Transforming growth factor (TGF)b-in-
duced epithelial-to-mesenchymal transition in breast can-

cer cells is also orchestrated by Blimp-1: here, Blimp-1

represses BMP-5, leading to deregulation of Snail.19 In

the homeostatic skin, Blimp-1 has been shown to regulate

sebaceous gland homeostasis by directly repressing c-Myc

in sebocyte progenitors,20 and it regulates the final steps

of cornification, allowing for terminal epidermal differen-

tiation.21 Thus, Blimp-1 influences steady-state and

pathogenic epithelial cell development and function at

multiple levels. This heterogeneous functionality in devel-

opmentally related cell types, as depicted here across

epithelial cells, suggests a highly contextual action of

Blimp-1.

Despite its broad expression and diverse functional

impacts within the non-haematopoietic system, Blimp-1

is still best known for its crucial role as a key regulator of

plasma cell development. During the differentiation of B-

cells into plasma cells, IRF4 directly induces Blimp-1

expression,22 and IRF4 and Blimp-1 are together required

for the induction and maintenance of functional plasma

cells.23,24 Blimp-1 represses B-cell lymphoma 6 (Bcl-6)

and c-Myc, key factors supporting germinal centre reac-

tions, thereby allowing for the terminal differentiation of

the plasma cell.25,26 Importantly, Bcl-6 can also directly

repress Blimp-1, placing these two transcription factors

into the centre of mature B-cell trajectory decisions,

together with the Blimp-1-inducing IRF4 and the Blimp-

1-repressing IRF8 as upstream regulators.27,28 A series of

elegant studies showed that Blimp-1 directly regulates

numerous pathways to affect plasma cell fate and func-

tion. One key effect is an increase in the plasma cell’s

capacity to produce and secrete vast amounts of antibody

(reviewed in Ref. [29]). This is facilitated by Blimp-1-me-

diated upregulation of Ire1, which activates Xbp-1

through splicing, driving the required unfolded protein

response pathway.30 Other aspects of plasma cell biology

regulated by Blimp-1 include chemokine receptors and

adhesion molecules: Blimp-1 inhibits the expression of

Cxcr5, Ccr7, S1pr1, Sd22, Itgb7 and Sell, strongly suggest-

ing that it affects the positioning of plasma cells after

their maturation in secondary lymphoid organs.29

Parallel to the expression pattern in B-cells, Blimp-1

also marks terminal effector T-cells, although with the

exception of T follicular helper cells, which require high

expression of the mutually exclusive transcription factor

Bcl-6 (reviewed in Refs [31,32]). A subset of regulatory

T-cells (Tregs) primarily found in mucosal tissues

depends on Blimp-1 for its high expression of interleukin

(IL)-10. Indeed, deficiency of Blimp-1 in the T-cell com-

partment leads to spontaneous colitis onset at the age of

6 weeks.33,34 Mirroring the regulatory network in plasma

cells, Blimp-1 expression in Tregs requires induction by

IRF4�34 In intestinal RORct+ Tregs, however, Blimp-1 has

been shown to also directly inhibit IRF4 binding to the

IL-17 locus, facilitating the maintenance of the regulatory

state.35 Likewise, Blimp-1 can stabilize the suppressive

phenotype and correct localization of follicular Tregs,

allowing them to inhibit germinal centre reactions.36

However, the role of Blimp-1 in follicular Tregs may be

context-dependent, as Blimp-1 expression induces an

ST2+ (Il1rl1, IL-33R) allergy-promoting phenotype of

Tregs in the house dust mite model of allergic asthma.37

Interestingly, Blimp-1 shows particularly high expression

levels in visceral adipose tissue Tregs in male mice, where
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it is induced in response to, and is essential to counteract,

the low-grade inflammatory signals sent by male visceral

stroma. In this context, Blimp-1 directly induces expres-

sion of the regulatory cytokine IL-10, the chemokine

receptor CCR2 (essential for positioning the cells within

CCL2-abundant fat), and ST2 (important for the expan-

sion of the visceral fat Treg population).38

In CD8 effector T-cells, Blimp-1 supports terminal dif-

ferentiation along with high expression of effector mole-

cules such as granzyme B.39,40 Interestingly, IL-2-induced

cytotoxicity in tumour-specific cytotoxic CD4 T-cells

equally depends on Blimp-1 expression for optimal gran-

zyme B expression, suggesting that Blimp-1 is generally

required for the cytotoxic programme in T-cells.41 Upon

chronic viral infection, Blimp-1 drives CD8 T-cell exhaus-

tion by directly repressing expression of the IL2ra chain

and CD27�42,43 Together with the transcription factor

Hobit (homologue of Blimp-1 in T-cells), Blimp-1 was

shown to support the formation of tissue-resident mem-

ory cells while suppressing circulating memory cells.44

Besides its profound role within the adaptive immune

system, Blimp-1 is emerging as an important rheostat for

innate immune cell subset identity, activation and func-

tion. In contrast to T- and B-cells, natural killer (NK)

cells constitutively express Blimp-1. Similarly to its role in

T-cells, Blimp-1 expression in NK cells is required for

high granzyme B expression, but not for the secretion of

cytokines or for their lytic capability. In sharp contrast to

its regulation in adaptive immune cells, Blimp-1 expres-

sion in NK cells is independent of IRF4 and Bcl-6.

Instead, steady-state expression of Blimp-1 in NK cells

depends on T-bet expression, suggesting that Blimp-1

regulation is context-dependent across lymphocyte popu-

lations.45 Blimp-1 was also shown to control the function

of human NK cells, where it reportedly has broader

effects: Blimp-1 inhibits secretion of pro-inflammatory

cytokines such as tumour necrosis factor (TNF)a and

IFNc, mirroring its function in CD4 T-cells.

Blimp-1-mediated polarization and regulation of termi-

nal effector function appears to be a common modality

across numerous cell lineages. In addition to the above-

mentioned lineages, genome-wide association studies

(GWAS), paired with mechanistic studies using animal

models, paint an emerging picture of a role for Blimp-1

in the regulation of antigen-presenting cells with implica-

tions for immune homeostasis. In the remainder of this

review, we will discuss the emerging role of Blimp-1 in

MNPs. These include tissue-resident macrophages, mono-

cyte-derived macrophages (Mo-Macs) and dendritic cells

(Mo-DCs), and type 1 and type 2 subsets of conventional

dendritic cells (cDC1 and cDC2; nomenclature defined in

Ref. [46]). cDC1 depend on IRF8 and BATF3, are charac-

terized by their expression of XCR1, and excel at cross-

presenting antigen to CD8 T-cells, endowing them with a

unique function in orchestrating the immune response

towards viruses and intracellular bacteria. cDC2 on the

other hand express IRF4, are characterized by their

expression of CD11b and Sirp-a, and present antigen to

CD4 T-cells with high efficacy, leading to strong immu-

nity particularly towards extracellular bacteria (summa-

rized in Ref. [47]).

Blimp-1 in mononuclear phagocytic development

Paralleling its widespread expression in lymphocyte sub-

sets, Blimp-1 shows a broad expression pattern and func-

tionality in MNPs (Fig. 1), which to date remains

relatively unexplored in its complexity. An early study

identified Blimp-1 as a myeloid lineage determinant

in vitro. Blimp-1 expression is induced upon differentia-

tion of pro-myelocytic cells into either macrophages or

granulocytes.48 Accordingly, Prdm1 transcripts were also

found to be expressed in human peripheral blood mono-

cytes and granulocytes. Overexpression of Blimp-1 in

pro-monocytic cells triggered the development of a partial

macrophage morphology, including cell surface expres-

sion of CD11c and CD11b.48

Upon extravasation from the bloodstream, monocytes

can differentiate into Mo-Macs or Mo-DCs.46 Interest-

ingly, Blimp-1 was recently discussed to act as an impor-

tant positive regulator of Mo-DC differentiation.49 The

study showed that human monocytes express a Mo-Mac-

biased transcriptomic signature, including MafB, CD163

and MerTK, and are by default directed towards a Mo-

Mac fate. However, microenvironmental cues such as IL-

4, TNFa and aryl hydrocarbon receptor (AhR) signalling

supported a switch to an IRF4-dependent Mo-DC fate, a

process suppressed by silencing of Prdm1�49 Although the

exact signalling network underlying Blimp-1-induced dif-

ferentiation into Mo-DCs was not studied, the correlation

between expression of IRF4 and Blimp-1 in Mo-DCs is

unlikely to be coincidental, as IRF4 has been shown to

act as a potent transcriptional activator of Prdm1 in other

settings.22,34,35,50 Similarly to the pathway of B-cell matu-

ration,51 AhR signalling induced rapid Prdm1 expression,

and AhR signalling is required for the MHCII+ CD226+

subset of peritoneal MNP differentiation in vivo.49 These

cells are sensitive to antimicrobial treatment and therefore

assumed to depend on the microbiome. To what extent

IRF4, Blimp-1 and AhR signalling converge in supporting

MNP fate decisions, and which transcriptional hierarchies

define this network, remain to be investigated. In addi-

tion, given the assumption that the Blimp-1-sensitive sub-

set requires microbial signalling for differentiation and is

therefore likely to be influenced by environmental

changes, specific analysis of Blimp-1-influenced monocyte

fate differentiation and the specific role of Blimp-1 in

MNP maturation in other tissues than the peritoneal cav-

ity is warranted. Importantly, Blimp-1 has been described

as a marker for a specific macrophage population
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(defined as CD11c+ CD206int CD121b+) located near the

microbe-exposed surface in the colon,52 suggesting that

Blimp-1 expression predestines cells for certain fates, but

does not lock MNPs into a DC phenotype per se. Instead,

the accumulating evidence suggests that environmental

factors, such as microbiota-derived AhR ligands, engage a

transcriptional network involving Blimp-1 to allow for

functional fine-tuning of plastic lineages.

Whether Blimp-1 plays a significant role in the devel-

opment and subset differentiation of cDCs is unclear. A

recent study found no effect on DC differentiation

in vitro (GM-CSF + IL-4) upon silencing of Prdm1.53

However, the deletion of Blimp-1 in the entire

haematopoietic system resulted in the selective expansion

of the cDC2 subset in spleen and peripheral lymph nodes

(LNs), owing to an increased number of precursors. This

may suggest that Blimp-1 negatively regulates cDC2, but

secondary effects caused by the absence of Blimp-1 in

other haematopoietic cells were not excluded.54 Using

reporter mice for Blimp-1, we detected high expression

specifically in small intestinal cDC2, with no detectable

reporter signal in splenic cDCs.55 Importantly, and seem-

ingly contradictory to what was suggested by Chan

et al.54, CD11c.cre-driven deletion of Blimp-1 caused a

specific loss of CD103+ CD11b+ cDC2 in the small

intestinal lamina propria and the corresponding migra-

tory population in the mesenteric LNs.55 cDC2 are largely

found in the marginal zone/bridging channel of the

spleen and in the subcapsular sinus of peripheral LNs (re-

viewed in Ref. [56]), which are sites of relatively high

antigen exposure, suggesting that steady-state Blimp-1

expression is a consequence of microenvironmental

immune signalling. Antigen exposure in the small intes-

tine is significantly higher, and our data suggest that high

Blimp-1 expression in cDC2 stabilizes rather than regu-

lates the cDC2 population. Further research is required to

explore whether immune activation regulates Blimp-1

expression in cDC2 systemically, and whether this affects

cDC2 abundance. Intriguingly, a recent study reported

conserved expression of Blimp-1 between mouse and man

in a subset of splenic cDC2 that also expressed RORct,
again suggesting an intricate network of transcriptional

regulation in cDC2 likely affected by the environment

and driving the suggested heterogeneity within cDC2.57

While the mechanisms underlying the loss of intestinal

cDC2 in the absence of Blimp-1 are entirely unexplored,

Blimp-1 is exclusively expressed in IRF4-dependent cDC2,

suggesting that the mutual antagonism of IRF4 and IRF8

described for B-cells and DCs alike may also result in

overlapping regulatory circuits governing Blimp-1 expres-

sion in DC subsets. Of note, expression patterns of IRF4

and Blimp-1 are conserved across murine and human

intestinal cDC2�55
Blimp-1 also specifically supports the generation of

osteoclasts, which are multi-nucleated cells derived from

the monocyte-macrophage lineage responsible for bone

resorption. Osteoclasts develop from the fusion of

haematopoietic myeloid precursors, and differentiate in

response to receptor activator of nuclear factor kappa-B

ligand (RANKL) and granulocyte-macrophage colony-

stimulating factor (GM-CSF). Briefly, the interaction of

RANKL with receptor activator of nuclear factor kappa-B

(RANK) activates the initial expression of the master reg-

ulator NFATc1. This in turn induces expression of a gene

signature essential for osteoclast differentiation and func-

tion (reviewed in Ref. [58]). The signature depends on

RANK-induced Blimp-1 to inhibit the anti-osteoclasto-

genic genes Bcl-6, IRF8 and MafB.59–61 Blimp-1 deficiency

in osteoclast progenitors consequently results in dysregu-

lation of osteoclastogenesis, evident by aberrant bone for-

mation in vivo. Intriguingly, IL-33 signalling through ST2

inhibits RANKL-induced osteoclast differentiation of

macrophage colony-stimulating factor (M-CSF)- and

RANKL-cultured bone marrow (BM)-cells by downregu-

lating Blimp-1 mRNA while upregulating IRF8 expres-

sion.62 Although no direct signalling pathway has been

proposed, this suggests Blimp-1 functions downstream of

ST2, which is in sharp contrast to cells in the T-cell lin-

eage mentioned above.37,38

Regulation of Blimp-1 expression in mononuclear
phagocytes

The molecular players driving Blimp-1 expression specifi-

cally in the MNP compartment have not been assessed in

detail. However, some data suggest that Blimp-1 expres-

sion correlates with immune activation through pattern

recognition receptors (PRRs): Toll-like receptors (TLRs)

and NOD-like receptors (NLRs) engagement on MNPs

induce Blimp-1 in various settings. GM-CSF-cultured

bone marrow-derived dendritic cells (BMDCs) induced

Blimp-1 expression upon LPS, CpG, poly(I:C) and TNFa
stimulation. Pharmacological inhibition of p38, MAPK

and NFjB abrogated Blimp-1 transcription in response to

LPS.54 Similarly, M-CSF-cultured BM-macrophages

upregulated Blimp-1 transcripts rapidly upon exposure to

LPS or pathogens such as Listeria monocytogenes, Escheri-

chia coli, Staphylococcus aureus and Sendai virus.63,64

Interestingly, Blimp-1 was often induced in two waves,

one transient induction at 2 hr post-infection and a sec-

ond peak induction after 24 hr, suggesting that Blimp-1

expression can result from both an immediate as well as

a downstream PRR trigger.64 TLR2-deficient BM-derived

macrophages pretreated with an IL-1R antagonist failed

to induce Blimp-1 transcription upon L. monocytogenes

infection. Likewise, inhibition of the downstream signal

transducers MyD88, MAPK and NFjB fully abrogated

expression of Blimp-1. This implies that cell surface TLR2

and cytosolic PRRs regulating IL-1b production cooperate

in the control of Blimp-1 transcription in BM-derived
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macrophages upon L. monocytogenes infection.64 Context-

dependent expression of Blimp-1 in cDC2 in vivo in the

small intestine55 and inducible expression in lung cDC2

upon infection65 further supports the relevance of

immune activation in Blimp-1 induction.

It is intriguing to postulate that some other known acti-

vators of Blimp-1 in B- and T-cells also increase its expres-

sion in the MNP compartment. As described above, this

has been shown for the AhR ligand FICZ rapidly increasing

Prdm1 expression in IRF4-dependent human monocyte

cultures,49 and in GM-CSF + IL-4 monocyte cultures,

where IRF4 positively regulates Blimp-1 expression.50 A

recent study reports activation of Prdm1 transcription by

IL-10-induced STAT3-signalling in T-cells, resulting in a

TH2 response upon nasal triggering in the lung, but not

systemically.66 Blimp-1 induction might reflect one mecha-

nism by which STAT3 regulates MNP activation, given that

both STAT367 and Blimp-1 (reviewed below, Fig. 2) nega-

tively regulate CD11c+ MNP function.

Targets of Blimp-1 in mononuclear phagocytes

Blimp-1 in the regulation of inflammatory mediators

Conditional deletion of Blimp-1 in MNP subsets revealed

a role for Blimp-1 in immune homeostasis and regulation

of inflammation. The identification of direct targets of

Blimp-1 repression has just begun to explain this func-

tional importance of Blimp-1 activity.

In M-CSF-cultured BM-macrophages, chromatin

immunoprecipitation (ChIP) analysis identified Ccl8 to

be a direct target of Blimp-1, which was also evident

in vivo as a steady-state increase of Ccl8 transcripts and

CCL8 protein in macrophages and in sera of Prdm1fl/

flLysM.cre mice.64 Blimp-1 deficiency in the myeloid lin-

eage rendered mice less susceptible to L. monocytogenes

infection, as elevated CCL8 attracted more IL-17F-pro-

ducing c/d T-cells, which in turn increased neutrophil

granulopoiesis and recruitment.64

In GM-CSF-cultured BMDCs, a heterogeneous popula-

tion of macrophages and DCs,68 Blimp-1 directly

represses Il-6 and Ccl2.54 Dysregulation of IL-6 expression

by DCs in vivo was also described in the context of

inflammatory bowel disease (IBD) and systemic lupus

erythematosus (SLE) studies, where CD11c+ cell-specific

Blimp-1 deficiency led to enhanced immunopathology. In

dextran sulphate sodium-induced colitis, severe disease

state was specifically attributed to dysregulated IL-1b and

IL-6 secretion by colonic CD103+ DCs. Elevated pro-in-

flammatory cytokines resulted in the enhanced influx of

neutrophils and activated macrophages into the colonic

tissue. These macrophages expressed higher levels of
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Figure 1. B lymphocyte-induced maturation protein-1 (Blimp-1) expression across mononuclear phagocytes (MNPs) and murine tissues. (a)

Heatmap showing Blimp-1 expression in MNP populations. Dendritic cell (DC), monocyte (Mo) and macrophage (MF) samples were extracted

from the Immunological Genome Project microarray dataset (ImmGen, GSE15907). MLN, mesenteric lymph node; Lu, lung; Lv, liver; SLN, skin

draining lymph node; Sp, spleen; LC, Langerhans cell; Sk, skin; Th, thymus; Bl, blood; BM, bone marrow; PC, peritoneal cavity; SI, small intes-

tine; Medl, medullary; Sbcaps, subcapsular sinus; CNS, central nervous system; Ser, serosal; Salm, Salmonella-infected. (b) Heatmap showing

Blimp-1 expression across multiple mouse tissues (GeneAtlas, MOE430), grouped according to their origin. Yellow indicates increased expression,

and purple indicates decreased expression over the mean. Data from two�three replicates are shown. Unavailable data are depicted in grey. Gene

expression data analysed in Gene Cluster 3�0 and displayed with Java Treeview.
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matrix metalloproteinases, as a direct consequence of

increased IL-1b and IL-6 from Blimp-1-deficient colonic

CD103+ cDCs, leading to higher tissue destruction and

exacerbated inflammation.69 Blimp-1-deficient female

mice spontaneously presented with an SLE-like pheno-

type, which could be rescued by additional knockout of

IL-6, again suggesting the direct involvement of IL-6 from

CD11c+ cells.70 In Flt3L-cultured BMDCs and splenic

Blimp-1-deficient cDCs, IL-6 production was predomi-

nantly increased in female-derived cells upon LPS stimu-

lation. This increased IL-6 production was responsible for

driving the expansion of Tfh cells, resulting in the

increased germinal centre formation, and ultimately in

higher titres of IgG(2b) autoantibodies. The gender bias

in the observed autoimmune phenotype could be

explained by the role of ERa signalling in the positive

regulation of IL-6 in BMDCs.71 Blimp-1 also directly

represses transcription of the microRNA (miRNA) let-7c

in DCs.72 One important let-7c target, suppressor of cyto-

kine signalling 1 (SOCS1), is a regulator of several cytoki-

nes acting via the JAK/STAT3 pathway. Induction of

SOCS1 was abrogated in LPS-stimulated Blimp-1-defi-

cient splenic DCs as well as in BMDCs, resulting in high

levels of IL-6, TNFa and IFNc secretion. The increased

IL-6 expression, as well as decreased SOCS1, was reversed

by lentiviral reconstitution of Blimp-1 in BMDCs placing

Blimp-1 in a let-7c-SOCS1-regulated cytokine response in

DCs.72 Together, these data suggest that Blimp-1 can sup-

press IL-6 both directly and indirectly (Fig. 2).

In contrast to intestinal cDC2, lung DCs express little

Blimp-1 expression at steady-state (Fig. 1a), possibly

reflecting a lower basal activation level of lung immune

cells. As such, stimulation of the lung environment with

bacterial or viral triggers drives expression of Blimp-1 in

lung cDC2.65 Expression of the transcription factor corre-

lates with a ‘paralysed’ state in these cells, as measured by

lower cytokine production and a reduced ability to

induce CD4 T-cell proliferation. Although the molecular

targets of Blimp-1 were not identified in this study, cDC2

regulation by Blimp-1 likely contributes to the sepsis-in-

duced immunosuppression observed in the lung upon

pneumonia. Importantly, Blimp-1 expression levels in cir-

culating cDC2 also positively correlated with the severity

of secondary infection in patients.65

In contrast to the suggested role for Blimp-1 in nega-

tive immune regulation, Blimp-1 was also implicated in

regulating immune suppression by the NLR - NLRP12

(NLR family pyrin domain containing 12).73 The PRR-

mediated increase in Blimp-1 expression leads to direct

silencing of NLRP12 expression, enabling full activation

through the NFjB and TNFR pathways. These findings

suggest that Blimp-1 can, in the given context, remove

the break from inflammatory signalling in addition to

suppressing inflammation (Fig. 2). The genetic targets of

Blimp-1 specifically in DCs are unknown. In-depth

phenotyping of remaining intestinal cDC2 in mice lacking

Blimp-1 in DCs coupled with high-throughput single-cell

gene expression and chromatin landscape assessment will

reveal whether decreased abundance of cDC2 in the

absence of Blimp-1 is due to activation or suppression of

cDC activity, or whether Blimp-1 plays a role in DC

ontogeny.

Interestingly, combined RNA- and ATAC-seq (assay for

transposase-accessible chromatin sequencing) analyses

identified Blimp-1 as a positive, rather than negative,

upstream modulator of the IFN response during HIV

infection of human GM-CSF + IL-4-cultured Mo-DCs.74

ShRNA-driven inhibition of Prdm1 resulted in defective

expression of CD86 and SIGLEC1, as well as IFNL1 and

CXCL10,74 contrasting previous in vitro findings by Xiao

et al.53 The original finding that Blimp-1 potently

represses IFNb in cell lines by recruiting the G9a histone

methyltransferases to the IFNb promoter,5 together with

these novel findings, suggests that Blimp-1-mediated posi-

tive versus negative regulation of gene expression may be

highly contextual.

Blimp-1 in antigen processing and presentation

In addition to regulation through cytokine production

and costimulatory molecule expression, Blimp-1 directly

interferes with antigen presentation, by influencing both

antigen processing and presentation by MHC Class II.

The functional importance of Blimp-1 in the regulation

of antigen presentation by cDCs has received considerable

attention due to its consequences for MHC-dependent

systemic autoimmunity. One of the most important

molecules involved in antigen presentation is cathepsin S

(CTSS), which cleaves the invariant chain to permit load-

ing into MHC Class II molecules,75 and generates a pool

of peptides available for presentation on MHC Class

II.76,77 In-depth analysis of putative causes of SLE induc-

tion in female mice harbouring Blimp-1-deficient DCs

revealed heightened expression levels of CTSS in addition

to IL-6.70,78 Blimp-1 represses Ctss in cDCs directly and

indirectly via the downregulation of the IL-6-STAT3 sig-

nalling pathway (Fig. 2).78,79 Dysregulation of CTSS,

along with CTSL expression, has been reported to modu-

late the pool of peptides presented to CD4 T-cells

in vitro, either by aberrant peptide cleavage or by facilitat-

ing class II loading in a different compartment, with a

potentially different peptide pool.76 In fact, increased IL-

6-dependent CTSS expression in Blimp-1-deficient DCs

altered antigen processing and ultimately skewed differen-

tiation of CD4 T-cells into Tfh cells bearing a diverse

TCR Vb repertoire associated with autoimmunity. Adding

weight to the observations in mice, patients with SLE and

lupus nephritis present with increased CTSS serum

levels.80 GM-CSF + IL-4-cultured Mo-DCs from female

SLE-risk allele carriers (rs548234) were also found to
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exhibit lower Prdm1 expression, and elevated ctss and

HLA-DR expression at steady-state.78,81

Blimp-1 also directly interferes with the expression of

peptide presentation machinery by suppressing transcrip-

tion of the co-activator Class II major histocompatibility

complex transactivator (CIITA), which serves as a master

regulator for the expression of MHC Class II genes (re-

viewed in Ref. [82]). Indeed, female splenic Blimp-1-defi-

cient DCs were reported to present with constitutively

increased MHC Class II expression in vivo.72 The reduc-

tion in CIITA expression also occurs in human (GM-

CSF + IL-4) Mo-DCs and murine GM-CSF-cultured

BMDCs in steady-state, and upon LPS, TNFa, CD40L

and IFNa stimulation, as well as infection with Sal-

monella typhimurium and Sendai virus.53,83 Consistent

with the rapid induction of Prdm1 by multiple stimuli, as

discussed above, the kinetics of Blimp-1 expression in

human Mo-DCs inversely correlates with CIITA expres-

sion upon DC activation, consistent with its role in B-

cells during B-cell to plasma cell differentiation.84,85

CIITA expression is under the control of four indepen-

dent promoters in humans (pI�pIV), and three in mice

(pI, pIII and pIV). Transcription of CIITA from pI is

restricted to cDCs and macrophages, while MHC Class II

expression in the lymphoid lineage is primarily regulated

by CIITApIII (reviewed in Ref. [86]). In vivo genomic

footprinting analysis complemented with ChIP analysis

on human LPS-stimulated Mo-DCs showed that Blimp-1

silences CIITA expression by displacing an IRF8/PU.1

complex at CIITApI during DC activation (Fig. 3). Stable

Osteoclastogenesis
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Figure 2. Identified B lymphocyte-induced maturation protein-1 (Blimp-1) targets in mononuclear phagocytes (MNPs). Blimp-1, encoded by Prd-

m1, represses interleukin (IL)-6 directly and indirectly by regulating the levels of the microRNA (miRNA) let-7c and SOCS1�54,72 It also represses

cathepsin S (CTSS) directly and indirectly via repression of IL-6�78,79 By downregulating CTSS and CIITA,84 Blimp-1 directly influences both anti-

gen-processing and -presentation by interfering with transcription of MHC Class II-dependent genes. Interferon regulatory factor (IRF)4 induces

Blimp-1 transcription and negatively regulates CST3,50 an inhibitor of CTSS, thereby allowing Blimp-1-mediated fine-tuning of the antigen-pro-

cessing and -presentation machinery. Blimp-1 also directly represses CCL2 and CCL8,54,64 and has been implicated to regulate CXCL10 as well as

SIGLEC1, IFNk1 and possibly CD86,74 which are all components of a pro-inflammatory response. On the other hand, Blimp-1 can enhance activa-

tion by repressing the NFkB/TNFR pathway repressor NLRP12�73 These regulatory mechanisms of Blimp-1 in the antigen-processing and presenta-

tion as well co-activation/pro-inflammatory mediation, are likely to be operative upon pattern recognition receptor (PRR) engagement in MNPs.

Additionally, RANK-RANKL interaction (not shown) induces Blimp-1-mediated repression of anti-osteoclastogenic genes Bcl-6, IRF8 and

MafB,59–61 assigning a central role to Blimp-1 in osteoclast development. Solid lines indicate genes shown to be directly repressed by Blimp-1, and

dotted lines indicate Blimp-1 repression by a currently unknown mechanism.
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silencing is further reinforced epigenetically by Blimp-1-

mediated recruitment of the chromatin-modifying

enzymes G9a and HDAC2 to the promoter, resulting in a

repressed chromatin state.84 Although the Ets-IRF com-

posite element of CIITApI is able to recruit both IRF8

and IRF4 in a complex with PU.1,87 Smith et al.84

reported dominance of IRF8 in the contribution to CIITA

activation. Concomitantly, B-cells utilize IRF4 and PU.1

(among others) for CIITApIII promoter activation.88,89

IRF4 or IRF8 reconstitution of GM-CSF + IL-4-cultured

BMDCs from IRF4-deficient DC progenitors could, how-

ever, similarly recover CIITA expression, in line with

comparable expression levels of MHC Class II in both

IRF8-dependent cDC1 and IRF4-dependent cDC2 in gen-

eral. Because ChIP-seq analysis of LPS-treated GM-CSF-

cultured BMDCs revealed that IRF4 induces Prdm1, tran-

scription factors exclusive to the cDC2 subset, this argues

for a more complicated incoherent feed-forward loop in

transcriptional regulation of antigen presentation by

cDC2, specifically.50 Of note, IRF4 also negatively regu-

lates cystatin C (CST3), which in turn inhibits the activity

of CTSS,50,90 suggesting an additional overlap of tran-

scriptional targets involved in antigen presentation by

IRF4 and Blimp-1 (Fig. 2). Together, these data suggest

that Blimp-1 and IRF4 are part of a complicated network

downstream of PRR engagement in the modulation of

the MHC Class II antigen presentation pathway, with

significant relevance for the regulation of the innate-adap-

tive immune interface.

Reported Blimp-1-associated polymorphisms
linked to mononuclear phagocyte function

Blimp-1 has been identified as a gene contributing to IBD

pathogenesis by an extensive meta-analysis of GWAS

studies,91 and an exome sequencing study identified vari-

ants of Blimp-1 single nucleotide polymorphisms (SNPs)

that are associated with Crohn’s disease. Reduced PRDM1

expression in ileal biopsy specimens and peripheral blood

mononuclear cells correlated with the Crohn’s disease

GWAS-associated lead risk SNP rs7746082 among the 10

identified SNPs within the PRDM1 region.92 Investiga-

tions of Blimp-1 expression in this study were narrowed

to the lymphocyte lineage and, indeed, T-cell dysregula-

tion is associated with colitis in many murine models (re-

viewed in Refs [34,93]). However, GWAS enriched for

cell-type expression specificity of genes in IBD risk loci

highlighted the strongest enrichment in DCs, suggesting

that DCs are a key component of IBD pathogenesis.94

The SNPs rs548234 (Han Chinese)95 and rs6568431

(European)96 predispose females to the development of

SLE, and are both located in the intergenic region

between PRDM1 and ATG5. Further analysis of the Han

Chinese SNP revealed that DCs, but not B-cells, show

PU.1 PU.1

PU.1 IRF8

IRF4

CIITAp1

Blimp-1
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cD
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cD
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2
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Figure 3. A model for B lymphocyte-induced maturation protein-1 (Blimp-1)-meditated attenuation of MHC Class II expression via silencing

the MHC Class II-transactivator CIITA in dendritic cells (DCs). (a) Interferon regulatory factor (IRF)8 and IRF4, transcription factors mutually

exclusive to cDC1 and cDC2 respectively, in a complex with PU.1, facilitate promoter assembly (CIITAp1) to activate transcription of CIITA

resulting in the downstream activation of MHC Class II. (b) Blimp-1 expression in cDC2 potentially silences CIITA expression by displacing

IRF4. This results in the disassembly from the promoter, followed by chromatin remodelling, effectively controlling MHC Class II expression.

IRF4 can directly induce Blimp-1 in response to maturation and/or activation signals.
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lower Blimp-1 expression in individuals carrying the risk

allele,81 while ATG5 expression was unchanged. As

expected, lower Blimp-1 expression further correlated

with heightened let-7c miRNA and HLA-DR expression.

Interestingly, the SNP induces binding of the transcrip-

tional repressor KLF4 (kruppel-like factor 4), which is

expressed at high levels in DCs, providing a mechanistic

explanation for why alterations in Blimp-1 levels are

specific to DCs, and cementing the finding that dysregu-

lation of DCs, caused by low Blimp-1 expression, can lead

to SLE.81

Outlook

Taken together, a picture emerges in which Blimp-1 ful-

fills critical roles in the maintenance of immune home-

ostasis by integrating environmental triggers and

imprinting context-specific function of MNPs. Despite

increasing recognition of the potential of Blimp-1 as a

powerful rheostat of immune activation, little is known

about its in vivo regulation and its defined targets in the

MNP system. This is mostly due to both the intrinsic

heterogeneity of MNP subsets and the highly contextual

expression patterns of Blimp-1. Novel technologies

including single-cell RNA sequencing across tissues and

immunological states will continue to pave the way for

innovative approaches to modulate immune activation by

harnessing Blimp-1.
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