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Abstract: Obesity is a growing epidemiological problem, as two-thirds of the adult population are
carrying excess weight. It is a risk factor for the development of cardiovascular diseases (hyper-
tension, ischemic heart disease, myocardial infarct, and atrial fibrillation). It has also been shown
that chronic obesity in people may be a cause for the development of heart failure with preserved
ejection fraction (HFpEF), whose components include cellular hypertrophy, left ventricular diastolic
dysfunction, and increased extracellular collagen deposition. Several animal models with induced
obesity, via the administration of a high-fat diet, also developed increased heart fibrosis as a result
of extracellular collagen accumulation. Excessive collagen deposition in the extracellular matrix
(ECM) in the course of obesity may increase the stiffness of the myocardium and thereby deteriorate
the heart diastolic function and facilitate the occurrence of HFpEF. In this review, we include a
rationale for that process, including a discussion about possible putative factors (such as increased
renin–angiotensin–aldosterone activity, sympathetic overdrive, hemodynamic alterations, hypoad-
iponectinemia, hyperleptinemia, and concomitant heart diseases). To address the topic clearly, we
include a description of the fundamentals of ECM turnover, as well as a summary of studies assessing
collagen deposition in obese individuals.

Keywords: cardiac fibrosis; cardiac remodeling; collagen; extracellular matrix (ECM); metallopro-
teinase (MMPs); obesity; tissue inhibitor of metalloproteinases (TIMPs)

1. Introduction

Obesity today has reached pandemic proportions, as excess weight may even be
affecting up to two-thirds of the adult population in developed countries and is one of
the main causes of disability worldwide [1,2]. It is a well-established risk factor for the
development of metabolic disorders such as insulin resistance, diabetes, dyslipidemia, as
well as cardiovascular diseases such as atherosclerosis, ischemic heart disease, myocardial
infarction, hypertension, and atrial fibrillation [3–7]. It has been postulated that it may
contribute to the development of heart failure with preserved ejection fraction (HFpEF) [8],
as well as heart failure with reduced ejection fraction—HFrEF (usually by increasing the
risk of myocardial infarction) [8]. Obesity cardiomyopathy is a term describing heart failure
in the course of severe obesity of long duration, in which left ventricular hypertrophy
(LVH) is the most common finding [8]. Importantly, obesity is associated with several
hemodynamic changes and metabolic, inflammatory, and neurohormonal alterations such
as increased activity of both the renin–angiotensin–aldosterone system (RAAs) and the
sympathetic nervous system (SNS), hyperleptinemia, and hypoadiponectinemia, which
may all have an impact on heart remodeling and heart function [2,9].

Cardiac remodeling is defined as a change in the size, shape, or structure of one
or more of the cardiac chambers [9]. It results from changes in both the phenotype of
the cardiomyocytes and the extracellular matrix (ECM) [10]. Excessive synthesis of ECM
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components, especially collagen, by residential fibroblasts in the myocardium, is known
as fibrosis [11]. This process is inextricably associated with constant ECM turnover and
may be related to an imbalance between ECM degradation by enzymes known as metallo-
proteinases (MMPs) and their specific inhibitors (tissue inhibitors of metalloproteinases;
TIMPs) [12]. It also may lead to disruption of the cardiac architecture, enhancing its stiffness
and, therefore, deteriorating the systolic or diastolic function and facilitating the occurrence
of arrhythmia [11].

This review aims to provide a rationale for cardiac remodeling and fibrosis in the
course of obesity, by highlighting the putative reasons for this process and summarizing
studies focusing on assessing collagen accumulation in the ECM. We also comment on the
association of obesity with several cardiovascular disorders, which may additively impact
the cardiac geometry or are the consequence of adverse remodeling. To address this topic
clearly, a concise description of ECM turnover is provided.

2. Materials and Methods

For the purpose of this review, we searched PubMed using the phrases ‘obesity and
cardiac remodeling’, ‘obesity and cardiac fibrosis’, ‘obesity and cardiac ECM’, ‘high fat diet
and cardiac remodeling‘, ‘high fat diet and cardiac fibrosis’, ‘high fat diet and cardiac ECM’,
‘leptin, ‘adiponectin’, ‘cardiac ECM’, ‘collagen’, ‘obesity and atrial fibrillation’, ‘obesity and
heart failure’, and ‘obesity and hypertension’. We included review papers, original studies,
and meta-analyses. The search was conducted up to March 2022.

Due to the extensiveness of the topic, we excluded studies that focused merely on the
impact of type 2 diabetes mellitus on the cardiac muscle, as well as those assessing the
influence of weight reduction on the myocardium.

3. Obesity as a Heterogenous Disorder

The definition of obesity is based on the body mass index (BMI) (calculated as the ratio
of body mass in kilograms (kg) divided by the height in meters squared (m2)) and is diag-
nosed when the BMI value exceeds 30 kg/m2, whereas a person is described as overweight
when their BMI value is 25–29.9 kg/m2 [13,14]. In children, obesity is diagnosed when the
BMI value is above the 95th percentile adjusting for both age and gender [15,16]. According
to WHO recommendations, the severity of obesity may be assessed byits division into
classes, categorized by BMI: I class,30–34.9 kg/m2; II class, 35–39.9 kg/m2; and III class,
over 40 kg/m2 [17]. The third class is also referred to as severe, extreme, or massive obe-
sity [17]. The etiology of obesity is multifactorial, involving a complex interaction between
genetical, hormonal, environmental, dietary, and behavioral factors; obesity develops when
the caloric intake is disproportionately higher than the energy expenditure [18,19].

It must be acknowledged that obesity is a heterogenous disorder and there are a few
possible phenotypes of obese subjects: metabolically healthy obese (MHO); metabolically
abnormal obese (MAO); metabolically obese, normal weight (MONW), who are individuals
characterized by a BMI < 25 kg/m2, but affected with complications such as hyperinsuline-
mia/insulin resistance, abdominal and visceral adiposity, unfavorable adipokine and lipid
profile, and hypertension; and sarcopenic obese (SO) (whose body composition is made up
of a high fat content and low muscle mass with an accompanying “normal” BMI) [20,21].

Obesity is reaching pandemic proportions and may trigger the development of serious
metabolic and cardiovascular complications [22]. In fact, it is believed that the majority
of the adverse effects of obesity on the cardiovascular system and mortality risk are not
attributable to obesity itself but to the concomitant metabolic syndrome [3]. BMI is not
always considered to be a good predictor of future health complications, as it is not a
reliable measure to assess individual body fatness and adipose tissue distribution (visceral
vs. subcutaneous adipose tissue) [23]. It must be remembered that excessive adipose tissue
itself is also responsible for several hormonal and proinflammatory disturbances [24]. Due
to several pathomechanisms, obesity may switch macrophage polarization towards the M1
phenotype, which is considered to be proinflammatory and profibrotic [8]. Furthermore,
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adipose tissue excess in obese individuals is associated with chronic subclinical inflamma-
tion and increased infiltrations of the immune cells [25]. Adipose tissue is also considered
to be an active endocrine organ, as it secretes several hormones known as adipokines [26].
Recently, there has beena plethora of new emerging substances. In this review, we include
two of the most common hormones, leptin and adiponectin, whose defective signaling in
obesity can contribute to myocardial fibrosis.

Several experimental models were developed to study obesity-related complications.
The most typically encountered models for obesity induction are animals with genetic alter-
ations, for example, null for the leptin gene (ob/ob), with a mutation in the leptin receptor
gene (db/db, fa/fa), or fed with laboratory chow with a high percentage of fat content
(high-fat diet—HFD) [27]. In animal models, similarly to obese people, obesity is accompa-
nied by several metabolic disturbances (for example, hyperlipidemia, hyperinsulinemia,
and glucose intolerance) [27].

4. Distinctive Characteristics of the Cardiovascular System in the Course of Obesity

Obesity may affect the cardiovascular system via hemodynamic (increased workload)
and non-hemodynamic factors (increased activation of the sympathetic nervous system (SNS)
and the renin–angiotensin–aldosterone system (RAAs), insulin resistance/hyperinsulinemia,
leptin insensitivity/hyperleptinemia, reduced adiponectin concentration/hypoadiponectinemia,
overexpression of the peroxisome-proliferator-activated receptor (PPAR), decreased natri-
uretic peptides, lipotoxicity, oxidative stress, and chronic inflammation/hypoxia) [5,28,29].

The heart of obese individuals are characterized by cardiomyocyte hypertrophy, infil-
tration of fat into the ECM (steatosis), and accumulation of triglycerides among the con-
tractile elements [28,30]. All of those factors impact the left ventricle (LV) geometry [28,30].
Moreover, the myocardium in obese people is surrounded by excessive epicardial adipose
tissue (EAT) [8]. It has been shown that EAT may secrete several cytokines such as tumor
necrosis factor α (TNF-α), interleukin 6 (IL-6), activin A, connective tissue growth factor
(cTGF), MMPs, and angiopoietin-like 2 (ANGPTL2) [26,31,32]. Moreover, there aredata
showing that increased EAT in the course of obesity may facilitate cardiac fibrosis and
promote the incidence of arrythmia [32–35].

Another adverse impact of obesity on the myocardium is associated with lipotoxic-
ity [36]. Physiologically, in the healthy myocardium, free fatty acids (FFA) constitute an
elementary energetic substrate (approximately 70%) for the synthesis of adenosine triphos-
phate (ATP) [37]. In obesity, there is high availability of those substrates in circulatory form,
which can directly interact with the PPAR receptors. Activation of PPAR receptors leads to
increased uptake of FFA from the blood to the cardiomyocyte due to the CD36/fatty-acid
transport protein (FAT) transportation to the cell membrane and stimulation of expression
of enzymes necessary for FFA removal by β-oxidation in the mitochondria [38]. It was also
shown that this process may be facilitated by leptin throughthe short-term observation [39];
such a prolonged condition may induce myocardial lipid accumulation [40].

The presence of triglycerides may not appear to be toxic;nevertheless, a lipid overload
that exceeds the oxidative or storage capacity of the tissue may provoke the induction
of other alternative biochemical pathways, for example, towards the production of ce-
ramides, which may preserve proapoptotic properties [36,41,42]. Moreover, FFAs promote
diacylglycerol (DAG) synthesis, which may activate protein kinase C (PKC), which in
turn inhibits insulin signaling via the phosphatidylinositol 3-kinase/protein kinase B
(PI3K/Akt)-dependent pathway [36,38]. Lipotoxicity also contributes to the excessive
production of reactive oxygen species (ROS) and impaired mitochondrial biogenesis, which
favor both inflammation and cellular apoptosis [43].

In the next section, we describe more comprehensively the hemodynamic factors,
which are the main causative factor for cardiomyocyte hypertrophy in obese individu-
als [28]. Non-hemodynamic factors and their contribution to the changes in the cellular
and ECM components will be presented in the paragraph entitled ‘The effect of obesity on
myocardial ECM expression, heart fibrosis, and cellular hypertrophy’ in Section 7.
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4.1. Hemodynamic Changes Observed in Obesity

Obesity exerts several adaptive hemodynamic changes on the cardiac muscle
(Figure 1) [44]. First, obesity is generally considered to be a hypercirculatory condition [45].
Elevated fat-free (lean) mass and the high activity of RAAs may be putative reasons [9,44,45].
In obese patients, increased cardiac output (CO) is observed, and as the heart rate (HR)
remains normal or may be only slightly elevated, a major cause for this high CO is sub-
jected to increased stroke volume (SV) [9]. Increased SV may also result in increased LV
end-diastolic pressure, which was also detected in obese persons [9,44].
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Figure 1. Pathogenesis of hemodynamic alterations in the course of obesity. RAAs—renin–
angiotensin–aldosterone system; SVR—systemic vascular resistance; SV—stroke volume; HR—heart
rate; CO—cardiac output; LV—left ventricle.

Interestingly, excess weight leads to decreased systemic vascular resistance (SVR),
which may also lead to the augmentation of CO and LV dilatation [9]. Increased chamber
volume exerts tension on the ventricular wall, according to the Law of Laplace, and such a
chronic process may cause hypertrophy [29]. Such remodeling depicts the model of volume
overload that contributes to eccentric hypertrophy, characterized by the lengthening of the
myocytes [46].

Clinical manifestation of hemodynamic changes in the course of obesity may differ
entirely depending on the distribution of the adipose tissue in the body [47]. The Dallas
Heart Study carried out on 2710 participants without organic heart disease suggested that
hemodynamic features such as high CO and low SVR may pertain to individuals with
an excess of subcutaneous adipose tissue (SAT), especially distributed within the gluteal-
femoral region, whereas increased visceral adipose tissue (VAT) was rather related to lower
CO and elevated SVR [47]. Patients with excessive VAT proportions developed a concentric
hypertrophy of LV (i.e., increased myocyte thickness), and also had increased LV wall
thickness, increased LV mass/volume ratio, and smaller LV end-diastolic volume [46,47].
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Similarly, Liu et al. showed in their study that VAT in obese patients was a better predictor
of cardiac remodeling and subclinical dysfunction of LV than elevated BMI [48].

4.2. The Impact of Obesity on Myocardial Geometry and the Ejection Fraction

Left ventricular hypertrophy appears to be the most predominant observation in the
hearts of obese individuals [44,49–51]. The results from the Framingham Heart Study,
which was carried out on 3922 healthy participants, concluded that BMIwas strongly
correlated with left ventricular mass, LV wall thickness, and LV internal dimensions [50].
In a different study, an increase in BMI by 1 kg/m2 and an increase in waist circumference
by 1 cm increased the risk of LV hypertrophy by 5.1% and 2.6%, respectively [52]. It may
be concluded that increased LV mass is commonly encountered among obese individuals
and, in particular, it may be dependent on the central distribution of fat depots (abdominal
fat) [53].

Nevertheless, in the literature, it is commonly discussed whether heart enlargement
in the course of obesity results from concentric or rather eccentric hypertrophy [54]. A
meta-analysis that included 4999 obese individuals and 6623 nonobese controls showed
that eccentric hypertrophy was more frequent in obese subjects than the concentric pheno-
type [29,55]. This is in agreement with the initially formulated hypothesis of cardiomyopa-
thy of obesity, based on increased cardiac output and blood volume, which in turn exerts
tension on the LV wall, leading to its dilatation [56].

Today, investigators are more inclined to think that the concentric pattern may be
more prevalent than initially expected [9,29] and is even independent of the occurrence of
hypertension [54]. It is also believed that the distribution of fat tissue in the viscera was
more correlated with concentric hypertrophy [29], as well as with higher blood pressure
(BP) values in comparison with healthy, nonobese subjects, even without a diagnosis
of hypertension, which may predispose to such remodeling [9]. Fat distribution and
hemodynamic alterations also have an impact on cardiac remodeling, as mentioned above.
Lower body SAT prompted eccentric cardiac remodeling, whereas abdominal subcutaneous
adipose tissue did not have an effect on the hemodynamics. It was concluded that visceral
abdominal adiposity (more often associated with the presence of metabolic syndrome) was
a causative factor for concentric remodeling [47]. The existence of two different patterns of
hemodynamic alterations in obese individuals may contribute to different LV remodeling
(Figure 2).
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While considering LV diastolic dysfunction, it was shown that it is present in all classes
of isolated obesity [1,57,58]. Moreover, its degree correlated with BMI [57]. This supports
the high prevalence of HFpEF in obese individuals [59].

Data about the systolic LV function are inconsistent, as various authors have reported
that the LV ejection fraction (EF) was decreased, normal, or even supernormal in obese
subjects [27]. An increased EF may be observed in the early stages of obesity due to
increased volume overload [57].Some authors believe that long-lasting obesity without
metabolic and cardiovascular comorbidities may not be conducive to the impairment of
the systolic function [1,58]. Khan et al. concluded that there is not enough evidence in
clinical studies to make the claim that obese patients have left ventricular ejection fraction
(LVEF) < 35% [58]. Overt systolic dysfunction may suggest the presence of concomitant
heart disease, especially coronary artery disease (CAD) [1,58].

Similarly, the right ventricle (RV) in obese individuals may by characterized by a
mild increase in size and wall thickness [60]. In addition, a mild dysfunction of RV was
reported [8]. This may be a potential reason for the high prevalence of sleep apnea among
obese individuals [9]. Nevertheless, Wong et al. concluded that increased BMI was associ-
ated with the severity of RV dysfunction in overweight and obese subjects without overt
heart disease, even independent of sleep apnea [60]. Moreover, obesity may also induce the
enlargement of the left atrium (LAE) as a consequence of LV diastolic dysfunction [61,62].
The large MONICA/KORA study conducted on 1212 men and women showed that the
presence of obesity was the strongest predictive factor for LAE development [63] Lavie
et al. presumed that obesity may constitute a risk factor for atrial fibrillation [5].

To summarize, we may observe in obese individuals LV hypertrophy, either eccentric
or concentric, LAEand dilated RV, as well as RV hypertrophy [29].

5. Myocardial Extracellular Matrix

The myocardial extracellular matrix (ECM) is a network of fibrillar collagens (mainly
type I and III) and other nonfibrillar components such as glycoproteins—for example,
fibronectin, proteoglycans, and glycosaminoglycans (GAG)—that surrounds the cardiac
myocytes alignment and provides a connection between the cardiomyocytes, as well as
between the cardiomyocytes and the surrounding vessels [64,65]. Such scaffolding converts
the force generated by individual cardiomyocytes during the systole into an organized
ventricular contraction and prevents cardiomyocyte slippage as well as overstretching
during the diastole by providing passive stiffness [64,66]. It also influences the cardiac
tissue architecture and chamber geometry [66]. Moreover, the interstitial network of
connective tissues may also play a role in the mechanosensory process by intercellular
signaling, such as through the collagen–integrin–cytoskeleton–myofibril connection [67].
Apart from being a cellular scaffolding, the ECM also constitutes an environment for
numerous bioactive signaling molecules, such as transforming growth factor beta (TGF-β),
TNF-α, angiotensin II (Ang II), and endothelin-1 (ET-1) among others [68]. They are often
stored in inactive forms until they are activated in response to physiological or pathological
stimuli [67].

Myocardial ECM undergoes constant turnover, approximately by 0.6% per day, phys-
iologically [69]. Its composition is precisely regulated by MMPs and TIMPs, which are
mostly synthesized by cardiac fibroblasts, as well as other cells such as cardiomyocytes,
endothelial cells, and macrophages [70,71].

5.1. Collagen

Collagen is the main component of the cardiac ECM [72]. Recent morphometric
evaluations of human hearts from the deceased for noncardiac reasons showed that collagen
constitutes on average 15.2% of the RV, 8.6% of the interventricular septum (IVS), and 9.5%
of the LV [73]. Generally, collagens, based on their structure, can be divided into two main
classes: (1) fibril-forming collagens, which include the following types—I, II, III, and V;
(2) nonfibrous collagens—type IV (which is the main component of the basal lamina) and
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type VI collagen [74]. In the cardiac ECM, fibrillar collagens types I and III are the most
predominant, while collagen types IV (membrane base forming), V, and VI occur less
abundantly [71]. Type I accounts for approximately 80% forms of all thick fibers and
provides tensile strength in the myocardium, whereas type III collagen constitutes less
than 10% of all collagens and forms a thin network of fibers that support distensibility
of the heart [69,75]. The fibers are organized into the following areas: the epimysium,
perimysium, and endomysium [66]. The epimysium is a sheath of connective tissue
surrounding the entire muscle, whereas the perimysium surrounds groups of myocytes
and the endomysium interconnects individual cells [76].

It has been shown that the amount of collagen fibers, their distribution, and orga-
nization are the determinators of heart function and alterations in its interface, both in
structure and composition, may influence LV geometry and impair systolic and diastolic
heart function [64,77].

Increased collagen accumulation in the ECM may appear as a sign of fibrosis within the
heart muscle [71]. Beyond measurement of its protein levels, biomarkers of its synthesis and
degradation are frequently assessed as indicators for collagen turnover [67,71]. Propeptides
from the amino- and carboxy-terminal procollagen sides, which are cleaved in the ECM,
are considered to be biomarkers of collagen synthesis. These are PICP (procollagen type I
carboxy-terminal propeptide) and PINP (procollagen type I amino-terminal propeptide)
for collagen type I, and their counterparts for collagen type III—PIIICP and PIIINP, and
they are released in a stoichiometric manner [67,71]. During pathological ECM remodeling
as well as physiological ECM turnover, collagen fibers are degraded, which is associated
with the cleavage of C- and N-terminals of collagen molecules [67]. Hence, those C- and
N-terminal telopeptides of collagen type I (CITP, NITP) and type III (CIIITP, NIIITP) are
considered to be biomarkers of their degradation [67,71]. It is also feasible to assess the
enzyme involved in collagen processing, such as prolyl-4-hydroxylase (PH4), procollagen-
lysine,2-oxoglutarate 5-dioxygenase (PLOD), and lisyl oxidase (LOX) [78].

Not only does the amount of collagen have an influence on the activity of the heart
muscle, but also the cross-linking of its fibers [79,80]. In most studies, the degree of cross-
linking was determined by the amount of insoluble collagen versus soluble collagen in the
heart [79]. The disturbances of cross-linking were observed in chronic diseases, which may
be due to obesity-related comorbidities such as hypertension [81,82], chronic ventricular
volume overload [83,84], diabetes [85,86] and in aging hearts [87]. Increased crosslinking
may also contribute to enhanced diastolic stiffness of LV [87]. Furthermore, the reduction
of cross-linking, regardless of its type and quantity may contribute to cardiac dilatation,
which was observed in models of pressure-overload-induced heart failure [82].

Another factor worth considering is the ratio of type I collagen to type III collagen
(I/III collagen ratio), as its increase may be responsible for left ventricle stiffness and a
lower rate of relaxation [88,89]. Its elevation was observed in hypertension [79,89,90], in
patients with dilated cardiomyopathy [91], obesity [92,93], and in the experimental model
of myocardial infarct [94]. In diabetes, the contrary was observed, as this ratio was lower in
diabetic animals and humans compared with unaffected controls [86,95].

5.2. Metalloproteinases (MMPs)

We distinguish two principal types of MMPs: MMPs that are soluble in the ECM and
secreted in the latent proenzyme form (proMMPs) and membrane-type metalloproteinases
(MT-MMPs, such as MMP-14, also known as MT-MMP-1) that undergo processing in the
cellular compartment and, subsequently, are attached to the cell membrane in the already
activated form [77,96,97].

Soluble MMPs encountered in the myocardium and involved in remodeling include
interstitial collagenases such as MMP-1, MMP-8, MMP-13;the stromelysins such as MMP-3;
and the gelatinases such as MMP-2, MMP-9, and MMP-28 also known as epilisyn [71].
MMP-1, MMP-8, and MMP-13 degrade type I, II, and III collagens. In addition, MMP-1
degrades the basement membrane proteins [71]. The classically known gelatins, MMP-2
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and MMP-9, also process many collagens, including type I, IV, and V collagen; MMP-2
additionally cleaves type III collagen [12,98]. MT1-MMP can cleave many ECM proteins,
including fibronectin, laminin-1, and type I collagen [71].

Expression and activity of MMPs is tightly controlled on many different levels [97,99].
First, it is regulated on a transcriptional level by a variety of growth factors, cytokines,
chemokines, hormones, cellular transformation, and interaction with extracellular matrix
components. Second, most MMPs (except the membrane type) are synthesized as inactive
zymogens, called proMMPs [12], which require proteolytic activation by other already
active MMPs or endogenic proteases such as plasmin, urokinase-type plasminogen acti-
vator (uPA), tissue plasminogen activator (tPA), or thrombin [64]. Third, active MMPs
may be inhibited directly by their most specific inhibitors, such as tissue inhibitors of
metalloproteinase (TIMPs) [12].

5.3. Tissue Inhibitors of Metalloproteinase (TIMPs)

TIMPs are low-molecular-weight proteins (21–30 kDA) that create noncovalent high-
affinity complexes with active MMPs in the stoichiometric 1:1 ratio [12]. To date, there
have been four TIMPs (TIMP-1, -2, -3, -4) reported in the literature [100]. All four of
them are expressed in the normal human heart, but their profile varies under pathological
conditions [101]. Beyond their apparent inhibitory properties towards MMPs, TIMPs are
also involved in several other processes and may promote cellular growth, proliferation,
and apoptosis [102]. For example, it has been shown that upregulated TIMP-1 may in-
duce collagen synthesis and its elevated serum concentration may correlate with cardiac
fibrosis [103].

6. Fundamentals of Heart Fibrosis

Fibrosis may be one of the components of cardiac remodeling and is a term referred to
as the excessive accumulation of collagen within the ECM [11]. Fibrosis is a major risk factor
of cardiac failure as well as a crucial determinant of myocardial function, diastolic stiffness,
and a propensity for reentry arrhythmias. Increased fibrosis may reduce the elasticity and
compliance of the ventricle, leading to diastolic dysfunction, and may induce arrhythmia
and diminish oxygen availability by disrupting perfusion to the myocytes [70,71]. Such
a chronic condition may be a predisposition to heart failure and may induce a different
enzymatical response in the ECM [46,70,104].

Two types of fibrosis are usually distinguished: ‘reparative’ (that aims to replace
necrotic heart tissue, for example, in ischemic injury or directly after myocardial infarction,
MI) and ‘reactive’ (developing as a consequence of pathological hyperactivity of fibroblasts,
encountered usually in nonischemic cardiomyopathies or occurring after MI in surviving
heart muscle, or developing as a consequence of other injurious stimuli such as pressure
overload, aging, or metabolic disturbances) [105]. Reactive fibrosis may further be divided
into perivascular (expansion of the microvascular adventitia) and interstitial (expansion
of the endomysium and perimysium space, accompanied by the accumulation of ECM
proteins and significant cardiomyocyte loss) [70].

It has been shown that fibroblasts at the cellular level are responsible for the process of
cardiac fibrosis. In the healthy heart, fibroblasts are rather quiescent and nondividing [26],
whereas in myocardial fibrosis, they excessively proliferate leading to collagen turnover
dysregulation, as evidenced by the domination of its synthesis over its degradation [106].
Such pathologic activation of fibroblasts may be due to growth factors such as TGF-β;
platelet-derived growth factor (PDGF); epidermal growth factor (EGF); fibroblast growth
factor (FGF); cytokines IL-1, IL-4, TNF-α;AngII;and aldosterone [71].

Myofibroblasts (myoFBs) are cells that do not exist in the healthy myocardium. Cardiac
fibroblasts differentiate into myofibroblasts after injurious stimulus [107]. They possess a
greater ability to produce a higher amount of ECM components and they have contractile
properties preventing dilatation via cell–cell and cell–matrix interaction [71]. MyoFBs
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are generally considered to be a marker of the excessive deposition of ECM and express
α-smooth muscle actin (α-SMA), which is a marker of pathologic fibroblast activity [108].

The best-characterized cytokine contributing to the process of fibrosis is TGF-β, which
is secreted among others within macrophages and activates the SMAD signaling pathway in
cardiac fibroblasts, which induces collagen synthesis [109]. TGF-β is secreted into the ECM
as an inactive latent molecule (pro-TGF-β), which can be processed in the ECM to its active
form by several proteases, including plasmin, MMP-2, MMP-9, and ROS [110,111]. TGF-β
signaling occurs via assembling two dimeric TGF-β receptors (TGFβIR and TGFβIIR) [110].
Signal propagation by a cytoplasmic kinase domain of type I receptors (TGFβIR) leads to
phosphorylation of Smad2 and Smad3 proteins, which are known as receptor-regulated
Smad proteins (R-Smad) that act directly as transcription factors [110,112]. Translocation
of Smad2/3 to the nucleus is facilitated by creating a complex with Smad4 (common
Smad). Importantly, signaling via TGF-β type II receptor (TGFβIIR) may activate non-
Smad signaling pathways, such as p38MAPK and JNK [110,111].

Importantly, total Smad 2/3 expression remains unchanged, as TGF-β rather pro-
motes its activation via the phosphorylation of the downstream Smad 2/3 protein [113].
The role of TGF-β in ECM remodeling is quite well-established, as it can downregulate
MMP9 expression and upregulate TIMP-1, prompt fibroblast differentiation into myoFBs,
and increase the apoptosis of cardiomyocytes by directly stimulating mitogen-activated
protein kinase (MAPK) p38 and c-Jun N-terminal kinase (JNK) in a Smad-independent
manner [102,114].

It is not only the hyperactivity of fibroblasts that participates in the pathogenesis
of cardiac fibrosis, but also the constant turnover of enzymes in the ECM. For example,
proteolysis of the ECM by MMPs may promote fibroblast migration in response to cytokine
release [71]. Interestingly, the activity of some MMPs, including MT1-MMP, MMP-2, and
MMP-9, may also induce fibrosis through cleaving and activating latent ECM-bound TGF-
β, which subsequently results in the activation of the SMAD pathway in cardiac fibroblasts
and may trigger collagen production [115–117].

7. The Effect of Obesity on Myocardial ECM Expression, Heart Fibrosis, and
Cardiac Hypertrophy

Experimental studies confirmed increased fibrosis and adverse remodeling in animal
models of diet-induced obesity [92,118–121]. Czarzasta et al. observed increased fibrosis
in Sprague Dawley rats exposed to the administration of a HFD for 12 and 16 weeks in
comparison with controls, as well as a decrease in the cross-sectional area of LV cardiomy-
ocytes in relation to the entire LV area, which can correspond to an increased apoptosis
rate of cardiomyocytes due to lipotoxicity [118]. In another study, the same researchers
confirmed that a HFD may alter the expression of JNK and p38 MAPK kinases [114]. In
a study by Jimenez-Gonzalez et al., male Wistar rats fed with a HFD developed obesity,
cardiac hypertrophy, and fibrosis, accompanied by triglyceride and ceramide accumulation
in the cardiomyocytes [122]. Consistent results about enhanced collagen deposition were
presented by other authors [92,121,123–125].

An interesting observation was reported by da Silva et al., who investigated increased
collagen type 1 deposition in the cardiac ECM of Wistar rats after 15 weeks of HFD. How-
ever, after 30 weeks, collagen type 1 expression was profoundly diminished, even in
comparison with the control group. Collagen type III expression was unaffected [126]. De-
creased collagen type I was also detected in another study by the same researchers, in which
HFD administration lasted 34 weeks [127]. Both studies proposed that prolonged obesity
may impact ECM turnover differently, not in the matrix-preserving pattern [126,127].

Table 1 summarizes data on the impact of HFD administration in rodent models of
ECM turnover. We only present selected data that have been proved to be statistically
significant, where there was a comparison of animals fed on a HFD with animals fed on a
normal diet as a control.
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Table 1. Summary of studies performed on rodent models of high-fat diet (HFD)-induced obesity.

Investigators Animal
Model

Details of HFD
Regimen

Concomitant
Diseases

Indicators
of Fibrosis and

ECM Alterations

Cardiac
Remodeling and

Dysfunction

Wang et al.,
2012 [125] C57BL/6 J mice

D: 22 weeks
A: 8 weeks

P: 45%

glucose intolerance,
hypercholesterolemia,

hyperleptinemia,
hypoadiponectinemia

↑Smad3, TGF-β
↓Smad1/5 and

BMP-2
↑MMP-9

↑heart weight,
HW/TL,

LVESD, LVEDD
↓LVEF, FS

Aurich et al.,
2013 [124] C57BL/6 J mice

D: 16 weeks
A: 3 and

18 months
P: 45%

hyperinsulinemia ↑fibrosis,
col I, col III,

↑LV weight, BNP,
cardiomyocyte
hypertrophy

Guo et al.,
2020 [128]

129S1/SvImJ
mice

D: 16 weeks
A: 8 weeks

P: 60%
ND ↑fibrosis,

col I, col III
↑heart weight,

IVS, LVPW

Leopoldo et al.,
2010 [119] Wistar rats

D: 15 weeks
A: 30 days
P: 45.2%

glucose intolerance,
hyperinsulinemia,
hyperleptinemia,

hypertension

↑fibrosis
↑LV mass, LVESD,

LV wall systolic
stress, PWTd

Da Silva et al.,
2014 [126] Wistar rats

D: 15 and
30 weeks

A: 30 days
P: 49.2% fat

glucose intolerance,
hyperinsulinemia,
hyperleptinemia

↑col I (15 wk),
↓col II (30 wk) ND

Martins et al.,
2015 [121] Wistar rats

D: 20 weeks
A: 30 days
P: 22.7%

glucose intolerance ↑fibrosis ↑LAE, MCSAs

Eid et al.,
2019 [92] Wistar rats

D: 8 weeks
A: ND

P: 40% + CO

hyperinsulinemia,
insulin resistance

↑TGF-β1, Smad-3,
total collagen,

collagen type I/III
ratio,

cardiomyocyte
apoptosis

↑LVEDD
↓LVESD, LV
contractility

Jiménez-
González et al.,

2020 [122]
Wistar rats

D: 7 weeks
A: ND
P: 35%

insulin resistance ↑fibrosis
↑heart weight,

HW/TL, cardiac
hypertrophy

Da Silva-Bertani
et al., 2020 [127] Wistar rats

D: 34 weeks
A: 30 days
P: 49.2%

glucose intolerance,
hyperinsulinemia,
insulin resistance,
hyperleptinemia

↓col I
↑MMP-2;
↓TIMP-1, and

TIMP-2
ND

Nascimento
et al., 2013 [120] Wistar Kyoto rats

D: 20 weeks
A: 4 weeks

P: 30%

glucose intolerance,
hyperinsulinemia,
insulin resistance,

hypercholesterolemia,
hypertriglyceridemia,

hypertension

↑fibrosis
↑LVW/BW,

cardiomyocyte
hypertrophy

Czarzasta et al.,
2018 [118]

Sprague Dawley
rats

D: 12 and
16 weeks

A: 4 weeks
T: 31%

ND
↑fibrosis,

cardiomyocyte
apoptosis

ND

Hubesch et al.,
2022 [129]

Sprague-Dawley
rats

D: 4 and
12 months
A: 4 week

T:43%

glucose intolerance,
hyperlipidemia,
hyperleptinemia,

hyperadiponectinemia

↑fibrosis

Concentric
hypertrophy,
↑HW, LVSP,

LVEDP, RVESP, *

HFD—high-fat diet; D—duration of the HFD regimen; A—age of rodents when onset of HFD regimen oc-
curred; P—percentage of fat content in HFD; ECM—extracellular matrix; TGF-β—transforming growth factor β;
BMP—bone morphogenic protein; MMP—metalloproteinase; HW/TL—heart weight/tibial bone length ratio;
LVESD—left ventricular end-systolic dimensions; LVEDD—left ventricular end-diastolic dimension; LVEF—left
ventricular ejection fraction; FS—fractional shortening; col—collagen; BNP—brain natriuretic protein; ND—no
data; LV—left ventricle; PWTd—posterior wall thickness in diastole; wk—weeks; LAE—left atrial enlarge-
ment; MCSAs—myocyte cross-sectional areas; CO—corn oil; TIMP—tissue inhibitor of metalloproteinases;
LVW/BW—left ventricle weight/body weight; LVSP—left ventricular systolic pressure; LVEDP—left ventricular
end diastolic pressure; RVSP—right ventricular systolic pressure; *—statistically significant results only in terms
of 12 months rats.
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New Zealand White rabbits fed with a cholesterol-enriched diet also developed left
ventricular diastolic dysfunction which was accompanied by changes in the ECM, such as
increased mRNA for TGF-β and collagen type I, but not type III; hence, the I/III collagen
ratio was increased. Hypercholesteremia in rabbits also resulted in increased mRNA for
the vascular cell adhesion molecule-1 (VCAM1), MMP-12, TIMP-1, and IL-1 β [93].

Zhu et al. reported that a high-cholesterol diet (HCD) in pigs increased the collagen
type I/III ratio, TGF beta expression, and the activity of its mediator Smad as well as
cellular apoptosis through caspase-independent cascade [113]. After 12 weeks of HCD
administration, the pigs exhibited diastolic dysfunction whereas no systolic impairment
was observed [113].

Although there is increasing evidence that obesity may induce collagen deposition,
little is still known about alterations occurring in the cardiac ECM in the course of obesity,
especially in terms of metalloproteinase activity [70]. In the next paragraph, we include
information about putative factors contributing to fibrosis and cardiac remodeling.

7.1. Neurohormonal Changes in Obesity Attributable to Heart Remodeling
7.1.1. Sympathetic Nervous System (SNS)

Increased SNS activity is observed in obese individuals [5]. There are various hy-
potheses elucidating its overdrive including hypoxemia, hyperleptinemia, and insulin
resistance [6].

Importantly, beta-adrenergic receptors are located on the cardiac fibroblasts and there
are studies indicating that their stimulation may result in fibrosis and cardiac remodel-
ing [130]. Jaffre et al. showed that beta-adrenergic receptor (β-AR) overstimulation of the
cardiofibroblasts transactivated the protease activated receptor 1 (PAR1) through MMP-13,
leading to the activation of the pathological Gαq pathway in cardiomyocytes, and both
Gαq and ErbB in cardiac fibroblasts, predisposing cardiac dysfunction [131]. Similarly,
chronic β2-adrenergic receptor (β2-AR) stimulation enhanced the proliferation of cultured
human cardiac fibroblasts [132]. Moreover, transgenic mice with β2-AR overexpression
exhibited greater interstitial fibrosis [133].

7.1.2. Renin–Angiotensin–Aldosterone System (RAAs)

Enhanced RAAs activity is also observed in obese animals and people, which can
be elucidated by the fact that local synthesis of angiotensinogen, angiotensin I, and an-
giotensin converting enzyme occurs in the adipocytes additively to their systemic renal
production [9,134,135]. Moreover, adipokines (for example, leptin), as well as SNS activity
may increase the RAAs activity. The adverse effect of the latter may involve the induction
of hypertension, myocardial hypertrophy, and an increase in preload and afterload [9]. The
RAAs components are also well-established factors leading to cardiac fibrosis [136–139].
Angiotensin II can bind to its type I receptor (AT1-R), which can activate cellular signaling
pathways, including those involving extracellular signal-regulated kinase (ERK) and Janus
family kinase (Jak). Subsequently, those pathways may induce the expression of c-fos,
c-jun, and downstream proteins such as transforming growth factor-β1 (TGF-β1) and
Smad3 [70,137]. Angiotensin II is also considered to be a growth factor, which contributes
to cardiac hypertrophy in a TGF-β-activated kinase 1 (TAK1)-dependent manner [139].
Moreover, it may upregulate TIMP-1 expression [103].

7.1.3. Natriuretic Peptides

Atrial and brain natriuretic peptides (ANP, BNP) usually correlate with the degree
of heart failure and increase in response to increased atrial and ventricular stretching by
volume overload [140]. Interestingly, in obese individuals, both peptides are found in
comparatively lower concentrations [7]. It was shown that adipose tissue may also secrete
neprilysin—an enzyme that degrades natriuretic peptides [141].

In terms of alteration in the ECM, ANP and BNP were shown to reduce vasoconstric-
tion, inhibit fibroblast proliferation and differentiation into myofibroblasts, and inhibit
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collagen synthesis and MMP release via activation of the cyclic guanosine monophosphate
(cGMP) pathway [142].

7.1.4. Hyperinsulinemia and Insulin Resistance

Hyperinsulinemia and insulin resistance are inseparable complications of obesity [3].
Excessive adipose tissue secretes several factors such as proinflammatory cytokines, hor-
mones, glycerol, and nonestrified fatty acids (NEFA) [143]. In the course of obesity, in-
creased uptake of NEFA by peripheral cells leads to their intracellular accumulation and
competition with glucose for substrate oxidation [143,144]. Consequently, enzymes re-
quired for glucose utilization (e.g., pyruvate dehydrogenase, phosphofructokinase, and
hexokinase II) are inhibited [143,144]. Activity of several proinflammatory cytokines and
hormones further aggravates insulin intercellular signaling, leading to the condition known
as insulin resistance [145]. Pancreatic β-cells increase insulin secretion in order to overcome
reduced sensitivity of peripheral tissue, leading to hyperinsulinemia [143].

It has been shown that it is also one of the factors putative for cardiomyocyte hyper-
trophy via overactivation of PI3K/AKT and RAS/RAF/MEK/ERK signaling [146]. In the
study by Schiekofer et al., chronic Akt1 activation in transgenic mice was conducive to exten-
sive cardiac hypertrophy, contractile dysfunction, and interstitial fibrosis [147]. Moreover,
phosphorylation (i.e., activation) of AKT and its downstream mediators, glycogen synthase
kinase-3 α and kinase-3 β (GSK3A and GSK3B), was further increased by additional β-
adrenergic stimulation with ISO, which resulted in increased collagen accumulation [146].
It must be acknowledged that Akt signaling is considered to be a physiological pathway
in reference to heart growth; nevertheless, there aredata suggesting that its prolonged
activation in the course of obesity may exert a harmful effect on the myocardium [146,147].

7.2. Influence of Obesity-Related Tissue Inflammation and Hypoxia on Myocardial ECM
Expression and Heart Fibrosis

Obesity is associated with hypertrophy of the adipocytes, which contributes to the
development of a chronic hypoxic state [8].In healthy individuals, enlargement of the
adipose tissue usually occurs via de novo adipogenesis from precursor cells, whereas
adipose tissue expansion in the pathological obese also results from the enlargement of
existing adipocytes [148]. This may trigger local hypoxia, in response to which adipose
tissue macrophages may secrete hypoxia-inducible factor-1 α (HIF-1α) [8]. Hypoxia is also
considered to be a missing link between obesity and systemic low-grade inflammation [149].
HIF-1α induces systemic inflammation, contributing to an increased concentration of IL-6,
monocyte chemoattractant protein-1 (MCP-1), TNF-α, IL-1β, thrombospondin, pro α2 (I)
collagen, TGF-β, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and
cTGF [108].

In the myocardial vasculature, proinflammatory cytokines upregulate adhesion molecules
such as VCAM and E-selectins, which facilitates leukocyte (monocyte) subendothelial pas-
sage. Accumulation of inflammatory cells is conducive to alterations in coronary microvas-
cular endothelial cells and ROSproduction [150]. Oxidative stress results from an imbalance
between the antioxidant defenses and ROSproduction [151] and may be aggravated by
impaired mitochondrial biogenesis in the cardiomyocytes of obese individuals. It activates
nicotinamide adenine dinucleotide phosphate oxidase, causing nitrative stress, which limits
nitric oxide (NO)bioavailability [150]. This, in turn, decreases the activity of the protein
kinase G (PKG) in the adjacent cardiomyocytes causing their hypertrophy and the resultant
hypophosphorylation of titin, which increases myocardial stiffness [150]. This mechanism
is believed to serve an important role in the pathogenesis of HFpEF [150].

The available data suggest that the development of a chronic subclinical inflammatory
condition in the course of obesity contributes to increased myocardial fibrosis. For example,
differentiation of monocytes into macrophages and especially their polarization towards
the M1 phenotype promotes the TGF-β-mediated fibrogenic program [8].



Int. J. Mol. Sci. 2022, 23, 4195 13 of 29

HIF-1α was also studied in terms of its contribution to increased fibrosis, and it has
been shown that it may trigger the deposition of collagen type I, III, and IV and upregulate
TIMPs and LOX [108]. Moreover, it also stimulates the expression of several cytokines and
growth factors that target the proliferation and differentiation of fibroblasts such as FGF,
PDGF, and connective tissue growth factors [152]. There are also studies that pointed to the
involvement of HIF-1α in ECM regulation, as it may upregulate the expression of MMP-2
and MMP-9 [108,153].

7.3. The Effect of Selected Adipokines on Myocardial ECM Expression and Heart Fibrosis

Described below are leptin and adiponectin, two adipokines thatwere examined the
most in terms of heart remodeling.

7.3.1. Leptin

Leptin is an adipocyte-derived, 167-amino-acid hormone, initially known for its
anorexigenic properties and impact on the hypothalamic area [154]. It is predominantly
secreted by the adipose tissue (visceral, subcutaneous, and epicardial), but also by other
organs, including the myocardium [39]. Today, it is known that its receptors (LepR a-f) are
extensively distributed not only in the hypothalamus, but in various organs, including the
heart [39].Cardiomyocytes express two isoforms of LepR (LepRa and LepRb) [155]. Leptin
may exert its effect by direct binding to its receptors, or its activity may be mediated cen-
trally by the SNS [156]. Leptin’s circulating levels correlate with adipose tissue mass [157].
Moreover, almost two times more leptin mRNA was detected in obese individuals than
in lean counterparts [158]. Hyperleptinemia is a term assigned to describe the chronic
increase in serum levels of leptin. It is believed that hyperleptinemia in obese subjects
is not sufficient to overcome metabolic dysregulation, hence the hypothesis of leptin re-
sistance [159].Whereas there is more evidence for hypothalamic leptin resistance, less is
known about disturbances in its signaling in the peripheral tissue and myocardium [159].

Increased leptin concentration can impact the hearts of obese individuals by affect-
ing oxidative stress, fatty acid uptake and oxidation, cardiomyocyte hypertrophy, and
fibrosis [160]. Short-term incubation of HL-1 cardiomyocytes with leptin resulted in the en-
hanced oxidation of fatty acids and the transient reduction of lipid content [161]. However,
prolonged exposure of the cardiomyocytes to leptin impeded FFA oxidation and induced
FFA accumulation in the cardiomyocytes and lipotoxicity [161]. In terms of leptin-induced
cardiac hypertrophy, both studies by Zeidan et al. on rat neonatal ventricular myocytes cul-
tured for 24 h with 3.1 nmol/L of leptin showed that leptin may promote actin cytoskeleton
reorganization leading to the translocation of p38 MAPK from the cytosol to the nuclei. This
process was shown to be dependent on the signaling via the G protein Ras homolog gene
family (Rho) and its downstream effector, the Rho-associated coiled-coil-forming protein
kinase (ROCK) [162,163]. Thus, leptin-induced signaling via p38 MAPK may contribute to
the increased cardiomyocyte area (hypertrophy) [162,163].

Leptin is also believed to contribute to ECM turnover and collagen synthesis [127,164–166].
Schram et al. conducted a study on neonatal rat cardiac myofibroblasts and showed that
their incubation with leptin significantly enhanced MMP-2 activity resulting from MT1-
MMP action, which is a known activator of the mentioned metalloproteinase. Importantly,
the mRNA and protein levels of MMP-2 remained unchanged, whereas the mRNA and
protein levels of MT1-MMP both increased; therefore, it may be concluded that leptin upreg-
ulates the expression of MT1-MMP, which in turn increases MMP-2 activity [166]. Moreover,
leptin enhanced the synthesis of collagen type I in the myofibroblast, which contributed to
increased levels of extracellular soluble procollagen type I protein in conditioned media.
Total collagen synthesis was unaffected, as the level of soluble procollagen type III protein
was decreased [166]. In another study by the same authors on adult rat cardiac fibroblasts,
leptin was shown to regulate the actin cytoskeleton via the RhoA/ROCK pathway, and
thereby induce the translocation of MT1-MMP to the membrane cell [167]. Subsequently,
the creation of a cell membrane complex of CD44 with MT1-MMP enabled the cleavage of
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the pro-MMP-2′s propeptide domain, thus prompting MMP-2 activation [167]. The authors
also determined, in a study on murine HL-1 cardiac cells, that leptin-dependent MMP-2
activation in the ECM may rather depend on p38 MAPK signaling, and not ERK1/2 nor
PI3-kinase signaling [165].After leptin stimulation, signaling via p38 MAPK contributed to
the reduction of TIMP-1 expression [165].

Madani et al. made a slightly different observation on human pediatric ventricular
myocytes, namely, they observed the increased expression of collagen type III and IV
mRNA and the decreased expression of collagen type I under leptin stimulation [164].
Interestingly, p38 MAPK and JAK/STAT signaling was involved in that process, as well
as ERK1/2 [164]. However, as stated above, in murine cells, ERK1/2 signaling was not re-
ported. Importantly, signaling via ERK1/2 was the only pathway contributing to decreased
collagen type I mRNA levels [165], which may be a source of the inconsistency. In the
study by Madani et al., all three signaling pathways were conducive to cardiac hypertrophy,
which was evidenced by the increased expression of α-actin and myosin light chain-2 [164].

Similar conclusions were reached by da Silva-Bertani et al., who conducted their
study on obese hyperinsulinemic and hypertensive rats, which were fed a high-fat diet
for 34 weeks, and observed similar MMP-2 (increased) and collagen type I profiles (de-
creased) [127]. There was also a negative correlation between collagen type I and MMP-2
and a positive correlation between leptin and MMP-2 [127]. They also reported reduced
TIMP-1 and TIMP-2 levels [127]. Low TIMP2 concentration may have enhanced the activity
of MMP14 and MMP2, which in turn, cleaved collagen type I and decreased its level [127].

Leptin signaling in the myocardium is not fully understood in terms of conditions
associated with leptin resistance [159]. There are numerous experimental studies on ani-
mals with a defective leptin gene (ob/ob), as well as with the impairment of its receptor
(db/db or fa/fa) [27]. Similarly, as in humans, those animal models develop obesity, in-
creased adiposity, and hyperglycemia [168]. The use of db/dbmice is also a recognized
method for establishing a model of diabetes-associated cardiomyopathy, as rodents usually
exhibit characteristics typical for HFpEF (such as diastolic dysfunction, cardiomyocyte
hypertrophy, interstitial/perivascular fibrosis, and microvascular rarefaction) [168]. There
are studies indicating that geneticallyinduced leptin-resistant animals exhibited lipid accu-
mulation in the heart, which resulted in apoptosis [169]. This condition was reversed by
the administration of leptin [169]. It was also observed that in leptin-deficient ob/ob mice,
the activity of sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA) and Na(+)-Ca(2+)
exchanger expression were depressed [170]. This supports the fact that leptin may have an
impact on the contractility of the heart muscle [170].

To conclude, it is still not known whether the impact of leptin on the myocardium
in the course of obesity results from hyperleptinemia or leptin resistance; therefore, fur-
ther studies are required [171]. The abovementioned studies show conflicting results
regarding the influence of leptin on cardiac ECM. There is evidence documenting leptin’s
matrix-degrading impact, as well as there are studies demonstrating leptin’s profibrotic
properties. We may only speculate that time of exposure to obesity, different expressions
of TIMPs, and differences in leptin cellular signaling may be considered cause for such
inconsistency. Further research is needed to understand the complexity of leptin’s impact
on the myocardium.

7.3.2. Adiponectin

Adiponectin is a beneficial adipocyte-derived hormone that is involved in maintaining
body energy homeostasis via suppressing gluconeogenesis in the liver and enhancing FFA
oxidation in the skeletal muscles [172,173]. Such peripheral effects are due to adenosine
monophosphate-activated protein kinase (AMPK) signaling and depend upon increased
mitochondrial fatty-CoA import and CD36 translocation [174]. Moreover, adiponectin
exhibits anti-inflammatory, antiapoptotic, and antiatherosclerotic properties [175,176] and
is significantly reduced in obese individuals, leading to a state known as hypoadiponectine-
mia [177]. Native adiponectin may exist in three different complexes: low molecular
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form (LMW, trimer), middle molecular form (MMW, hexamer), and high molecular form
(HMW, 12–18-mer) [175]. It is believed that HMW, which mostly exerts insulin-sensitizing
properties and cardiovascular protective effects, is most profoundly decreased in obese
individuals [173]. Adiponectin is believed to be an agent protective against the develop-
ment of metabolic syndrome [138]. There are two major adiponectin receptors: AdipoR1
and AdipoR2 [173], whose presences have also been confirmed in the heart muscle [178].
The first is generally responsible for activating the AMPK pathway, whereas the second
induces signaling through the proliferator-activated receptor alpha (PPARα) [173].

The available data suggest that adiponectin may have positive effects on the cardio-
vascular system and exerts antifibrotic properties. For example, in the study by Fujita et al.,
supplementation of adiponectin to the cultured neonatal rat cardiac fibroblasts incubated
with Ang II improved the reduction of AMPK activity and partially decreased ER1/2 activ-
ity, which was formerly enhanced by AngII. Subsequently, the same authors performed
a study on mice with the adiponectin gene knockout (APN-KO) and observed increased
cardiac fibrosis after Ang II infusion in the APN-KO animals, when compared with the wild
type (WT) controls, which was also evidenced by the increased mRNA of collagen type
I, III, and TGF-β [138]. Importantly, most adverse effects were reversed after adiponectin
supplementation, but not in PPARα-KO mice, which suggests the involvement of PPARα
as a downstream effector of adiponectin signaling [138].

Moreover, in astudy on primary rat cardiac fibroblasts, Dadson et al. investigated
that adiponectin signaling via its downstream effector APPL1 and, subsequently, AMPK
activation, may exert changes in MMPs activity [179]. They observed enhanced MT1-MMP
translocation to the cell membrane and increased extracellular MMP-2 activity [179].

Adiponectin deficiency may also aggravate concentric cardiac remodeling in a pressure
overload condition (encountered, for example, in hypertension), which was observed in
the studies on APN-KO mice [180,181]. Enhanced hypertrophy resulted from an increase
in ERK and a reduction in AMPK signaling in the myocardium [180,181].

In an experiment on male SpragueDawley rats, Zhu et al. investigated whether
adiponectin improved post-MI remodeling and I/R injury through AMPK-dependent and
independent AMPK STAT3 activation [182]. In the model of subacute CVB3 myocarditis,
APN-KO mice exhibited a lower level of MMP-9 synthesized by cardiac fibroblasts, which
impaired the collagen cleavage during the myocardium injury [183].Yan et al. showed that
patients affected by hypertension with a lower level of adiponectin (resulting from genetic
polymorphism) were predisposed to enhanced cardiac fibrosis [184].

Although the abovementioned studies were not performed within the scope of an
obesity investigation, they show how hypoadiponectinemia (which is frequently encoun-
tered in obese individuals) may have an adverse impact on the alterations in the ECM and
cardiomyocyte hypertrophy and can exacerbate cardiac injury under ischemic conditions.
The studies suggest that hypoadiponectinemia facilitates cardiac fibrosis; nevertheless,
further research onthe settings of obesity is required to confirm the hypothesis.

Summary of the rationale for cardiac fibrosis in the course of obesity is presented in
Figure 3.
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Figure 3. Rationale for cardiac fibrosis in the course of obesity and its clinical sequel. Ang II—
angiotensin II; ACE—angiotensin-converting enzyme; SNS—sympathetic nervous system; ANP—
atrial natriuretic peptide; BNP—brain natriuretic peptide; ERK1/2—extracellular-signal-regulated
kinase; JAK—Janus-activatedkinase; TGF-β—transforming growth factor beta; cGMP—cyclic guano-
sine monophosphate; p38MAPK—p38 mitogen-activated protein kinase; JAK/STAT—Janus ki-
nase/signal transducer and activator of transcription; AMPK—AMP-activated protein kinase;
Pi3k/Akt—phosphatidylinositol 3-kinase/protein kinase B; MI—myocardial infarction; HTN—
hypertension; LAE—left atrial enlargement; HFrEF—heart failure with reduced ejection fraction;
HFpEF—heart failure with preserved ejection fraction.

8. Heart Remodeling in Selected Cardiovascular Diseases

Obesity-related metabolic alterations may trigger the development of hypertension;
atherosclerosis; ischemic heart disease (IHD); and, consequently, myocardial infarct (MI).
The presence of those concomitant factors may additionally change the prognosis for
patients and their risk profile, as well as cardiac remodeling. On the other hand, interstitial
fibrosis within the heart muscle may affect heart function, impairing the diastolic function,
and therefore may be one of the causes of arrhythmia.

This section focuses on two obesity-related cardiovascular complications that have
significantly different impacts on heart remodeling, namely, hypertension and myocardial
infarction, as well as two major consequences of obesity-related cardiac fibrosis—heart
failure and atrial fibrillation.

8.1. Hypertension

Hypertension (HTN), defined as elevated systolic blood pressure (SBP) ≥ 140 mmHg
and diastolic blood pressure (DBP) ≥ 90 mmHg, is one of the major preventable risk
factors for cardiovascular disease (CVD) and all-cause mortality worldwide [185]. Global
epidemiological statistics show that the condition may pertain to about 1.28 billion adults
worldwide [186]. The linkage between obesity and HTN was recognized early—specifically,
at the beginning of the twentieth century [187]. It has been shown that today, up to 50–60%
of obese people suffer from hypertension [44]. Even if obesity does not always induce
hypertension (HTN), it may increase baseline BP and the risk of developing HTN in the
future [6].

Although hemodynamic alterations (characterized by increased CO and decreased
SVR) would indicate against the development of HTN, other factors such as excessive



Int. J. Mol. Sci. 2022, 23, 4195 17 of 29

RAAs and SNS activation, hyperleptinemia, and a decrease in natriuretic peptides with
consequent salt retaining, may play key pathogenic roles [8,187].

In terms of cardiac remodeling, Ang II affects the smooth muscle in the blood vessels
exerting a vasoconstrictor effect, thereby increasing the afterload and pressure on the LV
and prompting its concentric hypertrophy [9,135]. Enhanced RAAs activity also increases
total blood volume, which further contributes to the rise in the preload [9]. Augmented
aldosterone secretion from the zona glomerulosa and salt retaining may be elucidated by
activation of aldosterone synthase (CYP11B2) via leptin, which was also responsible for the
SNS overdrive [135].

HTN, in the absence of obesity, is associated predominantly with LV pressure overload
(PO), causing concentric hypertrophy. Nevertheless, volume overload (VO) was addition-
ally observed in obese individuals; thus, the presence of both components (PO and VO)
may result in the development of either concentric or eccentric LV hypertrophy [8]. It may
be also speculated that during the co-occurrence of HTN and obesity, the initial adaptive
response to PO includes early development of LV hypertrophy in order to sustain even
more enhanced CO. Later on, untreated HTN is followed by a slow progression to cardiac
interstitial fibrosis, which impairs its diastolic function. Pertinent PO may eventually lead
to dilatation, systolic dysfunction, and heart failure [70].

8.2. Myocardial Infarction(MI)

Acute myocardial infarction is defined pathologically as myocardial cell death due
to prolonged ischemia and clinically as an ischemic-provoked acute myocardial injury
accompanied by abnormalities in cardiac biomarkers [188]. MI is one of the leading causes
of death globally, with a prevalence approaching three million people worldwide [189].
Obesity is a well-established modifiable risk factor for cardiovascular diseases and was
also indicated in the INTERHEART study as an important contributor to the development
of MI [190].

Heart remodeling after MI is complex [46]. Reparative fibrosis is the dominant type
of fibrosis in post-MI remodeling and is based on replacing necrosed cardiomyocytes
by a fibrotic scar [105]. Thus, infarcted areas are generally stretched and dilated, which
increases the left-ventricular volume, but also exerts a combined volume and pressure
load on noninfarcted tissues, leading to their hypertrophy [46]. Myocardial infarct is the
predominant risk factor for HFrEF and may contribute to heart systolic dysfunction and
sometimes also to heart diastolic dysfunction [191].

Cardiac remodeling after MI has been extensively studied, particularly the mechanisms
on the cellular level. In the early phase, it is mostly related to inflammatory cell migration
to the injured heart area. Neutrophils emerge as the first cells, as soon as 15 min after
myocardial infarct, and constitute the main source of MMP-9, which cleaves the ECM
scaffolding [192]. Macrophages, derived from circulating monocytes, are the subsequent
source of metalloproteinases, as well as several cytokines such TNF-α, TGF-β, and IL1 [192].
They also phagocyte the necrosed material and secrete TGF-β that stimulates the fibroblast
proliferation and induces collagen deposition [192]. Heart fibroblasts become activated
in ischemic injury and reach their maximum proliferation within 2–4 days; later, in the
first week after MI, they are differentiated into myoFBs, which secrete much more ECM
than fibroblasts and provide stronger contractile support to the damaged heart [193].
Consequently, a fibrotic scar replaces the necrosed myocytes [105].

The impact of obesity on post-MI cardiac remodeling is not well-established and
is quite controversial [194]. In humans, a so-called obesity paradox exists in which it is
postulated that obese patients may present better long-term prognosis than lean individ-
uals after MI despite their overall high risk for developing cardiovascular disease [195].
This hypothesis is often criticized because obese subjects with acute coronary events are
generally younger than their counterparts with MI of another origin, which may rep-
resent a bias [194,196]. Importantly, the paradox may not pertain to extremely obese
patients [194,196]. Interestingly, some positive impact of obesity on post-MI cardiac re-



Int. J. Mol. Sci. 2022, 23, 4195 18 of 29

modeling was also depicted in animal models with both experimentally induced obesity
(usually by HFD) and MI [194,195,197,198]; therefore, they may provide some rationale for
the paradox, which is discussed below.

In the study by Poncelas et al., the hybrid mouse strain B6D2F1, after 6 months of HFD,
developed severe obesity and hyperinsulinemia without complications of hyperglycemia
and hypertension, had improved tolerance to myocardial ischemia/reperfusion injury after
MI, and long-term reperfusion in comparison with mice on a normal diet [195]. Moreover,
obese mice had less LV dilatation, decreased incidence of pulmonary congestion, and
improved ventricular function [195].

Heberlin et al. observed increased post-MI mortality among hyperglycemic and
hyperinsulinemicKKAymice.Attenuated LV remodeling and reduced deposition of collagen
type I and III occurred in the survivors; hence, reduced heart stiffness in obese survivors
was detected. Changes in the ECM turnover, characterized by reduced scar formation were
probably a reason for a higher rate of cardiac rupture in the early post-MI phase; however,
they contributed to better overall outcome in subsequent days [199].

Inserte et al. observed a reduced infarct size in obese B6D2F1 mice submitted to
transient coronary occlusion [197]. Similarly, Huisamen et al. also observed a smaller
infarct size in obese Wistar rats, as well as significantly poorer early postischemic recovery
than in the controls [198].

Some of the abovementioned studies focused on investigating alterations in the signal-
ing pathways in the postischemic hearts of obese animals [194,195,198]. In those models, it
was shown that hyperinsulinemia may increase PKB/Akt phosphorylation (activation) in
the noninfarcted region of the hearts [194,195,197], which is believed to be protective during
ischemia/reperfusion damage [200]. Nevertheless, Huisamen et al.’s study indicates the
opposite as they did not observe enhancement of this signaling pathway [198].

Furthermore, Inserte et al. proposed that HFD and obesity may impact the type of
substrate utilization and favor fatty acid oxidation (FAO) over glycolysis under ischemic
conditions [197].

An interesting approach was undertaken by Mouton et al., as they also observed the
activation of favorable signaling pathways under ischemia in obese C57BL/6J mice [194].
However, all those positive effects were abrogated in the presence of concomitant hyperten-
sion (induced by angiotensin II administration), hence the conclusion that the coexistence
of untreated hypertension may more adversely impact post-MI cardiac remodeling. Obese–
hypertensive animals also had reduced collagen deposition in the infarcted areas, which can
cause ventricular rupture [194]. As in previous studies, obese mice had a higher mortality
rate, but it was even higher in mice with concomitant hypertension [194].

There are also studies documenting the contrary observations, postulating a decreased
cardiac outcome in obese rats and an increased susceptibility to post-MI cardiac dysfunc-
tion [201]. Du Toit et al. observed increased infarct size in obese rats. Interestingly, the
addition of insulin to the perfusion buffer decreased the infarct size by approximately
9% in the control group and 21% in the obese animals. Conversely, the addition of FFA
augmented the area at risk [201].

8.3. Heart Failure (HF)

Heart failure (HF) is a set of clinical symptoms (such as breathlessness, ankle swelling,
fatigue) and signs (for example, elevated jugular venous pressure, pulmonary congestion),
both arising from structural and/or functional abnormalities in the heart, which conse-
quently lead to reduced CO or elevated intracardiac pressure [202,203]. The following types
of HF are typically distinguished based on the value of LVEF: HFrEF (when LVEF ≤ 40%);
HFpEF (when there is evidence for structural cardiac abnormalities but the LVEF is greater
than 50%); and the interjacent form, heart failure with mildly reduced ejection fraction
(HFmrEF), also known as heart failure with mid-range ejection fraction, (reserved for
patients with a LVEF of 40% to 49%, who may benefit from the therapy administered for
individuals with HFrEF) [202].
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It was shown that each increment in BMI value by 1 kg/m2 increases the risk of HF
in females by 7% and in males by 5% (after adjustment for established risk factors) [204].
The ALLHAT study showed that HFpEF developed predominantly in individuals with
a high body mass, whereas coronary heart disease contributed to HFrEF [205]. Obesity,
especially when accompanied by complications such as HTN, dyslipidemia, and insulin
resistance, is a risk factor for CVD, accelerates atherosclerosis progression, and increases
the risk of MI, which may impair the cardiac systolic function [3,205]. However, it is HFpEF
that seems to be more prevalent in obese patients, as evidenced in the recent analysis of
four community-based studies [206].

The pathogenesis of HFpEF in obese patients remains less understood and is not only
related to the vascular origin [156], but to several other aspects as discussed above. The
role of cardiac remodeling and fibrosis may be considered as putative factors.

Increased collagen deposition in the ECM contributes to ventricular stiffness and,
therefore, may impair diastolic function in obese people [207]. Cardiomyocyte hyper-
trophy may imply a chronic enhanced demand for ATP in the myocardium, and such
maladaptation may eventually lead to heart failure [208].

The constellation of concentric hypertrophy, diastolic dysfunction, increased cardiac
fibrosis, and cellular hypertrophy were presented as features characteristic ofHFpEF [150].
The current understanding of the origin of HFpEF focuses on the fact that it is the conse-
quence of chronic inflammatory disorders, including obesity [150]. HFpEF also remains
less understood and lacks a specific effective treatment [209].

8.4. Atrial Fibrillation (AF)

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans
and one of its main causes may be obesity, which is a major trigger for metabolic syndrome
and diabetes mellitus [4]. Recent data suggest that AF pertains to 1% to 4% of the popu-
lations of Australia, Europe, and the USA [210]. Wanahita et al. concluded that obesity
increased the risk of developing AF even by 49% [211]. The potential rationale for the
increased AF rate in obese individuals includes atrial enlargement, increased fat depots,
and interstitial fibrosis [1,4].

First, LAE may stimulate stretch-activated channels, paving the way for the formation
of re-entry excitations. Second, infiltration of fat depots into the myocardium disrupts heart
architecture leading to a slowing of the signal conduction and the maintenance of reentrant
circuits. Fibrosis disrupts cell-to-cell coupling, impairs potential propagation, and also
generates reentrant excitations [4,208]. Similarly, the interactions between myocytes and
differentiated myoFBs may contribute to adverse electrical, mechanical, and biochemical
coupling [4]. McCauley et al. also observed remodeling of the sodium, potassium, and
calcium channels in their study on obese mice administered a HFD [212]. Moreover, in this
study, AF was also reversed by the administration of antioxidant therapy [212].

9. Conclusions

Based on the available data, it is known that obesity can have an impact on heart
remodeling; nevertheless, the exact mechanism of its direct effect has still not been clarified
due to the multifaceted nature of different obesity phenotypes and the high incidence
of other metabolic and cardiovascular diseases. On the one hand, we observe several
hemodynamic changes contributing to the dilated model of heart remodeling; on the
other hand, we observe a high prevalence of concentric remodeling due to concomitant
hypertension, inflammation, and (neuro)hormonal disturbances—all of them putative to
the development of HFpEF. The variable effect on cardiac remodeling may also be due
to the type of adipose tissue distribution, the severity and duration of obesity, and the
administered treatment.

Obesity significantly influences the components of the cardiac extracellular matrix
and promotes interstitial collagen deposition in the heart muscle. Cardiac fibrosis may
be attributable to enhanced RAAs activity, SNS overdrive, systemic inflammation and



Int. J. Mol. Sci. 2022, 23, 4195 20 of 29

hypoxia, decreased natriuretic peptide level, hyperinsulinemia, hyperleptinemia, and
hypoadiponectinemia, which are encountered in obese individuals. Unfortunately, little is
known about the activity of MMPs and TIMPs in the ECM turnover and this topic should
be studied more comprehensively.

The role of obesity in cardiac remodeling remains ambiguous, as the adiposity may
sometimes appear to be beneficial—for example, it was shown to trigger some favorable
metabolic effects under ischemic conditions.

Due to the increasing worldwide prevalence of obesity, there is an urgent need for fur-
ther studies to help us understand the mechanisms of cardiac dysfunction in obese patients
and to enable us to develop better diagnostic and therapeutic measurement of HFpEF.
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EF, ejection fraction; EGF, epidermal growth factor; ERK1/2, extracellular-signal-regulated kinase;
ET-1, endothelin-1; FAO, fatty acid oxidation; FAT, CD36/fatty-acid transport protein; FFA, free fatty
acids; FGF, fibroblast growth factor; FS, fractional shortening; GAG, glycosaminoglycans; GSK3A,
glycogen synthase kinase-3 α; GSK3B, glycogen synthase kinase-3 β; HCD, high-cholesterol diet;
HFD, high-fat diet; HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with
reduced ejection fraction; HIF-1α, hypoxia-inducible factor-1 α; HMW, high molecular form; HR,
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disease; IL-6, interleukin 6; JAK, Janus-activatedkinase; JAK/STAT, Janus kinase/signal transducer
and activator of transcription; JNK, c-Jun N-terminal kinase; LAE, left atrium enlargement; LepR, lep-
tin receptor; LMW, low molecular form; LOX, lisyl oxidase; LV, left ventricle; LVEDD, left ventricular
end-diastolic dimension; LVEDP, left ventricular end diastolic pressure; LVEF, left ventricular ejection
fraction; LVESD, left ventricular end-systolic dimensions; LVH, left ventricular hypertrophy; LVSP,
left ventricular systolic pressure; LVW/BW, left ventricle weight/body weight; MAO, metabolically
abnormal obese; MCP-1, monocyte chemoattractant protein-1; MCSAs, myocyte cross-sectional areas;
MHO, metabolically healthy obese; MI, myocardial infarction; MMPs, metalloproteinases; MMW,
middle molecular form; MT-MMPs, membrane-type metalloproteinases; myoFBs, myofibroblasts;
NADPH, nicotinamide adenine dinucleotide phosphate; NEFA, nonestrified fatty acids; NITP, N-
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terminal telopeptides of collagen type I; NIIITP, N-terminal telopeptides of collagen type III; NO,
nitric oxide; p38 MAPK, p38 mitogen-activated protein kinase; PAR-1, protease activated receptor 1;
PDGF, platelet-derived growth factor; PH4, prolyl-4-hydroxylase; PI3K/Akt, phosphatidylinositol 3
kinase/protein kinase B; PICP, procollagen type I carboxy-terminal propeptide; PINP, procollagen
type I amino-terminal propeptide; PKC, protein kinase C; PKG, protein kinase G; PLOD, procollagen-
lysine,2-oxoglutarate 5-dioxygenase; PO, pressure overload; PPAR, peroxisome-proliferator-activated
receptor; proMMPs, proenzyme form metalloproteinases; pro-TGF-β, transforming growth factor
beta; PWTd, posterior wall thickness in diastole; RAAs, renin–angiotensin–aldosterone system; RF,
right ventricle; Rho, Ras homologous protein; ROCK, Rho-associated coiled-coil-forming protein
kinase; ROS, reactive oxygen species; R-Smad, receptor-regulated Smad proteins; RVSP, right ven-
tricular systolic pressure; SAT, subcutaneous adipose tissue; SBP, systolic blood pressure; SERCA,
sarcoendoplasmic reticulum (SR) calcium transport ATPase; SNS, sympathetic nervous system; SO,
sarcopenic obese; SR, sarco(endo)plasmic reticulum; SV, stroke volume, SVR, systemic vascular resis-
tance; TAK1, transforming growth factor beta-activated kinase 1 kinase; TIMPs, tissue inhibitor of
metalloproteinases; TGF-β, transforming growth factor beta; TGFβIR, transforming growth factor-β
receptor type I; TGFβIIR, transforming growth factor-β receptor type III; TNF-α, tumor necrosis
factor α; TPA, tissue plasminogen activator; uPA, urokinase-type plasminogen activator; VAT, vis-
ceral adipose tissue; VCAM1, vascular cell adhesion molekule-1; VO, volume overload; WT, wild type.
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