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a b s t r a c t

Sphingobium sp. PNB, like other sphingomonads, has multiple ring-hydroxylating oxygenase (RHO)
genes. Three different fosmid clones have been sequenced to identify the putative genes responsible
for the degradation of various aromatics in this bacterial strain. Comparison of the map of the cat-
abolic genes with that of different sphingomonads revealed a similar arrangement of gene clusters
that harbors seven sets of RHO terminal components and a sole set of electron transport (ET) pro-
teins. The presence of distinctly conserved amino acid residues in ferredoxin and in silico molecular
docking analyses of ferredoxin with the well characterized terminal oxygenase components indi-
cated the structural uniqueness of the ET component in sphingomonads. The predicted substrate
specificities, derived from the phylogenetic relationship of each of the RHOs, were examined based
on transformation of putative substrates and their structural homologs by the recombinant strains
expressing each of the oxygenases and the sole set of available ET proteins. The RHO AhdA1bA2b was
functionally characterized for the first time and was found to be capable of transforming ethylben-
zene, propylbenzene, cumene, p-cymene and biphenyl, in addition to a number of polycyclic
aromatic hydrocarbons. Overexpression of aromatic catabolic genes in strain PNB, revealed by
real-time PCR analyses, is a way forward to understand the complex regulation of degradative genes
in sphingomonads.
� 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Bacteria of the genera Sphingomonas, Novosphingobium, Sphin-
gopyxis and Sphingobium, commonly referred to as sphingomonads
[1], are well known for their potential in bioremediation and
industrial applications [2,3]. Sphingomonads are widespread in
various aquatic and terrestrial environments and are isolated with
an exceptionally high frequency, as compared to bacteria from
other taxonomic groups [3]. The members of these genera are often
isolated and studied because of their ability to degrade a wide
range of recalcitrant natural and anthropogenic aromatic com-
pounds, including polycyclic aromatic hydrocarbons (PAHs) [3].
Degradation pathways in sphingomonads and non-sphingomonads
are quite similar but there is a low degree of homology between
the genes/enzymes of the degradation pathways. The extraordi-
nary metabolic diversity of sphingomonads is primarily due to
the existence of multiple ring-hydroxylating oxygenases (RHOs)
and the conservation of specific gene clusters. These bacteria
supposedly evolved as independent group, restricting gene transfer
to other bacteria and enabling these organisms to adapt faster to
new potential carbon sources in the environment.

RHOs catalyze the initial oxidation step of a broad range of aro-
matic hydrocarbons including PAHs. RHOs have one or two soluble
electron transport (ET) proteins, which deliver reducing equivalent
to the a-subunit of the hetero-multimeric anbn or homo-
multimeric an forms of terminal oxygenases for oxygen activation
during catalysis [4]. Structural studies on representative oxygen-
ases showed that the a-subunit of RHOs contains an N-terminal
iron-sulfur protein (ISP) domain, with a conserved Rieske
[2Fe–2S] center and a C-terminal catalytic domain having a
conserved mononuclear iron-binding site [5]. RHO a-subunits have
been classified on the basis of their evolutionary and functional
behaviors, in relation to structural configuration of substrates
and preferred oxygenation site(s) [6].
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The sphingomonad strains Sphingobium yanoikuyae B1 [7],
Novosphingobium aromaticivorans F199 [8], Sphingobium sp. P2 [9]
and Sphingomonas sp. LH128 [10] are capable of degrading a wide
range of aromatic compounds. All of them possess seven pairs of
genes coding for the large and small subunits of RHOs and a single
set of ET system, consisting of a ferredoxin and a ferredoxin reduc-
tase. The arrangement of degradative genes in sphingomonads is
complex, with the genes scattered across several gene clusters, in
contrast to the coordinately regulated organized operonic structure
of genes in other bacteria. The metabolic versatility of sphingomo-
nads is presumed to be due to their ability to oxidize a wide range of
organic compounds, but the substrate specificities of the individual
oxygenases are poorly studied. Furthermore, the regulation of the
complex gene clusters in sphingomonads remains undefined.

Sphingobium sp. PNB isolated from municipal waste-contami-
nated soil is capable of growing with phenanthrene as the sole
source of carbon and energy. Strain PNB can also utilize or co-
metabolize a number of aromatic compounds including high-
molecular weight PAHs [11,12]. The present study focuses on the
molecular cloning, sequencing and organization of genes responsi-
ble for the degradation of various aromatic compounds, in order to
understand the functional aspects of diverse RHO a-subunits. Fur-
ther, the structural uniqueness of a single ferredoxin component
involved in electron transfer to multiple RHO subunits and the
induction profiles of the degradative genes in strain PNB were re-
vealed, expanding the current perception of the complex catabolic
architecture present in sphingomonads.

2. Results

2.1. Identification of RHO a-subunits in strain PNB

Based on the degenerate primers (Table S1), designed from mul-
tiple sequence alignment (MSA) using a-subunits of RHOs in
sphingomonads, respective gene segments in strain PNB were
amplified by PCR. Sequencing of the PCR products followed by
blastx analyses confirmed the amplification of genes correspond-
ing to a-subunits of six distinct RHOs, designated as ahdA1b, ah-
dA1c, ahdA1d, ahdA1e, ahdA1f and xylX. The primer designed to
amplify ahdA1a failed to show any amplicon.

2.2. Cloning and sequence analysis of aromatic catabolic genes

Out of 1000 fosmid clones, eight supported desired PCR ampli-
fication with one and/or the other set of primer(s) corresponding to
different RHO a-subunit genes (Table S1). Among them, fosmid
clone FC-31 was found to harbor a-subunit gene specific for ah-
dA1f, clone FC-183 for ahdA1c and ahdA1d while clone FC-781 for
ahdA1b, ahdA1e and xylX. Subcloning, screening based on the pres-
ence of RHO a-subunit gene(s) and sequencing, followed by se-
quence alignment and blast searches revealed the identification
of putative ORFs. The subclones which did not serve as template
for the amplification of RHO a-subunit gene(s), were also se-
quenced using M13 forward and reverse primers and analyzed.
Those which showed the presence of putative genes involved in
the metabolism of aromatic compounds were further sequenced
by primer walking and analyzed as described above to identify
additional putative genes and proteins of the degradative gene
clusters. Further, gaps between genes expected to be in close prox-
imity were bridged by a conventional primer walking method,
using primers designed from the sequences at the proximal ends
of the genes. Examination of sequence revealed 37 complete, 5 par-
tial and 2 disrupted ORFs. Putative genes and proteins, identified
from the above analyses are listed in Table S2. Based on protein
sequence homology and conserved domain analyses, a number
of genes are likely to be involved in PAHs or other aromatic
degradation pathways. Sequenced aromatic catabolic gene clusters
of strain PNB were mapped and compared with the homologous
gene clusters reported in various sphingomonads (Fig. 1).

Aligned sequence data encode seven pairs of putative oxygen-
ase a- and b-subunits (AhdA1[a–f]A2[a–f], XylXY). Of which, the a-
subunit, ahdA1a is disrupted by the insertion of a transposase
and a resolvase, which prevented PCR amplification, as stated
above. In addition, the a-subunit (ahdA1e) was found to be trun-
cated, with a deletion of 10 nucleotides (between bases 646 and
647) with respect to the corresponding homologous genes in re-
lated sphingomonads [8,9,13]. Interestingly, this is the only RHO
large subunit in sphingomonads with a consensus sequence of
D-X-D-X2-H-X4-H, which is slightly different from that of the clas-
sical non-heme iron coordination site, E-X3/4-D-X2-H-X4/5-H [8,14].

The majority of the catabolic enzymes from strain PNB
(Table S2) are 99-100% identical with those found in Sphingomonas
sp. LH128 whole genome data (NCBI BioProject: PRJNA172017),
while the rest showed maximum similarity to those encoded in
either Novosphingobium aromaticivorans F199 [8] or Sphingobium
chungbukense DJ77 [15]. The aromatic degradative genes identified
in this study showed maximum identity to those found in other
sphingomonads, viz. Sphingomonas sp. LH128, Sphingobium yan-
oikuyae B1, Sphingobium sp. P2, Sphingomonas sp. CHY-1 (described
as the closest neighbor of genus Sphingobium) [16], Sphingomonas
chungbukensis DJ77 (reclassified as Sphingobium), Novosphingobium
aromaticivorans F199 but the 16S rRNA gene sequence (1451 bp) of
strain PNB showed 92.11, 95.04, 95.17, 96.39, 95.36 and 92.85%
identity, respectively. Observed sequence similarity at the cata-
bolic gene level and 16S rRNA level along with the signatures of
transposases found in the catabolic gene clusters of strain PNB as
well as in other sphingomonads [3], clearly indicate gene transfer
events during their evolution.

2.3. Phylogenetic analysis of multiple RHO a-subunits and ET protein
sequences

Sequence analysis revealed seven sets of putative a- and b-sub-
unit RHO genes, with one of the a-subunits (ahdA1a) disrupted.
Each a subunit contains an N-terminal ISP domain, with a con-
served Rieske [2Fe–2S] center, a C-terminal catalytic domain hav-
ing a conserved mononuclear iron-binding site and a conserved
aspartate, which is known to facilitate inter-subunit electron trans-
fer between ISP and catalytic domains of a-subunits [14,17,18].
The genes encoding b-subunits were found adjacent to that of
the a-subunits in all the sets of oxygenases indicating possible
co-evolution of a- and b-subunits and the presence of hetero-mul-
timeric (anbn)-type of RHOs in strain PNB. Fig. 2 illustrates the phy-
logenetic relation of the a-subunit protein sequences (AhdA1b,
AhdA1c, AhdA1d, AhdA1e, AhdA1f and XylX) in strain PNB and
the homologous sequences from other organisms, as mentioned
in Table S3. Although the a-subunits in strain PNB share conserved
domain regions, their nucleotide sequences and deduced amino
acid sequences share limited homology with that of the nonsphin-
gomonad counterparts. Moreover, phylogenetic analysis reveals
that the individual a-subunit proteins in sphingomonads are dis-
tantly related (Fig. 2). Pairwise sequence alignments among the
a-subunit in strain PNB, showed identities in the ranges of 55-
64% and 25-48% at the levels of nucleotide and amino acid se-
quences, respectively. In previous studies, describing multiple
RHOs in sphingomonads, substrate preferences of most of the
RHOs have not been studied at length. Rather, the degradative
genes have been annotated as bph, phn or ahd genes, merely on
the basis of the aromatic compounds degraded by the individual
species. A closer look at the phylogenetic tree of a-subunits reveals
that the clustering depends broadly on substrate specificities [6].
Tree topology indicates that the homologous proteins first branch



Fig. 1. Mapping of aromatic hydrocarbon catabolic genes obtained from Sphingobium sp. PNB in comparison to the related catabolic genes in other sphingomonads.
Numerical value below each gene indicates its sequence identity with the homologous gene in strain PNB. Shaded regions between the maps of a pair of organisms represent
the locus of homologous gene segments. Dotted lines indicate presence of genes, which are not related to aromatic hydrocarbon catabolism.
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according to their substrate class preferences and within each
branch, more similar sequences group in accordance with sub-
strate sub-classes and ultimately, cluster according to the species
tree. It has been observed that each of the homologous a-subunit
proteins from sphingomonads clusters together in different clades
(Fig. 2). Apart from the homologous a-subunit proteins from
sphingomonads (78–100% identity), few homologous a-subunits
were also detected from the whole genome sequence of Cycloclas-
ticus sp. P1, which showed up to 64% sequence identity to the a-
subunit proteins determined in strain PNB. According to the classi-
fication suggested by Chakraborty et al. [6], AhdA1b and AhdA1f of
strain PNB and their homologues belong to A-IIIab type RHOs
where AhdA1f corresponds to well studied PAH dioxygenases in
sphingomonads [7,10,19] while AhdA1b correspond to ethylben-
zene dioxygenase (72.8% identity) in Rhodococcus jostii RHA1
[20], one of the least explored A-IIIab type RHOs. On the other
hand, XylX has largely been described as benzoate/toluate dioxy-
genase belonging to B-IIab type RHO [8]. The a-subunit from strain
PNB, designated as xylX, also clustered with benzoate/toluate diox-
ygenases present in various genera and showed maximum identity
(50.8%) with the well characterized benzoate dioxygenase from
Pseudomonas putida [21]. On the other hand, AhdA1c, AhdA1d,
and AhdA1e, all of which belong to C-IVab type RHOs, branched
into three different subclusters (Fig. 2). AhdA1c and AhdA1d
showed 49.75 and 47.25% identity with biochemically character-
ized o-halobenzoate dioxygenases of Achromobacter xylosoxidans
A8 [22] and Burkholderia mallei ATCC 23344 [23] respectively.
Similarly, AhdA1e clustered distinctly along with that of the
homologous a-subunits from other sphingomonads and shared a
common ancestry with o-halobenzoate dioxygenase and salicylate
5-hydroxylase.

As in other sphingomonads, only one ferredoxin and one ferre-
doxin reductase were identified, each encoded in a separate cluster
[3]. Analysis of AhdA3 revealed it to be a Rieske [2Fe–2S] type fer-
redoxin with the conserved C-X-H-Xn-C-X2-H motif, a distinct fea-
ture of this family [24]. Fig. 3A illustrates the phylogenetic relation
of AhdA3 with those of homologous sequences from various xeno-
biotic degrading organisms described in Table S4. Although these
proteins share a conserved domain, AhdA3 shares limited sequence
homology (<50% identity) with its non-sphingomonad counter-
parts. It is evident from the dendogram that the ferredoxins of
the sphingomonads are highly similar (81–100% identity at amino
acid level) and cluster together. It may be mentioned that AhdA3
and homologous sequences in sphingomonads displayed a few dif-
ferentially conserved amino acids across the length of the proteins
(Met26, Asn33, Gln57, Ile61, Phe66, Gly68, Ser70, Ala77, Ala80 and
Phe81) in comparison to that of non-sphingomonads (Fig. 3B).
However, the ferredoxins from few non-sphingomonads, viz. Et-
bAc, PhnA3 and PhnAb, complementing ethylbenzene dioxygenase
in Rhodococcus jostii RHA1, PAH dioxygenase in Cycloclasticus sp. A5
and phenanthrene dioxygenase in Alcaligenes faecalis AFK2, respec-
tively, were found to be phylogenetically close to the sphingomo-
nad ferredoxins with significant sequence similarity (Fig. 3). This
observation was in congruence with the phylogenetic relatedness
of corresponding oxygenase from these organisms to those of the
sphingomonads (Fig. 2), indicating a possible event of lateral trans-
fer of oxygenase gene clusters among them.

The ferredoxin reductase encoded by ahdA4 belongs to glutathi-
one reductase (GR)-type. It showed a maximum of 40.11% identity
with the biochemically characterized ferredoxin–NAD+ reductase
components of ethylbenzene dioxygenase present in nonsphin-
gomonad strain Rhodococcus jostii RHA1 [20]. Fig. S1 shows the
phylogenetic relationship of AhdA4 with the homologous se-
quences from various xenobiotic degrading organisms listed in
Table S5. It has been observed that ferredoxin reductase sequences
from sphingomonads cluster together (72–100% identity at amino
acid level), similar to that obtained with the corresponding termi-
nal oxygenase and ferredoxin components.

2.4. Homology modeling of terminal oxygenase subunits and
ferredoxin proteins

Secondary structure prediction of the translated protein se-
quence of the terminal oxygenase a- and b-subunits (AhdA1fA2f)
revealed that both proteins belong to structural class ‘alpha and
beta’ proteins (a+b) (SCOP: 53931) whereas the ferredoxin (AhdA3)
belongs to ‘all beta’ class (SCOP: 48724) with three stacked beta
sheets. A search for homologs of the above proteins in the Brookha-
ven Protein Data Bank (PDB) yielded a close resemblance with that
of the oxygenase components (PDB: 2GBX:A; 2GBX:B) and



Fig. 2. Dendogram showing the relatedness of a-subunit of bacterial aromatic RHOs along with the known biochemical reactions catalyzed. Class A, B and C RHOs (following
classification scheme as described by Chakraborty et al. [6]) are shown in shades of green, brown and blue, respectively. Each shade within a class represents different reaction
chemistry (with respect to oxygenation sites) while the lightest shade in each class represents the a-subunit belonging to sphingomonads. Values at each node indicate level
of bootstrap support based on 100 resampled datasets while bootstrap values below 50% are not shown. A Class D carbazole dioxygenase (CarAaI) from Sphingomonas sp. KA1
(GenBank: YP_717981) was used as outgroup. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ferredoxin (PDB: 2I7F:A), respectively of the biphenyl 2,3-dioxy-
genase from Sphingobium yanoikuyae B1. AhdA1f showed 78.6%
identity over 454 amino acids whereas AhdA2f showed 68.39%
identity over 174 amino acids with 2GBX:A and 2GBX:B, respec-
tively. On the other hand, AhdA3 was found to be 81.48% identical
over 108 amino acids with 2I7F:A. Using these chains as templates,
models of the terminal oxygenase a and b-subunits (AHD-OPNB)
and ferredoxin (AHD-FPNB) proteins were generated. Qualities of
the modeled structures were found to be satisfactory, as observed
from PROCHEK, VERIFY3D and VADAR analyses.

2.5. Molecular docking of oxygenase–ferredoxin complexes

Docking experiments were performed using GRAMM-X to as-
sess the interactions between three different oxygenase–ferre-
doxin complexes, viz. NDO-O98164:NDO-F98164, BDO-OB1:BDO-FB1

and AHD-OPNB:AHD-FPNB. Out of 50 docked complex models,
ranked according to the scoring function, one showing distance be-
tween the Rieske clusters of ferredoxin and oxygenase a-subunit
closest to 14 Å threshold [25] was considered as the best-fit model
(Fig. 4). The observed distances were 16, 16.3 and 14.1 Å respec-
tively for NDO-O98164:NDO-F98164, BDO-OB1:BDO-FB1 and AHD-
OPNB:AHD-FPNB complexes. For each docked complex, the interface
residues of both ferredoxin and oxygenase a-subunit are shown in
Table S6. As observed from the docked poses, NDO-F98164 binds at
the depression between two adjacent a-subunits of NDO-O98164,
which is in congruence with an earlier study [26]. On the contrary,
both BDO-FB1 and AHD-FPNB seem to bind at a pronounced depres-
sion formed by two a- and two b-subunits (Fig. 4), the other puta-
tive ferredoxin binding site, as postulated by Ashikawa et al. [26].
Mapping of predicted interface residues onto the alignment of fer-
redoxin sequences obtained from various xenobiotic degrading
organisms depicted a few differentially conserved amino acid res-
idues (Phe66, Gly68 and Phe81) in sphingomonads (Fig. 3B). Thus,



Fig. 3. (A) Neighbor-joining tree and (B) sequence alignment of Rieske type [2Fe–2S] ferredoxins from different well studied xenobiotic degrading bacteria. In the tree, values
at each node indicate level of bootstrap support based on 100 resampled datasets while bootstrap values below 50% are not shown. An unrelated ferredoxin (PhtAc) from
Mycobacterium vanbaalenii PYR-1 (GenBank: AAQ91918) was used as outgroup and position of the root has been indicated by an arrow. Bar represents 0.05 substitutions per
amino acid. Identical and similar residues in the sequence alignment are shaded in black and grey, respectively.

Fig. 4. Molecular docking of oxygenase–ferredoxin complexes. The surface plots (side view) of the docked complexes of respective ferredoxin and terminal oxygenase
components of (A) naphthalene 1,2-dioxygenase from Pseudomonas putida NCIB 9816-4, (B) biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1 and (C) terminal
oxygenase AhdA1fA2f from Sphingobium sp. PNB. In each structure, the visible a-subunits are colored in light green and blue, while the visible b-subunits are shown in dark
green and slate. The ferredoxins in each complex are colored pink. Black dotted circle in each complex shows the region where the Rieske clusters of ferredoxin and oxygenase
large subunit lie in close proximity for electron transport, while the same as enlarged (D, E and F) are shown in the corresponding cartoon representations. Distance between
each pair of redox centre is shown in black dotted lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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it is believed that the Rieske-type [2Fe–2S] ferredoxins of
sphingomonads might have evolved to complement multiple
oxygenases present in these organisms.

2.6. Functional expression of RHOs

In order to investigate the substrate specificities of the six RHOs
present in strain PNB, corresponding a-subunits along with the
evolutionarily-related b-subunits were PCR-amplified and cloned
into pET28a. To provide the terminal oxygenase component with
an appropriate ET system, ahdA3 (ferredoxin) and ahdA4 (ferre-
doxin reductase) genes were cloned in a pET28a compatible vector,
pCDF-1b. The construct harboring ET components were co-trans-
formed individually along with each of the constructs of terminal
oxygenases into Escherichia coli (E. coli) BL21(DE3). The recombi-
nant E. coli strains when induced with isopropyl-b-thiogalactopyra-
noside (IPTG), produced appreciable levels of characteristic
polypeptides, indicative of the expression of various components
of oxygenases including ET proteins as revealed by SDS-PAGE anal-
ysis (data not shown). The recombinant E. coli strains producing
multi-component oxygenases were incubated overnight separately
with several aromatics based on their phylogenetic affiliation to
substrate classes. GC–MS analyses of the n-butyl boronated (NBB)
derivatives of the neutral extract of the water-soluble products



Table 1
GC-MS data for the oxidation products showing aromatic hydrocarbon selectivity of AhdA1bA2b and AhdA1fA2f from Sphingobium sp. PNB as expressed in E. coli.a

Substrateb Product Molecular mass of NBB derivative Rt (min) Relative activity (%)c

AhdA1bA2b AhdA1fA2f AhdA1bA2b AhdA1fA2f

Naphthalene Naphthalene dihydrodiol 228 10.25 10.23 46.4 100
Biphenyl Biphenyl dihydrodiol 254 11.45 11.44 8.5 54.1
Phenanthrene Phenanthrene dihydrodiol 1

Phenanthrene dihydrodiol 2
278
278

11.20
ND

11.15
13.67

12.5
ND

28.1
22.4

Anthracene Anthracene dihydrodiol 278 14.12 14.03 14.7 26.4
Acenaphthene Acenaphthene dihydrodiol 254 14.11 14.10 2.6 5.2
Benz[a]

anthracene
Benz[a]anthracene dihydrodiol 1
Benz[a]anthracene dihydrodiol 2

328
328

ND
18.39

18.24
18.39

ND
0.2

0.7
1.7

Benzo[a]
pyrene

Benzo[a]pyrene dihydrodiol 1
Benzo[a]pyrene dihydrodiol 2

352
352

20.78
ND

20.77
20.93

0.9
ND

1.2
1.7

Ethylbenzene Ethylbenzene dihydrodiol 206 8.44 ND 43.7 ND
Propylbenzene Propylbenzene dihydrodiol 220 11.00 ND 22.9 ND
Cumene Cumene dihydrodiol 220 10.15 ND 6.05 ND
p-Cymene p-Cymene dihydrodiol 234 12.45 ND 8.40 ND

a Abbreviations: Rt, retention time; ND, not detected.
b Pyrene and fluoranthene did not give any detectable product.
c Calculated from the GC-MS-selected ion-monitoring peak areas of the NBB derivatives of the products formed after 16 h of incubation and expressed as percentages of

relative activity (with respect to the maximum obtained with naphthalene as substrate for AhdA1fA2f). The values are averages of two separate determinations.
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released into the culture medium indicated the formation of aro-
matic dihydrodiols (Table 1). Among the oxygenases, AhdA1fA2f,
belonging to A-IIIab sub-class of RHOs, was shown to dioxygenate
naphthalene, phenanthrene, anthracene, biphenyl, acenaphthene,
benzo[a]pyrene and benz[a]anthracene to the respective dihydro-
diols. While AhdA1bA2b, phylogenetically belonging to same sub-
class (A-IIIab) of RHOs (although, AhdA1b displayed an identity of
39% at the amino acid level with AhdA1f), could also dioxygenate
naphthalene, phenanthrene, anthracene, biphenyl, acenaphthene,
benzo[a]pyrene, benz[a]anthracene to their respective dihydrodi-
ols, apart from dioxygenating ethylbenzene, propylbenzene, cu-
mene and p-cymene. Recombinant strains, expressing AhdA1fA2f
and AhdA1bA2b individually along with the same set of ET proteins
were also found to transform indole to indigo. However, in compar-
ison to AhdA1fA2f, transformation of indole to indigo was found to
be more rapid in presence of AhdA1bA2b, even with no gene induc-
tion. On the other hand, AhdA1cA2c, AhdA1dA2d and AhdA1eA2e
broadly clustered with biochemically characterized o-substituted
benzoate dioxygenases. The recombinant strains expressing Ah-
dA1cA2c and AhdA1dA2d along with the ET components (AhdA3
and AhdA4) could transform salicylic acid to catechol by salicylate
1-hydroxylase activity as reported in other sphingomonads
[9,27,28]. These recombinant strains were also shown to transform
anthranilic acid to 2-aminophenol, however, no detectable metab-
olite was identified when 2-chloro- or 2-iodobenzoate were used as
substrates. No such activities could be detected in the recombinant
strain harboring AhdA1eA2e which might be due to truncated form
of AhdA1e. XylX–XylY, clustered with typical benzoate/toluate
dioxygenase, when expressed along with the ET components
(AhdA3 and AhdA4), showed transformation of benzoic acid and
p-toluic acid to catechol and 4-methylcatechol, respectively.
Salicylate 1-hydroxylase and benzoate/p-toluate dioxygenase
activities were further confirmed by incubating the respective reac-
tion mixture in the presence of another recombinant strain forming
catechol 2,3-dioxygenase (XylE) furnishing yellow colored products
with characteristic absorbance around 340 nm, indicating the
formation of 2-hydroxymuconic semialdehyde or its methyl deriv-
ative. Biotransformed products, catechol, methylcatechol and
2-aminophenol were subsequently characterized by HPLC analyses
by comparing the retention times and UV-visible spectra (obtained
from diode array analysis) with those of the authentic compounds
analyzed under identical conditions (data not shown).
2.7. Other putative ORFs in the metabolism of aromatic compounds

Among the other identified putative enzymes, dihydrodiol
dehydrogenase (AhdB) and 1,2-dihydroxybenzylpyruvate aldolase
(NahE) showed maximum identity of 51.73 and 62% with the bio-
chemically characterized homologous enzymes from Burkholderia
sp. DBT1 [29]. While 2-hydroxychromene-2-carboxylate isomerase
(NahD) and dihydroxy cyclohexadiene carboxylate dehydrogenase
(XylL) displayed 58.47 and 58.75% identity with the homologous
enzymes from Mycobacterium vanbaalenii PYR-1 [30] and Cycloclas-
ticus sp. P1 [31], respectively. One of the two putative ring-cleav-
age dioxygenases, AhdC, showed 74.16 and 73.48% identity with
1,2-dihydroxynaphthalene dioxygenase from Rhodococcus sp. TFB
and 2,3-dihydroxybiphenyl-1,2-dioxygenase from Rhodococcus jos-
tii RHA1, respectively [32,33] while the other, XylE showed 95.11
and 52.45% identity with catechol 2,3-dioxygenase from Sphingo-
monas sp. TZS-7 and Pseudomonas sp. CF600 respectively [34,35].
In addition, few more putative catabolic upper pathway enzymes
(XylM, XylA, XylB and XylC) and lower pathway enzymes (XylF,
XylG, XylJ, XylQ and XylK) involved in the metabolism of xylene
and 2-hydroxymuconic semialdehyde, respectively, were identi-
fied (Table S2). Sequenced clusters also encode a putative NtrC-
type regulator (AhdR), largely reported to be involved in the regu-
lation of aromatic degradation pathway enzymes [36] and a TetR-
type transcriptional regulator. However, ahdR in strain PNB is dis-
rupted by insertion of a transposase. Sequenced clusters also en-
coded one each of pyruvate phosphate dikinase, TonB-dependent
receptor protein, glutathione S-transferase, 4-hydroxythreonine-
4-phosphate dehydrogenase, IS4 family transposase and three
hypothetical proteins, whose role in aromatic degradation could
not be determined.

2.8. Real-time PCR analyses

Results obtained from real-time PCR analyses with cDNA syn-
thesized from the respective RNAs isolated from cells grown in
presence of either phenanthrene or biphenyl are shown in Fig. 5.
With the exception of ahdA1b and ahdA4, most of the genes were
overexpressed in phenanthrene-grown cells as compared with suc-
cinate-grown cells. However, ahdA1b, ahdA4, nahD, ahdC or xylE
were not overexpressed in biphenyl-grown cells. On the other hand,
catA (GenBank: KC683533), encoding catechol 1,2-dioxygenase,



Fig. 5. Real-time PCR analysis of genes in Sphingobium sp. PNB involved in the metabolism of aromatic hydrocarbons. Heat map representing expression levels of different
genes, induced with phenanthrene and biphenyl. The fold change is shown in shades of red, yellow and green which indicate decreased, unchanged and increased levels of
expression, respectively. Fold change denotes change in expression level of a gene in induced cells compared to the uninduced (succinate grown) cells. Double slash (//)
represents gap between distantly located genes or genes present in different loci. Orientation of catA, identified in different loci, with respect to sequenced gene clusters is not
known. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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was found to be upregulated in biphenyl grown cells but marginally
downregulated in phenanthrene grown culture.

3. Discussion

The ability to degrade diverse harmful aromatic compounds by
sphingomonads may be linked to the presence of evolutionarily
unique enzyme system. Evolutionary relationships among several
RHOs in sphingomonads have already been studied [37–41], which
showed a radical divergence of their RHO genes from those of other
genera, indicating a restriction in genetic exchange between sphin-
gomonads and non-sphingomonads [3]. The presence of multiple
peripheral enzymes (terminal oxygenases) and a single copy of
each of the downstream degradative enzymes in the catabolic clus-
ters are unique to strain PNB and various other sphingomonads
[8,13]. Moreover, it has already been reported that the multiple
RHOs from sphingomonads interact with only a single set of the
corresponding ET system [3]. Effectively, the maximal activity of
RHOs is shown to require the specific ET proteins, ferredoxin and
ferredoxin reductase. Although the specific ET proteins can be par-
tially replaced by endogenous E. coli ET proteins at the cost of re-
duced activity of RHOs but the role of ferredoxin is more
significant than that of reductase in productive catalysis [42,43].
The ET proteins from sphingomonads are reported to be quite flex-
ible in their redox partner interactions as together they are capable
of transferring electrons to some of the oxygenase components of
the RHOs from several non-sphingomonads. On the contrary,
although the reductase from sphingomonads could be replaced
by other reductase from non-sphingomonads, alternative ferre-
doxin components from non-sphingomonads failed to transfer
electrons to the terminal oxygenase component of RHOs in sphin-
gomonads [44]. Again, a single ferredoxin present in the degrada-
tive cluster of sphingomonad strain CHY-1 has been reported to
have varied affinities for the different terminal oxygenases [28].

Thus, it is interesting to understand the structural nature of a
single ferredoxin component capable of transferring electrons to
structurally diverse terminal oxygenases in sphingomonads. In
the present study, molecular modeling followed by docking analy-
sis of ferredoxin component with the heterohexameric a3b3-type
terminal oxygenase of strain PNB reflect its unique structural con-
figuration to bind at a pronounced depression formed by two a-
and two b-subunits, similar to that observed with the structurally
characterized subunits from Sphingobium yanoikuyae B1. However,
similar analysis with the corresponding proteins from Pseudomo-
nas putida NCIB 9816-4 revealed striking differences, binding at
the other depression formed by the two adjacent a-subunits of
NDO-O98164 [26]. Unique structural configuration of ferredoxin in
sphingomonads has also been reflected from the presence of differ-
entially conserved amino acids, which are also involved as inter-
face residues in protein-protein interactions. Indeed, structural
information of the rest of the oxygenases in sphingomonads will
help to understand the mechanism of interaction of a single ferre-
doxin with multiple terminal oxygenases.

Seven pairs of a- and b-subunits identified in strain PNB corre-
spond to the analogous subunits of RHOs (bphA1A2[a–f] and xylXY)
in Sphingomonas yanoikuyae B1 [13], Novosphingobium aromaticivo-
rans F199 [8] and Sphingomonas sp. LH128 (NCBI BioProject:
PRJNA172017). Based on phylogenetic relationships and substrate
preferences of a-subunits in strain PNB, transformation of putative
substrate(s) and related compounds by recombinant strains,
expressing individual RHO terminal oxygenases along with sole
available set of constituent ET components indicate their broad
substrate specificities.

The a-subunit of the terminal oxygenase corresponding to Ah-
dA1f responsible for initial dioxygenation of a number of PAHs
and polycyclic heteroaromatic hydrocarbons has been well charac-
terized in strains, viz. LH128 [10], B1 [7] and CHY-1 [45] which are
respectively 99.92, 76.71 and 76.62% identical to AhdA1f. On the
other hand, AhdA1bA2b, functionally reported for the first time,
is capable of transforming alkylbenzenes, such as ethylbenzene,
propylbenzene, cumene and p-cymene, in addition to the aromat-
ics described for AhdA1fA2f. Based on the formation of biotrans-
formed products (Table 1), differences in regiospecificity of
AhdA1fA2f and AhdA1bA2b have been noticed for a number of
PAHs. AhdA1fA2f can transform phenanthrene to both phenan-
threne cis-3,4-dihydrodiol (retention time, Rt 11.15 min) and phen-
anthrene cis-1,2-dihydrodiol (Rt 13.67 min) in contrast to the
formation of phenanthrene cis-3,4-dihydrodiol (Rt 11.20 min) only
with AhdA1bA2b. Phenanthrene cis-3,4-dihydrodiol and phenan-
threne cis-1,2-dihydrodiol have already been reported in the phen-
anthrene degradation pathways via 1-hydroxy-2-naphthoic acid
and 2-hydroxy-1-naphthoic acid, respectively in strain PNB [11].
Based on phylogenetic affiliation, AhdA1b uniquely clustered to-
gether with the homologous sequences from other sphingomonads
and evolved from the common ancestor of largely defined PAHs
and alkyl- and/or arylbenzene (which includes biphenyl) dioxy-
genase showing closest relationship with the biochemically char-
acterized ethylbenzene dioxygenases from Rhodococcus jostii
RHA1 and Rhodococcus sp. DK17, which are 100% identical at pro-
tein level. However, ethylbenzene dioxygenases from strain RHA1
was also reported to transform various aromatic compounds,
including benzene, biphenyl, ethylbenzene and naphthalene, with
the latter as preferred substrate. Functionally, AhdA1bA2b showed
characteristics of both A-IIIab and A-IVab type RHOs, justifying the
phylogenetic affiliation of AhdA1b within the tree.

Salicylate hydroxylase (AhdA1cA2c and AhdA1dA2d) described
in strain PNB and homologous proteins reported in related sphin-
gomonads viz. strains P2, B1 and CHY-1 [9,27,28] are the only
three-component decarboxylative monooxygenases that transform
salicylic acid to catechol. Apart from salicylate-1-hydroxylase,
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anthranilate-1-hydroxylase is reported in strain PNB, similar to
that reported in CHY-1. On the other hand, XylX-XylY, as reported
earlier, showed transformation of benzoic acid and p-toluic acid to
catechol and 4-methylcatechol respectively. Thus it is believed that
the presence of multiple copies of highly conserved RHO a- and b-
subunits and their broad substrate specificities may likely provide
strain PNB a pronounced selective advantage in the management
of a wide range of aromatics present in the environment. Although
phylogenetic analyses revealed the substrate preference of Ah-
dA1aA2a towards phenanthrene and/or hetero-substituted aro-
matics such as dibenzothiophene and dibenzofuran but this
could not be validated experimentally owing to the disrupted nat-
ure of this gene in strain PNB. Although the substrate preference of
AhdA1eA2e was predicted to be salicylic acid, this particular RHO
a-subunit being truncated in strain PNB, failed to show any oxy-
genase activity.

The presence of multiple transposons and insertion elements in
strain PNB as well as in the genome of other sphingomonads
strongly indicates pronounced DNA rearrangements [3,46], and
suggests significant roles for them in the localization of the con-
served gene clusters and establishment of the degradation path-
ways for various compounds [47–49]. Comparison of the genome
sequences of Sphingobium chlorophenolicum L-1 and Sphingobium
japonicum UT26 suggests horizontal gene transfer events in the
pentachlorophenol degradation pathway [50]. The complex genet-
ic architecture of sphingomoanads was further revealed by the
presence of a number of overlapping genes (nahD-ahdA1c, ah-
dA2c-ahdA3, xylX-xylY-orf183_9, ahdA1d-ahdA2d, xylQ-xylK and ah-
dA2a-ahdA1a) in strain PNB, involved in aromatic degradation. The
presence of overlapping genes is thought to be the result of evolu-
tionary pressure to conserve sequence length [51–53], minimize
genome size and regulate gene expression [52,54,55].

Compared to the succinate-grown cells, phenanthrene or biphe-
nyl induced cells of strain PNB showed upregulation of many genes
present in the gene clusters reported in this study. Generally, the
groups of genes transcribed in the same frame were upregulated
simultaneously. However, in biphenyl grown cells, ahdC was
downregulated in spite of being in the same frame with the genes,
necessary for the upper pathway of degradation of various aromat-
ics. Again, nahD, encoding an isomerase essential for the degrada-
tion of phenanthrene but not for biphenyl, was found to be
overexpressed in phenanthrene-grown cells but not in biphenyl-
grown cells. Expression profiles of catA and xylE (Fig. 5) suggest
that the central metabolite catechol is processed through ortho
(b-ketoadipate) pathway in biphenyl and benzoic acid degradation
but through meta (a-ketoadipate) pathway in case of phenan-
threne, naphthalene and salicylic acid degradation. Interestingly,
although AhdA1b, along with the corresponding b-subunit and ET
components, was able to transform a large spectrum of aromatics
including biphenyl and phenanthrene (Table 1), its expression
was downregulated in presence of either of the substrates. Again
AhdA4, which is present as a single copy in the degradation cluster
and is essential for functional activity of the multiple RHOs, was
not overexpressed in presence of either biphenyl or phenanthrene.
Moreover, neither salicylic acid nor benzoic acid/p-toluic acid-
grown cells were found to overexpress the majority of the degrada-
tive genes reported in this study. Thus it is believed that the
expression of degradative gene cluster is more specific towards
inducible substrates rather than the transformation of a range of
compounds by the peripheral enzymes. Based on the prediction
of regulation, it has already been suggested that multiple inducers
are required for the expression of aromatic catabolic enzymes in
sphingomonads [56]. Moreover, it is likely that genes, which are
not overexpressed but essential for the degradation of a particular
compound, must be complemented by the expression of appropri-
ate catabolic genes present in other location in the genome. In this
context, it may be mentioned that the analysis of genomes of dif-
ferent aromatics-degrading sphingomonads revealed the presence
of multiple copies of degradative genes, in addition to those pres-
ent in the aromatic-degradative clusters reported in this study
[46].

As mentioned above, the regulation of genes for various aromat-
ics degradation in sphingomonads is quite complex. The ahdR gene
encoding a putative regulator belonging to the NtrC family was
identified in close proximity to the genes coding for the catabolism
of aromatic compounds. Members of this family are known to acti-
vate RNA polymerase containing the alternative sigma factor r54.
Homologs of ahdR are found in many sphingomonads having sim-
ilar organization of degradative genes. Analyses of promoter region
sequences of the catabolic plasmid pNL1 in strain F199 suggested
that regulatory events are modulated through the interaction of
BphR with r54 type promoters [56]. However, its actual role in aro-
matic degradation cannot be ascertained as truncated versions of
the gene are found not only in Sphingomonas sp. P2, Novosphingo-
bium pentaromativorans US6-1 but also in strain PNB with the
insertion of transposase (orf26, Fig. 1), all of which show similar
degradative gene arrangement and reported to successfully miner-
alize phenanthrene or high molecular weight PAHs. Apart from
ahdR, a gene (orf781_19) encoding TetR-type transcriptional regu-
lator, often involved in aromatic degradation [36], is also present
in the degradative cluster of strain PNB similar to that observed
in strain LH128 (Fig. 1). However, the role of TetR-type regulator
in the regulation of these proximal genes cannot be contemplated
as the same is absent in rest of the sphingomonads compared in
this study. Thus, the present study lays the groundwork for reveal-
ing the answers to the molecular basis of the underlying complex
regulation of gene expression involved in the degradation of broad
spectrum aromatics in sphingomonads.

4. Experimental procedures

4.1. Amplification and identification of RHO a-subunit genes from
strain PNB

RHO a-subunit genes, belonging to the seven paralogous groups
(annotated as bphA1a-bphA1f and xylX in Novosphingobium aromat-
icivorans F199, GenBank: NC_002033) were subjected to amplifica-
tion from strain PNB using degenerate primers (Table S1). Primers
were designed based on MSA of nucleic acid sequences obtained
from various reported phenanthrene-degrading sphingomonads
(Table S3). PCR amplifications were performed with a MJ Mini Gra-
dient Thermal Cycler (Bio-Rad Laboratories, Inc.) followed by
sequencing of amplified PCR products according to the manufac-
turer’s specifications for Taq DNA polymerase-initiated cycle
sequencing reactions using fluorescent-labeled dideoxynucleotide
terminators with an ABI PRISM 377 automated sequencer (Per-
kin-Elmer Applied Biosystems, Inc.). Sequence homology analyses
were performed using both blastn and blastx programs [57], avail-
able at the NCBI (NIH, Bethesda, MD).

4.2. Construction and screening of genomic library

Sphingobium sp. PNB was grown on Luria-Bertani (LB) broth
overnight at 28 �C. Genomic DNA from the strain PNB was isolated
and purified according to Marmur and Doty [58] with certain mod-
ifications and improvisations, as suggested by Lambert et al. [59]. A
genomic library was prepared in pCC2FOS Fosmid vector (Epicen-
tre, Madison, Wisconsin) according to the manufacturer’s protocol.
Briefly, the genomic DNA from strain PNB was randomly sheared to
approximately 40 kb fragments and the ends were blunted using
End-repair Enzyme Mix (CopyControlTM HTP Fosmid Library Pro-
duction Kit, Epicentre) and ligated into pCC2FOS vector. The ligated
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DNA was packaged with MaxPlax Lambda Packaging Extracts and
transduced into EPI300-T1R Phage T1-resistant E. coli Plating strain
followed by spreading onto LB-agar plates containing 12.5 lg ml�1

chloramphenicol. The resulting library was replica-plated and the
clones containing RHO(s) were screened by PCR amplification
using primers as described above.

4.3. Subcloning and sequencing

Fosmid DNA was individually isolated using the Miniprep Spin-
Kit (Qiagen Inc., Stanford, USA) from the clones containing various
RHO genes. Isolated DNA was then digested individually with PstI,
SmaI, HindIII, XhoI and BglII and the DNA fragments ranging from
2–8 kb were subcloned into pBluescript SK(�) and transformed
into E.coli XL1-Blue cells. The transformants were plated onto LB-
ampicillin plate containing 20 lg ml�1 of 5-bromo-4-chloro-3-
indolyl-beta-D-galactopyranoside (X-gal) and 0.1 mM IPTG. The
plates were incubated overnight at 37 �C. The transformants were
then screened by PCR for the presence of various RHO a-subunit
genes. For sequencing, the recombinant plasmids were isolated
and subjected to DNA sequencing using M13 forward and reverse
primers, followed by primer walking in both directions. Gaps be-
tween genes located in close proximity were bridged by conven-
tional primer walking method. Both DNA sequencing and
sequence homology analyses were carried out as described above.

4.4. Phylogenetic analyses

Homologous RHO a-subunits (Table S3), ferredoxin (Table S4)
and reductase (Table S5) protein sequences were identified with
blastp program [57] against the non-redundant (NR) database at
NCBI using each RHO a-subunit paralog, AhdA3 and AhdA4 from
strain PNB as query sequences. ClustalX v1.81 [60] was used to
generate individual MSA of RHO a-subunits, ferredoxin and reduc-
tase protein sequences obtained from strain PNB and those of the
corresponding homologous sequences from other sphingomonads
and non-sphingomonads followed by manual adjustment, wher-
ever necessary. Phylogenetic trees were constructed by neighbor-
joining (NJ) method from distance data using the NJ algorithm
implemented in ClustalX. The trees were visualized and manipu-
lated either using the program Tree Explorer v2.12 [61] or using
iTOL: Interactive Tree Of Life, an online phylogenetic tree viewer
and Tree Of Life resource [62].

4.5. In silico analysis

The homology models of monomers of oxygenase a-subunit
(AhdA1f), b-subunit (AhdA2f) and ferredoxin (AhdA3) were gener-
ated using the software MODELLER 9v7 [63] with the respective
oxygenase components (PDB: 2GBX:A; 2GBX:B) and ferredoxin
(PDB: 2I7F:A) of the biphenyl 2,3-dioxygenase from Sphingobium
yanoikuyae B1. The models were checked using PROCHECK [64],
VERIFY3D [65], VADAR [66] and PSIPRED [67]. For docking experi-
ments, structures of the terminal oxygenase and ferredoxin com-
ponents of naphthalene dioxygenase from Pseudomonas putida
NCIB 9816-4 (NDO-O98164 and NDO-F98164) and those of biphenyl
dioxygenase from Sphingobium yanoikuyae B1 (BDO-OB1 and
BDO-FB1) were downloaded from the PDB. The monomeric struc-
tures of oxygenase a-subunit (AhdA1f) and b-subunit (AhdA2f)
from strain PNB, modeled above, were used to construct the het-
erohexameric form of the enzyme (AHD-OPNB) so as to dock with
the corresponding ferredoxin (AHD-FPNB). GRAMM-X [68] was
used to predict and assess the interactions between NDO-O98164

and NDO-F98164, BDO-OB1 and BDO-FB1 as well as AHD-OPNB and
AHD-FPNB. The program performs a rigid-body docking using Fast
FT methods by applying smoothed Lennard-Jones potential to find
protein complexes with the highest surface complementarity.
From each docking, 50 most probable predictions (in order from
most to least favorable) based on geometry, hydrophobicity and
electrostatic complementarity of the molecular surface were con-
sidered for further analyses. The interface residues in the docked
complex were predicted using ProFace server [69].

4.6. Construction of plasmids for protein overexpression

Primers were designed (Table S7) to amplify ahdA1bA2b, ahdA1-
cA2c, ahdA1dA2d, ahdA1eA2e, ahdA1fA2f, xylXY, ahdA3, ahdA4 and
xylE genes from genomic DNA of strain PNB. The pET28a vector
(Novagen, Madison, WI) was used for cloning the PCR amplicons
ahdA1bA2b, ahdA1cA2c, ahdA1dA2d, ahdA1eA2e, ahdA1fA2f, xylXY
and xylE genes while pCDF-1b vector for that of ahdA3 followed
by ahdA4 into the chimeric plasmid. Next, the recombinant vectors
were transformed into E. coli BL21(DE3) for expression analysis.

4.7. Overexpression of oxygenases and in vivo assays

Different E. coli BL21(DE3) cells containing one of the RHOs, fer-
redoxin and reductase genes were grown overnight in 5 ml LB
medium in presence of appropriate antibiotics. These cultures
were used to inoculate 100 ml LB medium (0.1% v/v) and were
incubated at 37 �C until an OD600 of 0.5 was reached. After inducing
the cultures with IPTG (0.5 mM), the cells were further incubated
overnight at 25 �C. For in vivo assays, cells were centrifuged,
washed and resuspended to an OD600 of 2.0 in M9 medium [70]
supplemented with 0.2% glucose. Cells overexpressing various
components of RHO were incubated overnight at 25 �C with
400 lM of each of the test substrate dissolved in 2 ml of silicone
oil.

4.8. Chemical analyses

After incubation, the resting cell cultures were centrifuged
(8,000�g, 10 min) and the supernatants were adjusted to pH 7.0
and extracted thrice with an equal volume of ethyl acetate. The
combined extracts were dried over anhydrous sodium sulfate,
evaporated under reduced pressure and finally resuspended in
100 ll N,N-dimethylformamide (DMF). Then, 100 ll of n-butylbo-
ronic acid solution (500 lg of n-butylboronic acid dissolved in
1 ml of DMF) was added, and the mixture was heated at 70 �C for
15 min to form the NBB derivatives. The reaction mixture thus ob-
tained was diluted 15 fold with cyclohexane and analyzed by GC-
MS using a Varian model 3800 (Varian Inc., California, USA) with
a Saturn 2200 mass spectrometer equipped with a
30 m � 0.25 mm (0.25 lm film thickness) DB5 MS capillary col-
umn (Agilent Technologies, California, USA). The inlet temperature
was kept at 285 �C while the transfer line temperature was kept at
270 �C. The temperature program gave a 2 min hold at 80 �C, an in-
crease to 260 �C at 18 �C min�1, followed by hold for 6 min at
260 �C, further increase to 285 �C at 4 �C min�1 and a 11 min hold
at 285 �C. The injection volume was 1 ll, and the carrier gas was
helium (1 ml min�1). The mass spectrometer was operated at an
electron ionization energy of 70 eV and dihydrodiols were detected
by selected ion monitoring by using the calculated mass of the NBB
derivative. On the other hand, low molecular weight polar metab-
olites were resolved by HPLC using a Shimadzu model LC20-AT
pump system equipped with a diode array model SIL-M20A detec-
tor and a C18 reversed-phase column attached to a model SIL-20A
autosampler. The biotransformed products were eluted using a
programmed gradient solvent system at a flow rate of 1.0 ml min�1

and detected at 254 nm along with diode array analysis. The mo-
bile phase, consisting of methanol and water containing 1% (v/v)
acetic acid, was a 45 min linear gradient from 50% (v/v) to
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95% (v/v) aqueous methanol with hold at 95% (v/v) aqueous meth-
anol for 10 min followed by 95% (v/v) to 50% (v/v) aqueous metha-
nol over 5 min.

4.9. RNA isolation, cDNA preparation and real-time PCR analysis

Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA)
from mid-exponential phase cultures of strain PNB grown individ-
ually on phenanthrene, biphenyl or succinate as sole carbon
sources. Residual DNA was removed by additional treatment with
RNase-free DNase I (Thermo Scientific, Waltham, MA). Subse-
quently, cDNA was prepared with RevertAid reverse transcriptase
(Thermo Scientific) and Random Hexamer Primer (Thermo Scien-
tific), according to the manufacturer’s instructions. To quantita-
tively estimate expression of genes involved in degradation of
different aromatics, real-time PCR was performed in an ABI 7500
real-time PCR system (Applied Biosystems, California, USA) with
various sets of primers (Table S8) using SYBR Green mix and cDNAs
prepared from different set of cells. Relative changes in mRNA
expression of various genes were compared with succinate as con-
trol, normalized to 16S rRNA, and quantified by the 2�DDCt method
[71]. Mean values were obtained from triplicate experiments.

4.10. Nucleotide sequence accession numbers

The nucleotide sequences described in this study were depos-
ited into GenBank database under the accession numbers Gen-
Bank: KF483792, GenBank: KF483793 and GenBank: KF483794.
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