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Abstract

Objective: Intrauterine growth restriction (IUGR) is one of the most common causes of 

stillbirths. The objective of this study is to develop a machine learning model that will be able to 

accurately and consistently predict whether the estimated fetal weight (EFW) will be below the 

10th percentile at 34+0–37 + 6 week’s gestation stage, by using data collected at 20 + 0 to 23 + 6 

weeks gestation.

Methods: Recruitment for the prospective Safe Passage Study (SPS) was done over 7.5 years 

(2007–2015). An essential part of the fetal assessment was the non-invasive transabdominal 

recording of the maternal and fetal electrocardiograms as well as the performance of an ultrasound 

examination for Doppler flow velocity waveforms and fetal biometry at 20 + 0 to 23 + 6 and 34 + 

0 to 37 + 6 week’s gestation. Several predictive models were constructed, using supervised 

learning techniques, and evaluated using the Stochastic Gradient Descent, k-Nearest Neighbours, 

Logistic Regression and Random Forest methods.

Results: The final model performed exceptionally well across all evaluation metrics, particularly 

so for the Stochastic Gradient Descent method: achieving a 93% average for Classification 

Accuracy, Recall, Precision and F1-Score when random sampling is used and 91% for cross-

validation (both methods using a 95% confidence interval). Furthermore, the model identifies the 

Umbilical Artery Pulsality Index to be the strongest identifier for the prediction of IUGR – 

matching the literature. Three of the four evaluation methods used achieved above 90% for both 

True Negative and True Positive results. The ROC Analysis showed a very strong True Positive 

rate (y-axis) for both target attribute outcomes – AUC value of 0.771.

Conclusions: The model performs exceptionally well in all evaluation metrics, showing 

robustness and flexibility as a predictive model for the binary target attribute of IUGR. This 

accuracy is likely due to the value added by the pre-processed features regarding the fetal gained 

beats and accelerations, something otherwise absent from previous multi-disciplinary studies. The 
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success of the proposed predictive model allows the pursuit of further birth-related anomalies, 

providing a foundation for more complex models and lesser-researched subject matter. The data 

available for this model was a vital part of its success but might also become a limiting factor for 

further analyses. Further development of similar models could result in better classification 

performance even with little data available.
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1. Introduction

Fetal growth restriction (FGR), for which intrauterine growth restriction (IUGR) is a 

practical but imprecise surrogate, is one of the most common causes of stillbirths [1] and one 

of the main reasons for induced preterm birth. However, the diagnosis of fetal jeopardy 

preceding stillbirth is still a major problem. Ultrasound, at 34 + 0 to 37 + 6 weeks gestation, 

has only modest results in predicting the fetus with an estimated weight (EFW) < 10th 

percentile [2]. As such, the hope is on a combination of novel biomarkers alongside 

ultrasound to detect small-for-gestational-age (SGA) fetuses [3]. Using a combination of 

biomarkers, clinical risk factors and 20-week ultrasound examinations is only associated 

with a moderate rate of predictive success; as the area under the curve (AUC) was 0.69. This 

being the average of the positive predictive value (32%) and negative predictive value (91%) 

[4].

New methods, such as artificial intelligence, are therefore being investigated to improve the 

diagnosis. One such example shows that for nuclear magnetic resonance (NMR) and mass 

spectroscopy on all metabolites on the umbilical cord blood serum, the AUC was then 0.91 

[5].

Although increased strength of fetal movements and fetal hiccups are associated with 

decreased risks of stillbirth [6], the association of reduced fetal movements with IUGR is 

still too uncertain to be used for routine assessment of fetal wellbeing [7]. Interdisciplinary 

developments in this area may help to improve clinical outcome [8].

In the past decade, there has been a considerable increase in the presence of machine 

learning in medicine. Although still very much in its infancy, there have been very promising 

studies done on the efficacy of these complex models and algorithms in medicine [9,10] its 

unintended consequences are also noted [11]. One such model is the supervised-learning 

model, defined by the use of existing data to compare with the outcomes predicted by the 

model in question. This method often precedes methods involving pattern-recognition during 

the exploration of unknown areas in the research (e.g. Unsupervised Learning) [12]. As 

such, supervised learning provides a valuable foundation for the validation of the model, and 

a step towards new discoveries.

The primary objective of the study is to develop a machine learning model that will be able 

to accurately and consistently predict whether the intra-uterine growth restriction at the 34 + 
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0 to 37 + 6 week’s gestation stage would be below 10%. This will be done using available 

data for validation.

For this investigation we used the detailed and extensive data of the prospectively collected 

for the Safe Passage Study (SPS), a collaborative study of the effect of alcohol use during 

pregnancy [13] on stillbirths [14] and sudden infant deaths [15]. In addition to maternal 

socioeconomic and demographic data, fetal physiology which included maternal and fetal 

ECGs, fetal ultrasound examinations were collected at different periods during pregnancy. 

The data utilized in the development of this model was collected from participants in Cape 

Town, South Africa, between 2007 and 2015. The research done and the results found in 

these studies were used to contextualize the data for use in a model that could predict FGR - 

a well-researched data set to test against.

As there seems to be a close association between fetal movements and accelerations of the 

fetal heart rate [16], we decided to use accelerations as a proxy for fetal movements. System 

8000, a computerized antenatal fetal heart rate (FHR) analysis system was used as a 

guideline to assess accelerations of the FHR [17]. Decelerations were further quantified by 

calculating the area under the contraction curve [18].

The medical field, in general, has many universally accepted ‘gold-standard’ indicators for 

various anomalies – the fields of Obstetrics and Gynecology included [19–21]. As such, an 

opening exists for the implementation of machine learning models to both utilize existing 

standards and to challenge them. Thus, it is a unique opportunity to create a model based on 

recent discoveries that, in themselves, challenge previous norms. Proving successful in this 

endeavour would then allow the exploration of potentially new correlations between the data 

available and birth-related anomalies.

Previous studies done with the goal of classifying the association between Doppler flow 

velocimetry results and asymmetric fetal growth have shown promise but with much need 

for improvement [22]. In the pursuit for improved accuracy, combinations of methods were 

introduced – such as the use of novel biomarkers with ultrasound [23]. Another such 

combination used Doppler velocimetry with biophysical profiling [24].

Most recently, a combination of machine learning techniques and heart rate features were 

integrated for IUGR diagnosis [25]. The study showed promising results for the integration 

of machine learning, achieving a classification accuracy of 91%.

2. Material and methods

Recruitment for the prospective Safe Passage Study (SPS) was done over 7.5 years [13]. An 

essential part of the fetal assessment was the non-invasive transabdominal recording of the 

maternal and fetal electrocardiograms (mECG, fECG) as well as the performance of an 

ultrasound examination for Doppler flow velocity waveforms and fetal biometry at 20 + 0 to 

23 + 6 and 34 + 0 to 37 + 6 weeks gestation. The ECGs were recorded by the AN24 fetal 

Halter device (Monica Health Care, Nottingham. UK). It has previously been demonstrated 

that this device is extremely successful in recording the fECGs at 20 + 0 to 23 + 6 weeks 

gestation - with a success rate of 95.4% [22]. Dedicated ultrasonologists performed all the 

Crockart et al. Page 3

Inform Med Unlocked. Author manuscript; available in PMC 2021 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ultrasound examinations according to a strict protocol. Fetal biometry included head 

circumference, biparietal diameter, abdominal circumference and femur length. Hadlock’s 

formula was used to calculate the EFW from the biometric measurements [23]. The mECGs 

and fECGs were collected for all participants, but ultrasound examinations (for biometry and 

Doppler) were limited to a subgroup of 28% of participants due to the heavy workload of 

obtaining this information in all participants. The subgroup was selected by randomization at 

20 + 0 to 23 + 6 week’s gestation.

For the purposes of building a predictive model, two datasets were isolated from the original 

master set: one with data processed and collected from the heart rate data collected via the 

Monica AN24 fetal monitoring device, and the other isolated from the pre-existing dataset 

on maternal and fetal data (Table 1). These two datasets were then prepared and analysed 

using a combination of Jupyter [24] and Orange Data Mining Software [25] (see Table 2).

2.1. Data analysis

The methodology of the project closely followed that of the CRISP-DM Methodology [26]. 

This required extensive research to be done regarding the model in the medical context, 

followed by the definition of the problem from a data mining perspective – the objective as 

described in the introduction. Each dataset was then analysed individually, the features 

categorised and a preliminary Analytics Base Table (ABT) constructed for each set. The 

ABT is a preliminary tabular outline of the dataset with respect to the variable to be 

predicted (known as the target variable). Following this, data quality reports were 

constructed (Tables 3, 4, and 5), detailing the quality of the data present in each set. The 

quality of the data was determined by the percentages present (null values considered to be 

‘missing data’), as well as the deviation and cardinality of the data. These quality reports 

were separated into continuous and categorical feature sets, since each type has different 

quality identifiers.

The data quality reports for each of the two datasets used (Tables 3–5) provided important 

information for further preparation. These reports were split into two tables (where 

necessary), one for the continuous features and one for the categorical features. The dataset 

represented in Table 3 only has continuous features and, as such, only required a single table 

for the data quality report. Since this dataset was the result of processed data, already having 

undergone its own preparation, it had no missing datapoints. The cardinality varied greatly, 

suggesting a good spread of data with little repetition. However, the most obvious issue 

present was found in the ‘Min’ column, showing that all features had a minimum at zero. 

This was due to the presence of zero values in the dataset, ultimately skewing the data. 

These zero values most likely appear instead of missing values that were not shown as ‘null’ 

values. For several of the features, such as those representing durations, a value of zero 

would imply no data should be available from the row at all – since if the duration of 

collection is zero no data collection took place.

In the case of the second dataset, several issues presented themselves clearly from the 

beginning. Most notably, the alarmingly high percentages of missing data throughout the 

dataset. This, along with the low Count values, suggested a fair amount of data preparation 

would be necessary to achieve a predictive model for the IUGR outcome.
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Once the quality of each dataset had been assessed, the relationships were visualised to 

identify any issues or potential opportunities present in the data that may have been missed. 

The spread of the data was displayed and assessed via density graphs, allowing one to 

identify any skewness or proportionality anomalies. The shapes of these graphs were then 

tabulated (Table 6), focusing on the continuous data since the categorical data benefits very 

little from this analysis.

The next step in preparing the predictive model was to analyse the covariance and the 

correlation between the features. This was done using a collection of scatter plot facet grids 

(Fig. 1), to easily compare the relationships between sets of features. During this step, the 

effect of the zero values on the data became clear, with ‘walls’ appearing on the scatter plots 

- subsequently skewing the data. This further supported the information displayed in the data 

quality reports, confirming the pro-found effect of the zero value datapoints. Additionally, 

these scatter plots provided visual feedback for potential clustering of values that could 

assist in the application of classification techniques further on in the process. Unfortunately, 

with the zero values still present in the data these scatter plots provided little information 

further.

Once these steps were complete, a data quality plan was finalized (Table 7), outlining the 

issues found to be affecting the quality of the data for each feature. Included in this plan was 

a collection of potentially viable strategies to correct or mitigate the issues identified. Each 

feature was first analysed individually using the tables and reports previously generated, 

then analysed in relation to the other features. The most significant issues were identified – 

judged in accordance to their effect on the dataset as a whole. Once the issues were 

identified, potential solution strategies were then found for each issue – based on common 

industry practice and the aforementioned CRISP-DM approach. The potential strategies are 

tabulated, along with the issues and the corresponding feature, to be explored in a later stage 

of the process.

For all the features in the Week20_ONLY dataset, all issues seemed to be the result of the 

presence of the zero values mentioned earlier. As such, the removal of these invalid 

datapoints was designated as a potential solution strategy for all the features of this dataset. 

The features would then be assessed to determine the effectiveness of the strategy.

With the features of the F3 data, the extremely high percentage of missing values ruled out 

the use of imputation. As such, the first potential strategy was to merge the datasets by 

matching the patient ID’s in an attempt to isolate relevant data. For the categorical feature 

representing the presence of a 3% IUGR, it seemed best to remove it from the dataset as it 

became redundant once the target attribute had been chosen (F3_IUGR10).

2.2. Data preparation

Next, the data needed to be cleaned, removing any invalid datapoints – anything that would 

be read in by the software being used as ‘null’ or ‘NaN’ (Not a Number). This is vital in 

ensuring that the dataset is not contaminated with unnecessary or unknown datapoints. This 

process alone significantly reduced the available data of the F3 dataset (87% removed). 

Once the invalid data was removed, the outliers were identified using the covariance 
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estimator method within Orange [25] – using a contamination value of 10%. Furthermore, 

any rows containing values of ‘0’ that would imply a null row (such as a totalDuration value 

of zero) were also removed. For the Week20_ONLY dataset the outlier identification 

removed 477 instances, while the removal of zeros reduced the available data from 4287 

instances to 2611 instances – indicating a substantial amount of invalid datapoints present in 

the original data. The F3 dataset had no outliers removed and given the nature of the data, no 

invalid zero values were found or removed. At this point, the two datasets were merged, 

using the mutual meta-attribute ‘patID’. This ensured that the datasets were kept in context, 

matching the processed data with the data provided. The dataset had already been 

significantly reduced, but the remaining data would still prove valuable if prepared carefully.

After further study of the literature, the model was simplified by removing any values that 

pertain exclusively to the mother (i.e. maternal features). This is because the value of this 

data lies in what can be gleaned from the fetal features, an otherwise seldom-studied area.

Once cleaned, the data needed to be transformed to accommodate the modelling tools used 

later in the process. Given the disparity between the number of positive and negative values 

for the target attribute, sampling was introduced. The majority value (‘0’) was under-

sampled – using only 20% of the data available, while the minority value (‘1’) was 

oversampled (80%). The two datasets produced from the sampling groups were then 

concatenated. Random sampling was later introduced as part of the evaluation, the data first 

undergoing normalization. For the preprocessing, the normalization method used 

standardized the set so that μ = 0 & σ = 1. After this the features were ranked according to 

Information Gain (Table 8).

Information Gain (formulae) [27]:

IG S, X = H S − ∑
i = 1

N |Si|
|S| ⋅ H Si

Where S denotes the set of training examples with i possible outcomes and X is the attribute 

that splits the set into subsets, Si. H denotes the entropy.

Intrinsic value:

IV S, X = − ∑
i = 1

N |Ti|
|T | ⋅ log

|Ti|
|T |

Information Gain Ratio:

IGR S, X = IG S, X /IV S, X

A Tree Model (Fig. 2) was used to determine which features were most informative and how 

they were used to predict the outcome of the target attribute. The first block present in the 

tree model informs us of the ratio of zero values to the total amount, the percentage this ratio 
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represents and subsequently the feature that best defines the split that follows. Appearing 

above each of the subsequent blocks (one for each possible outcome) are the values of the 

feature that separate the groups. This served as a useful visualization of the classification of 

data within the current model. After observing the model, it becomes clear that accuracy 

could be improved by limiting a single feature over two ranges – namely, the feature 

representing the umbilical artery pulsality index. To validate this theory a ranking table was 

generated based on Information Gain (Table 8). According to the Tree Model, the Umbilical 

Artery PI alone strongly defined whether the IUGR value of the patient would fall below 

10%. This is reaffirmed by the second-place ranking in Table 8. This result was a very 

important milestone in the process, because it validated the preliminary model when 

compared to the literature by ranking the umbilical artery pulsality index as the most 

informative standard feature (fGBoverTime(pe hour) being a constructed feature from the 

Week20_ONLY dataset) (see Fig. 3).

Based on the abovementioned models and tables, two new categorical features are 

constructed:

• D1 for an Umbilical Artery PI value above 1.06217

• D2 for an Umbilical Artery PI value above 1.47909.

The features are then selected for the final model (Table 9).

For the final phase of the data preparation a select set of features were chosen. These were 

selected based on the information gain rankings generated, as well as their contextual 

relevance regarding the desired outcome of the model. Two constructed features were added 

to the model, based on the information gained from the tree model (Fig. 2). The target 

variable, of course, had to be included as well as the meta attribute defining the method of 

merging.

3. Theory/calculation

Several baseline models were created at critical stages during the development of the 

predictive model, each was tested at these intervals to validate their effectiveness. These 

stages are outlined below:

After Concatenation excluding Preprocessing (Model 1*)

After Preprocessing without Feature Construction (Model 2*)

After Feature Construction without Feature Selection (Model 3*)

After Clustering without Feature Selection (Model 4*)

After Feature Selection without Clustering (Model 5*)

After Feature Selection + Clustering (Model 6*)

Alternate Method - Without removing zero values

Tested after Concatenation

Tested after Preprocessing
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To more accurately classify the data, Clustering - a process implemented to group otherwise 

abstract objects into classes - was attempted (Fig. 4). This was done via K-Means 

Clustering, and by subsequently producing distance values and feeding these into a 

Hierarchical Clustering method. Both methods were tested separately and in tandem, 

exploring the effect of the combined clustering methods on the model/dataset.

Four testing methods are used to validate the performance of each model, chosen due to their 

near-mandatory presence in current literature as well as the variety they provide. It was 

important that the methods test the models’ effectiveness in all the relevant categories, 

ensuring the strengths and weaknesses were clearly highlighted.

3.1. Gradient Descent & regularization

To further model the data, Gradient Descent with Regularization [25] was used in its 

stochastic form. This was done to test and improve convergence of the algorithm by 

updating the relevant parameters of the model. Here, a hinge loss function was used for 

classification and a ‘squared ε insensitive’ loss function for regression. The regularization 

method was Ridge(L2) with a regularization strength (α) of 10−5. For the learning 

parameters, a constant learning rate (η0) was used, initialized at 0.01.1000 iterations were 

used with a tolerance of 10−3. The data was then shuffled after each iteration to improve the 

objectivity of the method.

3.2. Logistic Regression & classification

Logistic Regression [25] is also implemented, both as a method of discrete classification and 

via the Gradient Method. Given the binary nature of the target attribute, Logistic Regression 

proves a good fit. The obstacle for this method was the imbalance present in the data 

regarding the number of negative and positive cases, this was tackled by the aforementioned 

sampling (20% under-sampling to 80% over-sampling). A Lasso(L1) regularization type is 

used with a strength value of C = 1.

3.3. Nearest Neighbour method

To further explore the effects of Clustering on the model/dataset, a Nearest Neighbour [25] 

method was setup and implemented. This method made use of distance values that were fed 

into a clustering method prior to evaluation. A Euclidean distance metric was chosen with 

the weighting based on distance values. A smaller k-value of 2 is used initially, but it was 

later found (after several iterations) that a larger value (5) produces a more optimal result.

3.4. Random Forest

The final method to be explored was the Random Forest method, implemented to take 

advantage of the clustering and classification methods used above. Particularly strong when 

correlation is weak, classification provides a potential solution for this. The probability of a 

correct prediction increases with the number of uncorrelated trees in our model [28]. Given 

the brevity of the tree model in Fig. 2, only 10 trees are used with subsets not being split past 

a value of 5. Replicable training was applied, and no individual depth limit was used.
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4. Results

Several iterations were run for each of the 6 models defined in section 3; these iterations 

were used to optimise the values used for each of the algorithms and methods involved 

throughout the process. Such as those mentioned in section 3.

To quantify the performance of the predictive model a Test and Score function was used 

(Table 10). This compares the test data with the training data to evaluate the model as a 

learning algorithm. For one set of results random sampling was used, repeating 10 times per 

sample, with a training set size of 70%. To compare against, another set of results was 

produced using cross-validation with folding (3 folds were used here). Both methods made 

use of stratification and a 95% confidence interval. The results shown were averaged over 

both target attribute classes (i.e. 0 and 1). The AUC values of each of the models for each of 

the testing methods were condensed into two graphs (Figs. 5 and 6). These show how each 

model performed with regards to the AUC values and allowed easy visual verification for the 

selection of the final model. [29] To further explore the performance of the model, a 

Confusion Matrix was used (Table 11). Correctly classified positives are denoted as TP 

(True Positive), and incorrectly classified positives are denoted as FP (False Positive). 

Similarly, TN (True Negative) and FN (False Negative) were used in the evaluation. The 

Receiver Operating Characteristic (ROC) curves (Figs. 7 and 8) display the TP rate against 

the FP rate, a measure of the model’s ability to distinguish between classes.

The evaluation of the model was done using 5 standard criteria:

Area under the ROC curve (AUC) – This method is independent of changes in the 

proportion of responders. It represents the area under the Receiver Operating Characteristic 

(ROC) curve. For a predictor f, an unbiased estimator of its AUC is expressed by the 

Wilcoxon-Mann-Whitney statistic [30].

AUC f =
∑t0 ∈ D0 ∑t1 ∈ D11 f t0 < f t1

|D0| ⋅ |D1|

Where 1[f(t0) < f(t1)] denotes an indicator function; returning 1 iff the condition proves true, 

and 0 otherwise. D0 and D1 represent the set of negative and positive examples, respectively.

Classification Accuracy (CA) - The proportion of the total number of predictions that were 

correct.

CA = TP + TN
TP + TN + FP + FN

F-score (F1) - The harmonic mean of Precision and Recall.

F1 = 2 Precision×Recall
Precision+Recall

Precision - The proportion of positive cases that were correctly identified.
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Precision = TP
TP + FP

Recall - The proportion of negative cases which are correctly identified.

Recall = TP
TP + FN

The evaluation results were simplified into comparative bar graphs to better visualise the 

performance of each model (Figure(s) 4 & 5). Given that the AUC characteristic is a 

measure of the performance of the model in its classification of the dataset, this was chosen 

as the primary comparison metric. It is clear from the figures that models 5 and 6 perform 

the best in terms of their classification, although the two models seem to perform equally 

well. With little distinction between models 5 and 6 present, it was simply a matter of 

removing the redundant model. Cross-validation techniques proved more effective with 

regards to the AUC value obtained, with the models performing best under the kNN 

evaluation method.

5. Discussion

Our study confirms previous findings; that there is a strict correlation between umbilical 

Doppler velocimetry and IUGR [31]. However, there is still a need for improvement. In a 

recent study, a significant association was found between abnormal Doppler results and 

asymmetric fetal growth, but the sensitivity was low, 3.9% [32]. The authors concluded that 

maternal characteristics and imaging variables did not reliably identify more than one-third 

of pregnancies with evidence of suboptimal placentation.

Although there were concerns about missing data, much of it could be explained by the 

selection of a subgroup, consisting of 28% of the total group, as it would have been too 

expensive to do ultrasound examinations in all participants.

In our study, the pre-processed feature representing the fetal gained beats over time was 

ranked as most informative (Table 8), suggesting a strong correlation between the heart rate 

accelerations of the fetus and IUGR. The association of fetal movements with fetal heart rate 

changes was confirmed again, recently, when it was demonstrated that FHR accelerations 

synchronized with fetal movement bursts [33]. The combination of these results suggests 

significant predictive value in the inclusion of the gained beats and acceleration metrics, 

acting as more insightful features of the ECG data.

Although pregnant women observe a complex range of fetal movement patterns [34], it is 

difficult to quantify. As such, studies on fetal movement counting often do not provide 

sufficient evidence to influence practice [35]. Our better quantification of fetal movements 

by the determination of gained beats and the combination of different assessments of fetal 

wellbeing (such as fetal movement counts and Doppler velocimetry) likely contribute to our 

better identification of IUGR when compared to other studies.
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The results of the Test and Score function are the most comprehensive regarding the overall 

performance of the model (Table 10). The best performing model achieving an F1 score of 

above 90% for all methods but k-Nearest Neighbours. The accuracy, precision and recall 

metrics all achieving above 90% for the SGD method, with only the AUC value being below 

this.

The Confusion Matrix (Table 11), a performance measurement tool for machine learning 

classification, serves as a simplified version of the evaluation table. This matrix shows the 

performance of the model in terms of classification accuracy. Three of the four evaluation 

methods used achieved above 90% for both True Negative and True Positive results. This is 

a significant result for any model, indicating an extremely high level of consistency and 

accuracy. The relatively poor performance shown by the kNN method indicates that this 

problem does not benefit as much from pattern recognition techniques.

The ROC Analysis (Figs. 7 and 8) that follows the evaluation, displaying the results for both 

Target Class cases, shows a very strong True Positive rate (y-axis) for both cases. The ROC 

curves represent the relationship between the sensitivity and the specificity of the algorithm. 

The area under the curve (represented by the AUC value) is equivalent to the probability that 

an arbitrary positive instance is ranked higher than an arbitrary negative instance. Although 

more valuable for classification problems, the AUC serves as a general metric for predictive 

accuracy.

The model performs exceptionally well in all evaluation metrics, showing robustness and 

flexibility as a predictive model for the binary target attribute of fetal growth restriction.

6. Conclusions

This paper discusses and explores the efficacy of the proposed model in the prediction of 

intrauterine growth restriction at the 34+0–37 + 6 week’s gestation age. Several predictive 

models were constructed using supervised learning techniques, and evaluated using the 

Stochastic Gradient Descent, k-Nearest Neighbours, Logistic Regression and Random Forest 

methods. The final model performed exceptionally well across all evaluation metrics, 

particularly so for the Stochastic Gradient Descent method: achieving a 93% average for 

Classification Accuracy, Recall, Precision and F1-Score when random sampling is used and 

91% for cross-validation. This accuracy is likely due to the value added by the pre-processed 

features regarding the fetal gained beats and accelerations, something otherwise absent from 

previous multi-disciplinary studies. Furthermore, the model identifies the Umbilical Artery 

Pulsality Index to be the strongest identifier for the prediction of the Intra-Uterine Growth 

Restriction – matching the literature as the golden standard identifier.

In future, more techniques will be explored with a particular focus in optimizing the process. 

As more data becomes available and the models become more accurate and robust, deep 

learning techniques might be worth exploring. However, validatory studies such as this are 

vital steps in the early stages of the process.

The success of the proposed predictive model allows the pursuit of further birth-related 

anomalies, providing a foundation for more complex models and lesser-researched subject 
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matter. The extensive data available for this model was a vital part of its success but might 

also become a limiting factor for further analyses when less data might be available. Further 

development of such models will allow for better performance with less data, improving the 

health and well-being of both mother and fetus.
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Fig. 1. 
One of the scatter plot facet grids. This one compares the variables: GBoverTime(per hour), 

fGBoverTime(per hour) and F3_MCA_PI. Particular focus should be on the effect the ‘0′ 
values have on the data.
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Fig. 2. 
A screenshot of the Tree Model produced by Orange’s ‘Tree’ function.
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Fig. 3. 
Graphical representation of the preparation process for each model.
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Fig. 4. 
Visual results of the Hierarchical Clustering on the data. Average ‘Linkage’ used. Each 

colour represents a separate cluster of values.
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Fig. 5. 
Comparative bar graph showing the AUC values for the different models for each evaluation 

method. These results were obtained using Random Sampling with Stratification.
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Fig. 6. 
Comparative bar graph showing the AUC values for the different models for each evaluation 

method. These results were obtained using Cross Validation with Stratification.
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Fig. 7. 
The resulting ROC curve for the final model. The curve shown is for Target Class ‘0’.
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Fig. 8. 
The resulting ROC curve for the final model. The curve shown is for Target Class ‘1’.

Crockart et al. Page 22

Inform Med Unlocked. Author manuscript; available in PMC 2021 May 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Crockart et al. Page 23

Table 1

Table summarising each dataset used. Note, titles of datasets exist only to assist referencing and do not 

necessarily denote the information within.

Dataset Title: Week20_ONLY

Source: Academic Dataset

Dimensions: 4764 row × 14 columns

Brief Description: This dataset contains the information collected from mothers and their fetuses at 20–24 weeks gestational age. This data 
has been processed from ECG data collected via the Monica AN24 Device. Originally processed by Ivan Calitz Crockart 
(2019).

Dataset Title: F3

Source: Academic Dataset

Dimensions: 2767 rows × 5 columns

Brief Description: This dataset contains the information collected from mothers and their fetuses at 34+0–37 + 6 weeks gestational age. The 
data represents information pertaining to the health of the mother and the fetus at this stage - measuring the pulsality 
indexes of several arteries as well as intrauterine growth restriction as assessed by the estimated fetal weight.
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Table 2

Feature overview with a brief description of each feature present in the respective datasets. Week20_ONLY 

referring to a gestational age of 20 + 0 to 23 + 6 weeks, and F3 to 34 + 0 to 37 + 6 weeks.

Feature Data Type Description

Week20_ONLY nGB Numerical The number of times gained beats were recorded for the maternal heart rate

total_GB Numerical The sum of all the gained beats recorded for the maternal heart rate

GBoverTime(per hour) Numerical Ratio of the total gained beats recorded per hour of heart rate recording for the maternal 
heart rate

accDuration Numerical The total time (in seconds) of the entire recording that were recorded as accelerations for 
the maternal heart rate

totalDuration Numerical The total time (in seconds) of the recording for the maternal heart rate

nLB Numerical The number of times lost beats were recorded for the maternal heart rate

total_LB Numerical The sum of all the lost beats recorded for the maternal heart rate

nfGB Numerical The number of times gained beats were recorded for the fetal heart rate

total_fGB Numerical The sum of all the gained beats recorded for the fetal heart rate

fGBoverTime(per hour) Numerical Ratio of the total gained beats recorded per hour of heart rate recording for the fetal heart 
rate

fAccDuration Numerical The total time (in seconds) of the entire recording that were recorded as accelerations for 
the fetal heart rate

fTotalDuration Numerical The total time (in seconds) of the recording for the fetal heart rate

f_nLB Numerical The number of times lost beats were recorded for the fetal heart rate

total_fLB Numerical The sum of all the lost beats recorded for the fetal heart rate

F3

F3_UMBILICAL_ARTERY_PI Numerical The Pulsality Index (PI) value for the Umbilical Artery

F3_AVG_UTERINE_ARTERY_PI Numerical The average Pulsality Index (PI) value for the Uterine Artery

F3_MCA_PI Numerical The Pulsality Index (PI) value for the Middle Cerebral Artery

F3_IUGR3 Categorical Whether or not the Intrauterine Growth Restriction was less than 3%

F3_IUGR10 Categorical Whether or not the Intrauterine Growth Restriction was less than 10%
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Table 6

The tabulated results of the data visualization analysis.

Feature vs Density Graph Shape

nGB Unimodal (Skewed right)

total_GB Exponential

GBoverTime (per hour) Exponential

accDuration Normal (Unimodal)

nfGB Normal (Unimodal)

total_fGB Exponential

fGBoverTime(per hour) Exponential

fAccDuration Normal (Unimodal)

totalDuration Normal (Unimodal)

fTotalDuration Normal (Unimodal)

nLB Exponential

f_nLB Multimodal/Skewed Right

total_LB Exponential

total_fLB Unimodal (Skewed Right)

F3_UMBILICAL_ARTERY_PI Multimodal/Normal (Unimodal)

F3_AVG_UTERINE_ARTERY_PI Unimodal (Skewed Right)

F3_MCA_PI Normal (Unimodal)
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Table 7

The Data Quality Plan in tabular form, giving a brief overview of the issues present and the handling strategies 

to be employed.

Feature Data Quality Issue(s) Potential Handling Strategies

Week20_ONLY nGB Skew data Remove rows with 0 values. Remove Outliers.

total_GB Skew data/Outliers/High Cardinality Remove rows with 0 values. Remove Outliers.

GBoverTime (per hour) Skew data/Outliers Remove rows with 0 values. Remove Outliers.

accDuration Outliers (Low) Remove rows with 0 values. Remove Outliers.

totalDuration Outliers (Low) Remove rows with 0 values. Remove Outliers.

nLB Skew data/Outliers Remove rows with 0 values. Remove Outliers.

total_LB Skew data/Outliers Remove rows with 0 values. Remove Outliers.

nfGB Outliers (Low) Remove rows with 0 values. Remove Outliers.

total_fGB Skew data/Outliers/High Cardinality Remove rows with 0 values. Remove Outliers.

fGBoverTime(per hour) Skew data/Outliers Remove rows with 0 values. Remove Outliers.

fAccDuration Outliers (Low) Remove rows with 0 values. Remove Outliers.

fTotalDuration Outliers (Low) Remove rows with 0 values. Remove Outliers.

f_nLB Skewed data Remove rows with 0 values. Remove Outliers.

total_fLB Skewed data/High Cardinality Remove rows with 0 values. Remove Outliers.

F3

f3_umbilical_artery_pi Missing Data (76.7%) Match metavalues (patID) to isolate relevant data

f3_avg_uterine_artery_PI Missing Data (76.3%) Match metavalues (patID) to isolate relevant data

f3_mca_pi Missing Data (76.9%) Match metavalues (patID) to isolate relevant data

f3_iugr3 Missing Data (49.1%)/Irregular Cardinality Drop from dataset

f3_iugr10 Missing Data (49.1%)/Irregular Cardinality Match metavalues (patID) to isolate relevant data
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Table 8

A table displaying the feature rankings according the Orange’s ‘Rank’ method. Determined based on 

Information Gain and the Gain ratio.

Info. gain Gain ratio

fGBoverTime(per hour) 0.160 0.080

F3_UMBILICAL_ARTERY_PI 0.104 0.052

F3_AVG_UTERINE_ARTERY PI 0.088 0.044

f_nLB 0.072 0.036

fAccDuration 0.026 0.013

nfGB 0.026 0.013

F3_MCA_PI 0.010 0.005
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Table 9

The selected features and their types.

Name Type

fGBoverTime(per hour) Feature

fAccDuration Feature

f_nLB Feature

F3_UMBILICAL_ARTERY_PI Feature

F3_AVG_UTERINE_ARTERY_PI Feature

D1 Constructed Feature

D2 Constructed Feature

F3_IUGR10 Target Variable

patID Meta Attribute
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Table 10

The evaluation results for each model as produced by Orange’s ‘Test and Score’ function. Both sampling 

methods are included. The results shown are attained using a 95% confidence interval, inherent in the software 

function.

Model 1 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

SGD 0.544 0.833 0.812 0.797 0.833

Random Forest 0.754 0.907 0.889 0.904 0.907

Logistic Regression 0.547 0.813 0.777 0.745 0.813

kNN 0.745 0.873 0.872 0.871 0.873

Model 1 - Cross Validation(3 folds); Stratified

Method AUC CA F1 Precision Recall

SGD 0.607 0.878 0.856 0.859 0.878

Random Forest 0.639 0.898 0.872 0.909 0.898

Logistic Regression 0.561 0.857 0.791 0.735 0.857

kNN 0.779 0.816 0.821 0.827 0.816

Model 2 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

SGD 0.544 0.833 0.812 0.797 0.833

Random Forest 0.668 0.853 0.818 0.803 0.853

Logistic Regression 0.738 0.833 0.818 0.806 0.833

kNN 0.492 0.800 0.785 0.771 0.800

Model 2 - Cross Validation(3 folds); Stratified

Method AUC CA F1 Precision Recall

SGD 0.607 0.878 0.856 0.859 0.878

Random Forest 0.692 0.918 0.904 0.925 0.918

Logistic Regression 0.823 0.878 0.856 0.859 0.878

kNN 0.575 0.796 0.781 0.769 0.796

Model 3 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

SGD 0.746 0.927 0.917 0.926 0.927

Random Forest 0.692 0.907 0.896 0.898 0.907

Logistic Regression 0.732 0.907 0.893 0.899 0.907

kNN 0.578 0.827 0.801 0.782 0.827

Model 3 - Cross Validation(3 folds); Stratified

Method AUC CA F1 Precision Recall

SGD 0.774 0.918 0.913 0.913 0.918

Random Forest 0.833 0.898 0.886 0.888 0.898

Logistic Regression 0.803 0.898 0.886 0.888 0.898

kNN 0.590 0.837 0.825 0.817 0.837

Model 4 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall
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Model 1 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

SGD 0.746 0.927 0.917 0.926 0.927

Random Forest 0.739 0.907 0.893 0.899 0.907

Logistic Regression 0.732 0.907 0.893 0.899 0.907

kNN 0.578 0.827 0.801 0.782 0.827

Model 4 - Cross Validation(3 folds); Stratified

Method AUC CA F1 Precision Recall

SGD 0.774 0.918 0.913 0.913 0.918

Random Forest 0.779 0.918 0.904 0.925 0.918

Logistic Regression 0.803 0.898 0.886 0.888 0.898

kNN 0.590 0.837 0.825 0.817 0.837

Model 5 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

SGD 0.771 0.933 0.926 0.932 0.933

Random Forest 0.707 0.927 0.917 0.926 0.927

Logistic Regression 0.762 0.920 0.908 0.919 0.920

kNN 0.812 0.873 0.830 0.849 0.873

Model 5 - Cross Validation(3 folds); Stratified

Method AUC CA F1 Precision Recall

SGD 0.774 0.918 0.913 0.913 0.918

Random Forest 0.816 0.898 0.886 0.888 0.898

Logistic Regression 0.789 0.918 0.913 0.913 0.918

kNN 0.867 0.878 0.836 0.893 0.878

Model 6 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

Model 1 - Random Sampling(10, 70%); Stratified

Method AUC CA F1 Precision Recall

SGD 0.771 0.933 0.926 0.932 0.933

Random Forest 0.707 0.927 0.917 0.926 0.927

Logistic Regression 0.762 0.920 0.908 0.919 0.920

kNN 0.812 0.873 0.830 0.849 0.873

Model 6 - Cross Validation(3 folds); Stratified

Method AUC CA F1 Precision Recall

SGD 0.774 0.918 0.913 0.913 0.918

Random Forest 0.816 0.898 0.886 0.888 0.898

Logistic Regression 0.789 0.918 0.913 0.913 0.918

kNN 0.867 0.878 0.836 0.893 0.878
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Table 11

Table showing the summarised Confusion Matrix results for each method used for the final model. The results 

are displayed as a percentage of the total number of predictions. The values highlighted in green represent the 

True values (desirable values), while those in red represent False values (undesirable values). [COLOUR].

KNN

Predicted

Actual 0.0 1.0

0.0 87.8% 33.3% 130

1.0 12.2% 66.7% 20

147 3 150

Logistic Regression

Predicted

Actual 0.0 1.0

0.0 92.1% 10.0% 130

1.0 7.9% 90% 20

140 10 150

Random Forest

Predicted

Actual 0.0 1.0

0.0 92.8% 9.1% 130

1.0 7.2% 90.9% 20

139 11 150

Stochastic Gradient Descent (SGD)

Predicted

Actual 0.0 1.0

0.0 93.5% 8.3% 130

1.0 6.5% 91.7% 20

138 12 150
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