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Patients treated with bioproducts (BPs) frequently develop anti-drug antibodies (ADAs)
with potential neutralizing capacities leading to loss of clinical response or potential
hypersensitivity reactions. Many factors can influence BP immunogenicity and could
be related to the patient, the treatment, as well as to the product itself. Among
these latter factors, it is now well accepted that BP aggregation is associated with
an increased potential for immunogenicity, as aggregates seem to be correlated with
ADA development. Moreover, the presence of high-affinity ADAs suggests a CD4
T-cell dependent adaptive immune response and therefore a pivotal role for antigen-
presenting cells (APCs), such as dendritic cells (DCs). In this review, we address
the in vitro methods developed to evaluate how monoclonal antibodies could trigger
the immunization process by focusing on the role of aggregated antibodies in the
establishment of this response. In particular, we will present the different cell-based
assays that have been used to assess the potential of antibodies and their aggregates
to modulate cellular mechanisms leading to activation and the biological parameters
(cellular activation markers, proliferation and secreted molecules) that can be measured
to evaluate the different cell activation stages and their consequences in the propagation
of the immune response. Indeed, the use of such strategies could help evaluate the risk
of BP immunogenicity and their role in mitigating this risk.

Keywords: immunogenicity, monoclonal antibodies, aggregation, danger signal, antigen, cell-based models

INTRODUCTION

Bioproducts (BPs) such as recombinant proteins, including monoclonal antibodies, have proven
to be effective in growing therapeutic areas and in particular for the treatment of chronic diseases.
However, an ongoing concern while using these therapeutics is their immunogenicity, which results
in the production of anti-drug antibodies (ADAs) in treated patients. ADAs detected in patients’
sera are mainly IgG1 and IgG4, although IgE and transient IgM have also been evidenced in
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patients developing hypersensitivity reactions (1, 2). Depending
on the drug, ADA specificity is variable. For therapeutic
antibodies, ADAs are mainly directed against epitopes recognized
as foreign, e.g., mouse remaining epitopes in chimeric or
humanized antibody paratopes, human allotopes, or human
idiotopes (3). Moreover, some ADAs have a neutralizing activity,
while others do not. For instance, in the case of anti-TNF
antibodies, ADA characterization showed that 90% of anti-
infliximab antibodies are neutralizing and more than 97% of
anti-adalimumab antibodies are also neutralizing (4). Studies
exploring peptide sequences targeted by these ADAs identified
B-cell epitopes notably on infliximab and adalimumab variable
regions, close to the paratope (5, 6). ADA development may
lead to reduced BP serum concentrations due to the formation
of immune complexes and a loss of efficacy (7) or adverse
effects such as infusion reactions (8), cytokine release syndrome
(9), or hypersensitivity reactions (2, 10). Immunogenicity is
a growing issue that leads European and North American
health authorities to regularly update recommendations in this
area (11–13). Many factors can influence BP immunogenicity
and they are related to the patient’s immunological and
genetic status, the followed therapeutic regimen, as well as
BP inherent characteristics and quality (14). The latter include
the presence of aggregated BPs upon administration as an
increased risk that promotes immunogenicity. In fact, aggregates
have been correlated with ADA production (mainly IgG1
and less frequently IgG2a, IgG2b, IgG3, and IgM) in mouse
models, either in wild type (15–19) or transgenic animals
(20–23). In particular, it has been shown that the break of
tolerance induced by antibody aggregates was dependent on
the chemical modifications induced by the aggregation process
(23). Moreover, it has been shown that T-cell help is required
for ADA production in response to aggregates in transgenic
and wild-type mice given that CD4 T-cell depletion abolished
the immune response to aggregates (21). Clinical evidence of
aggregates involvement in BP immunogenicity is rare and has
only been described for human gamma globulin preparations
and recombinant forms of endogenous proteins, such as human
growth hormone, erythropoietin, or interferons [reviewed by
Moussa et al. (24)]. While direct clinical evidence has not
been reported, a number of review articles have dealt with the
immunological mechanisms that could lead to ADA production
(24–26). The predominance of high-affinity IgG as patients’ ADA
main isotype suggests that ADA production arises from a T-cell-
dependent immune response, in which BPs and/or aggregates
could undergo APC uptake, to be processed and presented to
T helper cells. In this context, the main professional APCs for
peptide presentation are DCs that have a pivotal role in the
efficient initiation of a specific immune response. It is therefore of
high interest to focus on the mechanisms that underlie aggregates
interactions with this innate/adaptive interface, to gain insight
into BP immunogenicity.

Abbreviations: ADA, anti-drug antibody; APCs, antigen-presenting cell;
BP, bioproduct; DC, dendritic cell; FcR, Fc receptor; IVIG, intravenous
immunoglobulin G; MHC, major histocompatibility complex; moDC, monocyte-
derived dendritic cell; PBMC, peripheral blood mononuclear cell; TLR, toll-like
receptor.

In this review, we focus on cellular models that have been
reported in the literature to assess the impact of aggregated
monoclonal antibodies on the initiation of the immune response.
As such, we will describe that antibody aggregates can behave
as danger signals recognized by innate immune cells, but might
also induce some alterations in the processing and presentation
of antigens generated from the therapeutic antibody.

AGGREGATION PROCESS

The antibody aggregation process has been widely studied
since the production of therapeutic antibodies at an industrial
scale. Aggregation can occur at any stage of the manufacturing
process, storage, transportation, or preparation for patient
administration, under the influence of several critical
environmental parameters (e.g., temperature, pH, ionic strength,
shear forces, light, etc.). These stress conditions can alter the
protein structure either by physical or by chemical damage
and trigger the protein aggregation through different pathways.
Thus, aggregation can occur as a result of the interaction of
two monomers, either folded or unfolded, to gradually form
reversible oligomers and then the initial irreversible aggregation
nucleus, that is the starting point of aggregate growth. For
monoclonal antibodies, the exposure of hydrophobic sequences
representing the aggregation-prone regions (APRs) can promote
oligomerization (27); these APRs are notably found in the
complementarity-determining regions (CDRs) (28, 29) but can
also be found in other positions on variable and constant regions
of the antibodies (30). On the other hand, potential monomer
self-association regions in Fab domains have also been identified
(31). Moreover, a variety of high molecular complexes were
evidenced when antibodies interact with their soluble target
(32). Aggregation mechanisms are extensively described in two
reviews (30, 33). Aggregates are usually described according to
several criteria (size, reversibility, conformation, and shape),
although the size has been adopted as the most convenient to
suggest a classification (34), summarized in Table 1. Interestingly,
the type of generated aggregates depends on the nature of the
applied stress as well as the chosen monoclonal antibody. In
particular, aggregated antibody preparations under accelerated
experimental stresses induce a wide variety of aggregates.
A classification scheme was proposed for antibody aggregates,
based on several biophysical characterizations and the visible or
subvisible criteria (35). Nevertheless, a few reports dealt with the
occurrence of antibody aggregation that could take place during
or just before the administration of the BP (36). For example,
dilution of antibody preparations in PBS or in the manufacturer’s

TABLE 1 | Classification of protein aggregates (34).

Size Preferred terminology Characteristics

<100 nm Nanometer aggregated Oligomers, soluble

100–1000 nm Submicron aggregates Soluble

1–100 µm Micron aggregates Subvisible particles, insoluble

>100 µm Aggregates greater than 100 µm Visible particles, insoluble
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formulation led to a reduction in the monomer concentration
(37). Moreover, nanometer, submicron, and micron protein
particles have been evidenced in intravenous saline bags (38,
39). Furthermore, micron aggregates were detected in ejected
solutions from prefillable syringes due to increased antibody
adsorption to the syringe surface (40). Interestingly, it was shown
that bedside filtration could significantly reduce the quantity of
submicron- and micron-sized aggregates before BP injection
(41). Finally, it is suggested that subcutaneous administration of
antibody solutions could also favor aggregation due to the forced
interaction between monomers in highly concentrated solutions
(42, 43).

ANTIBODY AGGREGATES ACT AS
DANGER SIGNALS FOR INNATE
IMMUNE CELLS

In vitro cell-based models are valuable tools in an attempt
to describe the interaction of exogenous molecules with the
immune system. Monocytes and DCs are professional APCs
acting as sensors while continuously capturing exogenous
molecules that could represent a potential danger. The so-
called “danger signal” concept (44) includes exogenous pathogen-
associated molecular patterns (PAMPs), endogenous damage-
associated molecular patterns (DAMPs), and the more recently
described nanoparticle-associated molecular patterns (NAMPs)
(45). Soluble submicron-sized protein aggregates can fall into
the latter category (46). These molecular patterns can bind
to pattern recognition receptors (PRR) expressed on innate
immune cells and induce cell activation, through the activation
of signaling pathways that lead to the activation of transcription
factors such as nuclear factor kappa B (NF-kB) and activator
protein 1 (AP-1), resulting in the secretion of pro-inflammatory
cytokines and chemokines.

Interaction of Antibody Aggregates With
Peripheral Blood Mononuclear Cells
As a first approach, most cellular models that evidenced the
danger signal role of antibody aggregates prepared under
accelerated conditions used PBMCs from healthy donors.
Joubert et al. first described a cytokine/chemokine signature
resulting from PBMC activation in response to stir-stressed
antibody preparations, compared to monomeric antibodies (47).
Furthermore, using the same cellular model, a comparison of
size-fractionated aggregates showed that aggregates having a
size between 5 and 10 µm were the most efficient to induce
cytokine secretion (48). PBMC activation was also induced by
aggregated polyvalent immunoglobulin preparations (IVIG) in
terms of cytokine and chemokine secretion (49, 50), but also in
terms of intracellular proteins involved in signaling pathways:
the activation of mitogen-activated protein kinases (MAPKs)
p38, Erk1/2, and Jnk, was observed within 30 min of PBMC
stimulation with IVIG aggregates. Screening of the expression
of over 100 genes in PBMCs in response to aggregated IVIG
showed an increased expression of specific genes implicated in

cell signaling and/or linked to the activation and recruitment of
innate immune cells (50).

Attempts to identify cellular receptors implicated in PBMC
activation gave different outcomes, depending on the used cell-
based model. Using specific blocking antibodies, the involvement
of the toll-like receptors (TLRs), TLR2 and TLR4, and to
a lesser extent the Fc-fragment receptors FcγRI and FcγRIII
was evidenced via the decrease of aggregate-induced PBMC
cytokine and chemokine secretion (47, 49). However, studies
using reporter cell models allowing the evaluation of the
individual implication of TLRs and/or FcγRs showed opposing
results. Indeed, Polumuri et al. showed no implication of TLRs,
including TLR2 and TLR4, in the activation of HEK293 cells
expressing TLRs in response to IVIG aggregates (50). More
recently, the use of other reporter cell models showed that
antibody aggregates induced FcγRs activation, mainly FcγRIIa
and FcγRIIIa; however, they did not activate TLRs (51). Taken
together, all these results indicate that the activation of PBMCs in
response to aggregated antibodies is multifactorial, through the
potential engagement of multiple receptors. The implication of
multiple cell types in the observed response of PBMCs clearly
shows the complexity of this cellular model to evaluate the
specific pathways (mainly receptors and intracellular proteins)
enabled by antibody aggregates. It would therefore be of interest
to study the role of each cell type separately to deepen our
understanding of the innate immune response to aggregates.

Interaction of Antibody Aggregates With
Antigen-Presenting Cells
Aggregated antibody behavior as a danger signal was also
demonstrated using APC models. The monocytic THP-1 cell
line was compared to primary purified monocyte preparations to
evaluate the impact of aggregated IVIG. Both pro-inflammatory
cytokine secretion profiles were comparable, not in magnitude,
but in terms of a dose-dependent response to increasing
aggregates concentrations (49). Moreover, receptors involved in
THP-1 or monocyte activation in response to aggregates were
identified as TLR2, TLR4, and, to a lesser extent, FcγRII. Other
studies focused on the impact of aggregated antibodies on DC
maturation, using purified monocyte preparations from healthy
donors that were differentiated into dendritic cells (moDCs).
This primary cell in vitro model has been described and used
for DC maturation studies under the action of coagulation
Factor VIII preparations (52) and recombinant human growth
hormone aggregates (53). The effect of monoclonal antibody
aggregates on moDC has also been studied with rituximab (53–
55), trastuzumab (54), monoclonal IgG1s (56), and adalimumab,
natalizumab, and infliximab (55). These studies showed that
antibodies in their native state did not induce maturation of
moDCs whereas their aggregated counterparts increased the
expression of surface markers, mainly CD83 and CD86, as well
as the secretion of cytokines such as IL-6, IL-8, IL-10, IL-12p40,
and chemokines such as CCL2, CCL3, and CCL4. Although
moDC phenotypic alterations could be observed in response
to different antibody aggregates, the degree of maturation
varied depending on the used therapeutic antibody as well as
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the size, structure, quantity, and type of generated aggregates.
For instance, Morgan et al. compared the moDC response
to infliximab and natalizumab aggregates. This study showed
that infliximab had the highest propensity to aggregate when
submitted to heat stress contrary to natalizumab. Evaluating
moDC maturation then showed that heat-stressed infliximab
induced phenotypic alterations of moDCs whereas stressed
natalizumab did not have any effect on moDC activation (55).
Moreover, it was shown that infliximab aggregates increased the
phosphorylation of the kinases Syk, Erk, and Akt (55).

In order to correlate the innate immune response observed
with aggregated antibodies with the adaptive immune response,
T-cell proliferation and cytokine secretion have been evaluated
in multiple studies through PBMC culture models or allogeneic
DC–T-cell co-culture models. On one hand, cultures of healthy
donors’ PBMCs showed an increased proliferation of T cells
and IL-2 production (57, 58) or IFN-γ production (56) in
response to aggregated antibodies, whereas native antibodies
induced little to no T-cell response. On the other hand, using
an allogeneic moDC–T-cell co-culture model, we showed an
increase in CD4 T-cell activation (proliferation and cytokine
secretion) when moDC were treated with various types of protein
aggregates [stir-stressed rituximab and stir-stressed recombinant
human growth hormone (53)]. Interestingly, these aggregates
did not induce similar cytokine profiles: rituximab aggregates
induced IFN-γ, IL-5, IL-13, and IL-17 production, whereas
growth hormone aggregates only induced IFN-γ secretion (53).
These results strongly suggest that different mechanisms are
implicated in the activation of moDCs depending on the origin
and type of the generated protein aggregates. However, the
results converge to show full DC activation, sufficient to trigger
a T-cell response evaluated using orthogonal readouts such as
proliferation and cytokine secretion (Figure 1). This suggests
that antibody aggregates have the ability to initiate an adaptive
immune response that could lead to ADA production.

ANTIBODY AGGREGATES AND THE
GENERATION OF DE NOVO ANTIGENS

Producing high-affinity ADAs against therapeutic antibodies
requires that patients develop a specific adaptive immune
response through antigen recognition by T cells and B cells.
In fact, specific T-cell activation requires efficient antigen
presentation by fully mature DCs, through the establishment of
the immune synapse (59, 60) that allows the transmission of three
activation signals. The interaction between DCs and T cells is
established via the HLA–peptide complex recognized by a specific
T-cell receptor (TCR), the membrane co-stimulation proteins as
well as the DC-secreted pro-inflammatory cytokines that allow
T-cell proliferation and polarization (59, 61). Cell-based models
presented in the previous section highlighted that aggregated
antibodies could fulfill the two latter activation signals. However,
the role of aggregates in the initiation of a specific T-cell response
has been less explored (62), even though the specificity of the
immune response to native monoclonal antibodies has been well
documented over the past years, as described hereafter.

The CD4 T-Cell Repertoire Targeting
Monoclonal Antibodies
In order to establish a link between the development of
the adaptive immune response and the clinically observed
immunogenicity of monoclonal antibodies, autologous DC–T-
cell co-culture models have been developed. Briefly, CD4 T
cells isolated from human healthy donors’ blood are seeded in
plates and stimulated by autologous mature moDCs loaded with
monoclonal antibodies. After weekly rounds of stimulations with
antibody-treated moDCs allowing specific T-cell expansion, an
IFN-γ ELISpot assay is used to detect antibody-specific T-cell
lines (CD4 T cells present in a single well) and determine a
frequency of CD4 T cells recognizing monoclonal antibodies
following the Poisson distribution for rare events. This cellular
model first allowed Delluc et al. to identify the existence of
T-cell repertoires recognizing monoclonal antibodies, notably
rituximab, infliximab, and adalimumab. Interestingly, these
results correlated with the clinical immunogenicity of BPs
(63). More recently, studies helped identify the T-cell epitopes
incriminated in monoclonal antibody immunogenicity, which is
essential in the process of deimmunizing antibodies. Monoclonal
antibodies can be uptaken and processed by APCs such as DCs
and the derived-linear peptides will be presented to T cells
on major histocompatibility complex (MHC) molecules. These
peptides could then be identified through an MHC-Associated
Peptide Proteomics (MAPPs) assay. Identified peptides are then
tested in the co-culture model to determine the ones that can
induce a T-cell response, which depends on the peptide’s affinity
to bind to MHC molecules and the recognition of the MHC–
peptide complex by a specific TCR. This type of experiment has
evaluated T-cell epitopes of different monoclonal antibodies such
as infliximab, rituximab (64), natalizumab, adalimumab (65),
secukinumab, and ixekizumab (66). Results showed that peptides
inducing a CD4 T-cell response to a monoclonal antibody were
mainly sequences deriving from CDRs and framework regions
(FR) of the antibody variable domains. These studies clearly
showed the pre-existence of CD4 T cells specific of peptides
deriving from therapeutic antibodies which could favor their
immunogenicity (Figure 2).

The Role of Antibody Aggregates in the
Initiation of a Specific Immune Response
While studying the role of aggregates in the activation of DCs, it
has been shown that aggregated antibodies can be internalized
by these APCs (54). Different mechanisms can be involved
in the uptake of particles: phagocytosis, macropinocytosis, or
clathrin-mediated endocytosis. In particular, aggregated particles
of size larger than 0.5 µm are internalized by phagocytosis
or macropinocytosis, whereas smaller particles are internalized
by clathrin-mediated endocytosis (67). Studies exploring the
role of antibody aggregates mainly generate these aggregates
by submitting antibody solutions to extreme and accelerated
stress conditions that often induced the formation of submicron-
and micron-sized aggregates. This strongly suggests that these
aggregates would be internalized by either phagocytosis or
macropinocytosis; however, no data has yet confirmed this
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FIGURE 1 | Antibody aggregates act as danger signals for innate immune cells. [1] Aggregates interact with antigen-presenting cells (APCs) via Fcγ receptors
(FcγRs) or toll-like receptors (TLRs) (47, 49–51). [2] Aggregates induce the phosphorylation of intracellular signaling kinases (50, 55). [3; 4] Aggregates induce the
activation of APCs in terms of [3] increased surface markers expression (53, 55, 56) and [4] increased cytokine and chemokine production (47, 53, 55). [5] The
activation of APCs is sufficient to increase T-cell proliferation and cytokine production (53, 57). MoDC, monocyte-derived dendritic cells; PBMC, peripheral blood
mononuclear cells.

FIGURE 2 | Antibody aggregates and the generation of de novo antigens. [1] The pre-existence of CD4 T-cell repertoires recognizing therapeutic monoclonal
antibodies is evidenced in healthy donors (63). [2] Aggregates induce an increase in the number and the variety of MHC II-presented peptides (56). MHC II, major
histocompatibility complex; moDC, monocyte-derived dendritic cells.
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hypothesis. On the other hand, in vivo studies are currently
focusing on the oligomeric antibodies and their immunogenicity
(68, 69). Indeed, nanometric-sized aggregates could be found in
preparations and are hardly ever detected and eliminated before
the administration of the therapeutic antibody (38, 41). Contrary
to subvisible aggregates, oligomers would probably be uptaken
by endocytosis, which is yet to be confirmed (67). Further
investigations are necessary to gain insight into the mechanisms
of aggregate binding and trafficking into APCs.

Once internalized, particles are trafficked to the endocytic
compartment to be processed and generated peptides are then
loaded on MHC molecules. One study by Ahmadi et al. showed
that rituximab aggregates were uptaken by moDCs and co-
localized with HLA-DR molecules after 30 min of incubation
(54). Moreover, Rombach-Riegraf et al. used the MAPPs assay
to evaluate the peptides presented on MHC-II molecules from
moDCs loaded with native or aggregated antibodies. This study
showed that the aggregation of IgG monoclonal antibodies can
induce an increase in the number as well as in the diversity
of the peptides presented by MHC-II molecules compared to
native monoclonal antibodies (56). This observation suggests that
aggregation could induce alterations in the uptake and processing
mechanisms of the antibody leading to changes in the peptides
presented to CD4 T cells (Figure 2).

How could aggregation modulate the specific T-cell response
detected for native antibodies? One study exploring the T-cell
response to erythropoietin and heat- or tungsten-induced
erythropoietin aggregates in an autologous moDC–T-cell co-
culture model that aggregates induced an increase in T-cell
proliferation compared to native erythropoietin (62). This is
the only study to date evaluating the specific T-cell activation
in response to BP aggregates. For antibodies, what is currently
known about aggregation and T-cell epitopes is that the
majority of hydrophobic APRs are found in the T-cell epitope
sequences of therapeutic antibodies (70). More studies could
help better understand if antibody aggregates could initiate
a specific immune response. In particular, it remains to be
clarified if aggregation favors the presentation of de novo T-cell
epitopes that could be generated by possible alterations in
protein cleavage, occurring at different sites compared with the
monomeric antibody.

SUMMARY AND CONCLUSION

Immunogenicity of therapeutic monoclonal antibody aggregates
has been widely explored in the past few years. In this review,
we focused on the in vitro cellular models that have been used

FIGURE 3 | Overview of monoclonal antibody aggregates role in immunogenicity. Aggregated antibodies can have two complementary roles when in contact with
APCs. They act as danger signals but also induce changes in antibody-peptide presentation, thus favoring the initiation of a specific T-dependent adaptive immune
response driving anti-drug antibody development. ADA, anti-drug antibodies; DC, dendritic cells.
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to better understand the role of aggregates in the initiation
of a T-dependent immune response leading to the production
of high-affinity ADAs (Figure 3). Many experimental studies
have explored the danger signal role of antibody aggregates by
showing their potential to induce efficient activation of innate
immune cells. However, current data show the implication
of diverse receptors, signaling pathways, surface markers, as
well as cytokines and chemokines without a clear signature
for all antibody aggregates. Exploring the differences between
existing results show that the detected immune response can vary
depending on the cellular model, the nature of the monoclonal
antibody, the types of generated aggregates, as well as the
level of the selected stress. It is important to notice that most
studies have used extreme stress conditions that would often
lead to the formation of aggregates of various size ranges,
quantities, and structures that do not resemble aggregates found
in administered preparations. Thus, it is currently essential to
focus on the role of antibody oligomers in the initiation of the
immune response; oligomers being sometimes detected but not
efficiently eliminated from preparations. Using homogeneous
well-characterized oligomer preparations may allow one to
evaluate the sensitivity of these cellular models and to also
determine a threshold of particle number sufficient for cell
activation. Finally, the specificity of the immune response
induced by antibody aggregates has yet to be explored to gain
insight into the antigenicity of aggregates.

The use of cell-based assays has clearly some benefits
in assessing the impact of aggregated antibodies on the

establishment of the immune response. They allow one to directly
work with a relevant mixture of human immune cells, and
therefore to take into account the HLA diversity of donors. They
also allow one to test a variety of samples and to compare different
aggregate preparations. For these reasons, beyond their use for
the assessment of induced cellular mechanisms, they can also
find applications in the evaluation of BPs under development, to
assess the potential risk of immunogenicity due to aggregation
during the manufacturing process.
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