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Abstract

Nowcasting of precipitation is a difficult spatiotemporal task because of the non-uniform

characterization of meteorological structures over time. Recently, convolutional LSTM has

been shown to be successful in solving various complex spatiotemporal based problems. In

this research, we propose a novel precipitation nowcasting architecture ‘Convcast’ to predict

various short-term precipitation events using satellite data. We train Convcast with ten con-

secutive NASA’s IMERG precipitation data sets each at intervals of 30 minutes. We use the

trained neural network model to predict the eleventh precipitation data of the corresponding

ten precipitation sequence. Subsequently, the predicted precipitation data are used itera-

tively for precipitation nowcasting of up to 150 minutes lead time. Convcast achieves an

overall accuracy of 0.93 with an RMSE of 0.805 mm/h for 30 minutes lead time, and an over-

all accuracy of 0.87 with an RMSE of 1.389 mm/h for 150 minutes lead time. Experiments

on the test dataset demonstrate that Convcast consistently outperforms other state-of-the-

art optical flow based nowcasting algorithms. Results from this research can be used for

nowcasting of weather events from satellite data as well as for future on-board processing of

precipitation data.

Introduction

Precipitation nowcasting refers to the prediction of rainfall in a local region over a short period

of time generally up to six hours [1]. Short-term prediction of weather events is important for

public safety from high-impact meteorological events such as flash floods, tropical cyclones,

thunderstorms, lightning, high-speed wind, etc. which can affect large population or areas of

significant economic investment. Precipitation nowcasting is also useful for weather forecasts

and guidance in aviation, marine safety, ground traffic control, and construction industries.

Several outdoor activities such as trekking, rafting, fishing also depend on short-term forecasts

of weather events. In recent years, rapid climate change has also led to catastrophic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0230114 March 11, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kumar A, Islam T, Sekimoto Y, Mattmann

C, Wilson B (2020) Convcast: An embedded

convolutional LSTM based architecture for

precipitation nowcasting using satellite data. PLoS

ONE 15(3): e0230114. https://doi.org/10.1371/

journal.pone.0230114

Editor: Ruxandra Stoean, University of Craiova,

ROMANIA

Received: November 5, 2019

Accepted: February 23, 2020

Published: March 11, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0230114

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: Dataset used for

precipitation nowcasting in this research is publicly

available at https://pmm.nasa.gov/data-access/

downloads/gpm.

http://orcid.org/0000-0001-8663-5370
https://doi.org/10.1371/journal.pone.0230114
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230114&domain=pdf&date_stamp=2020-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230114&domain=pdf&date_stamp=2020-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230114&domain=pdf&date_stamp=2020-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230114&domain=pdf&date_stamp=2020-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230114&domain=pdf&date_stamp=2020-03-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0230114&domain=pdf&date_stamp=2020-03-11
https://doi.org/10.1371/journal.pone.0230114
https://doi.org/10.1371/journal.pone.0230114
https://doi.org/10.1371/journal.pone.0230114
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm


meteorological events such as flash floods in various parts of the world because of the unusual

precipitation [2]. Accurate and reliable nowcasting of weather data is thus important.

Nowcasting is one of the most challenging problems in weather forecasting because of the

non-uniform and flawed characterization of the meteorological structures over time. Tradi-

tional methods for forecasting based on Numerical Weather Prediction (NWP) are not suit-

able for short-term predictions because they are highly computationally expensive, sensitive to

noise and depends a lot on initial conditions of the event [3]. They cause a delay in short-term

predictions because of data assimilation and simulation steps required in NWP models which

make the forecast irrelevant by the time it is made. Traditionally, nowcasting is done using

Radar Echo Extrapolation (REE) which are reflected electromagnetic waves from the hydro-

meteors in the atmosphere. Radar echoes are very detailed and can give the intensity, speed,

shape, and direction of movement of storms continuously. The approach of extrapolating the

radar echoes tends to outperform NWP based models [4] and is currently the state-of-the-art

method in precipitation nowcasting [5–8]. The method of extrapolation of radar echoes gives

the movement and change in intensity of hydrometeors from radar images. Computer vision

based technique optical flow has been widely used to extrapolate radar maps in nowcasting [9–

11]. However, there are some limitations of nowcasting of precipitation using radar echoes.

Radar echoes are best suitable for a range between 5 kms to 200 kms on earth. Beyond 200

kms, they can detect rainfall that are at a higher altitude and does not reflect the real scenario

on the ground. Sometimes within optimal range, there is a possibility of detection of virga
which is rainfall evaporating before hitting the ground, and reflection from objects that are not

rainfall such as buildings, drones, airplanes, birds [12]. Radar cannot measure the rainfall

directly above the observatory. Another major limitation of radar-based precipitation nowcast-

ing is that radar observatories are not present in many developing nations and are also not

available over deep oceans. Satellite-based precipitation data for nowcasting can be beneficial

in those cases as they cover the entire globe.

Several studies have used satellite-based data for precipitation nowcasting [13–16]. In [13],

the authors used picture fuzzy clustering method for weather nowcasting from satellite image

sequences. Rivolta et al. [14] used a two-step approach by first projecting the infrared radiance

measured from satellite ahead in time and then use the projected radiance to nowcast further

using artificial neural network. Otsuka et al. [15] used data assimilation technique for nowcast-

ing from satellite images. Liu et al. [16] used computer vision technique optical flow for precip-

itation nowcasting using satellite data. Methodologies used in [13, 15] are computationally

expensive and require several processing steps to obtain the nowcasting results. Rivolta et al.

[14] used simple feed-forward neural network without any consideration for spatiotemporal

aspects which leads to large error in nowcasting results. Optical flow based techniques in now-

casting have limited success results because the tracking of pixels and extrapolation of values

during prediction are considered as two separate processes [17, 18].

Recently, deep learning techniques have been shown to be very successful in solving several

real-world problems such as image classification, object detection, image captioning, text anal-

ysis in computer vision and natural language processing [19]. Deep neural networks have the

ability to capture intricate structures from the dataset to learn a function using the backpropa-

gation algorithm that can map the input to the output. Recurrent neural networks such as

Long Short Term Memory (LSTM) [20], and Gated Recurrent Units (GRU) [21] are widely

used for analyzing time series and sequential data. However, LSTMs and GRUs can not work

with problems which have spatiotemporal aspects such as sequential radar maps for nowcast-

ing [17]. Some studies tried to use Convolutional Neural Network (CNN) for extracting local

spatial information and LSTM for long distance dependency [22]. In those studies, CNNs and

LSTMs are treated independently as they considered output from CNN as input to the LSTM.
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Convolutional LSTM (ConvLSTM) [17] has convolutional structures embedded within the

LSTM cell. Such network architecture has been shown to be very successful in extracting spa-

tiotemporal features required for precipitation nowcasting using radar data [17, 23, 24]. A

comprehensive study of ConvLSTM based architectures and its comparison with state-of-the-

art methods in precipitation nowcasting using satellite data is required.

Building a deep neural network architecture for a new problem requires a lot of trial and

error effort because of several hyperparameters embedded in the network. Traditionally,

hyperparameters optimization has been done by humans when only a few trials are possible.

Automated Machine Learning (AutoML) tries to solve the manual effort by automatically opti-

mizing the architecture by tuning its hyperparameters on a given dataset to achieve optimal

performance [25]. Recently, there has been an increase in computing capacity because of the

parallelization on GPU processors which makes it possible to run several trials in a small time

duration. Algorithmic-based approaches for hyperparameter optimization has been shown to

be quite successful in various problems [26]. However, to the best of our knowledge, we could

not find previous studies which uses AutoML for precipitation nowcasting problems.

In this research, we develop a novel architecture Convcast for precipitation nowcasting

using the spaceborne Integrated Multi-satellitE Retrievals for GPM (IMERG) dataset [27]. We

(i) use Convcast to predict the eleventh timestamp precipitation from a series of ten consecu-

tive precipitation data at an interval of 30 minutes, (ii) use the predicted precipitations sequen-

tially to further nowcast 60 minutes, 90 minutes, 120 and 150 minutes lead time precipitations,

(iii) investigate the role of different hyperparameters in the Convcast network, and (iv) assess

the quality of the nowcasted precipitation with the state-of-the-art optical flow based baseline

methods on the test dataset consisting of several meteorological events.

Methodology

IMERG dataset

IMERG is the unified algorithm that provides multi-satellite precipitation data. The precipita-

tion data is obtained from passive microwave sensors of the precipitation measuring satellite

comprising the Global Precipitation Measurement (GPM) constellation [27]. The IMERG

dataset is available in temporal resolutions of 30 minutes, 3 hours, 1 day, 7 days, and 30 days.

All IMERG dataset has a spatial resolution of 0.1˚. Since our goal is short-term forecasting of

precipitation, we use the IMERG dataset with a temporal resolution of 30 minutes. The dataset

with a temporal resolution of 30 minutes are available since March 2014. The IMERG dataset

has a width of 3600 gridded values and a height of 1800 gridded values which cover the latitude

from -89.95 to 89.95 and longitude from -179.95 to 179.95 on the earth.

IMERG dataset with a temporal resolution of 30 minutes is available in HDF5, GeoTIFF,

NetCDF, ASCII, PNG, KMZ, OpenDAP, GrADS and THREDDS data formats. For our

research, we use the HDF5 format IMERG dataset [28] for all subsequent analysis. We use

only the ‘precipitatonCal’ field from the HDF5 dataset which is multi-satellite precipitation

data with gauge calibration and has a unit of mm/hour.

Nowcasting problem and training data

In a precipitation nowcasting problem using satellite data, the spatial region is represented by

M x N grid with Z measurement values varying over time. At any time t, the observation is a

tensor X where X 2 RM×N×Z where R is the observed feature (precipitation). If the observation

is recorded periodically, we get a sequence of observed features X<1>, X<2>, X<3>, . . ., X<t>.

The nowcasting problem is then to predict the next sequence X<t+1> given the previous obser-

vations. In this research, we choose a square grid (M = N = 150) by cropping squares of
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resolution 150 x 150 from the IMERG dataset of size 3600 x 1800 with ‘precipitatonCal’ (Z = 1)

varying over time as shown in Fig 1.

In our study, we would like to predict the sequence X<11> from previous ten observations

at an interval of 30 minutes. For each input precipitation data, we use the subsequent precipita-

tion data as the output precipitation in the training set. For example, at the fifth timestamp

X<5>, we pass the following 30-minute i.e. the sixth precipitation data X<6> as the output

label. Therefore, we prepare ten consecutive precipitation data each at an interval of 30 min-

utes from the IMERG dataset as shown in Fig 2. We prepare 1,276 examples in the training set,

319 examples in the validation set, and 242 examples for the test set. All three sets in training,

validation, and testing have diverse sets of precipitation examples such as hurricanes, storms,

tropical depression, etc.

Development of the Convcast architecture using AutoML

Convcast consists of several layers of ConvLSTM cells for precipitation nowcasting. Unlike

normal LSTM cells, ConvLSTM has convolutional structures in input-to-state and state-to-

state transitions for modeling spatiotemporal relationships. In a ConvLSTM cell, the inputs

X<1>, X<2>, . . ., X<t>, cell outputs C<1>, C<2>, . . ., C<t>, hidden states H<1>, H<2>, . . .,

H<t>, input gate Γi, forget gate Γf, and output gate Γo are three-dimensional tensors. The key

Fig 1. 150 x 150 crops from ‘precipitatonCal’ variable of the IMERG HDF5 file.

https://doi.org/10.1371/journal.pone.0230114.g001

Fig 2. Each timestamp X<t> gets the label of the next consecutive timestamp X<t+1> for prediction.

https://doi.org/10.1371/journal.pone.0230114.g002
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equations governing the ConvLSTM cells are shown in the set of Eq 1, where � denotes the ele-

ment-wise multiplication (Hadamard product), � denotes the convolution operation, σ repre-

sents the sigmoid function, tanh represents the hyperbolic tangent function and W, b are the

parameters of the neural network.

Gi ¼ sðWxi � X<t> þWhi �H<t� 1> þWci � C<t� 1> þ biÞ

Gf ¼ sðWxf � X<t> þWhf �H<t� 1> þWcf � C<t� 1> þ bf Þ

C<t> ¼ Gf � C<t� 1> þ Gi � tanhðWxc � X<t> þWhc � H<t� 1> þ bcÞ

Go ¼ sðWxo � X<t> þWho � H<t� 1> þWco � C<t> þ boÞ

H<t> ¼ Go � tanhðC<t>Þ

9
>>>>>>>=

>>>>>>>;

ð1Þ

We develop Convcast by stacking three ConvLSTM layers for spatial and temporal learning

feature learning which followed by a 3D convolutional layer for the next 30 minutes precipita-

tion prediction as shown in Fig 3. In the last layer of the Convcast architecture, we use ReLU

as the activation layer. This is because precipitation nowcasting is a regression problem where

the output of the Convcast is a precipitation value. Since precipitation cannot take negative

values, we choose ReLU to turn any negative activations into zeros (i.e. no rain). For selecting

the best possible hyperparameters in Convcast architecture, we do a random search [26] for

200 iterations on the set of hyperparameters using the training dataset as shown in Table 1 and

measure the mean squared error loss on the validation dataset. The maximum number of

epochs considered during hyperparameter optimization is 20 as validation loss converges

around 15 epochs as shown in Fig 4. For hyperparameter optimization, we use an open-source

AutoML toolkit Neural Network Intelligence (NNI) [29]. It is important to note here that dur-

ing our experiment we find that a learning rate of 0.001 diverges the training loss regardless of

the other hyperparameters in the network. Subsequently, we remove this hyperparameter

from our search space.

For running our experiments we use a computer system with the following specifications:

NVIDIA Tesla V100 with 16 GB GPU memory, High Frequency Intel Xenon E5-2686 v4

(Broadwell) 2.7 GHz processor with 64GB RAM. The hyperparameters used in Convcast after

optimization in NNI framework are shown in Table 2.

Baseline methods

As a state-of-the-art baselines, we employ four optical flow based models as discussed in [18].

Optical flow based nowcasting algorithms have two steps which includes tracking and extrapo-

lation of features. The four models [18] considered as baselines in this research are Sparse Sin-

gle Delta (SparseSD), Sparse, Dense, and Dense Rotation (DenseROT). Unlike our Convcast

model, these methods are unsupervised algorithms. It is important to note here that only

Sparse model can use last t − 10 precipitation data for the next t + 1 consecutive prediction. All

other models use only the last t − 2 precipitation values for the t + 1 prediction.

The tracking and extrapolation algorithm used in the four models are listed in Table 3.

Both SparseSD and Sparse use Lucas-Kanade optical flow algorithm [30] to track features cal-

culated using Shi-Tomasi corner detector [31]. In case of SparseSD, a constant displacement is

calculated for each tracked feature which is then propagated linearly for predicting location of

features for each lead time n. An affine transformation matrix is then calculated for each lead

time n based on the location of identified features in the previous step. The precipitation at

time t + n is calculated by multiplying affine transformation matrix with the precipitation at

time t. Sparse model differs from SparseSD that instead of using a constant displacement for
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Fig 3. Convcast architecture for precipitation nowcasting using the IMERG dataset.

https://doi.org/10.1371/journal.pone.0230114.g003

Table 1. Hyperparameter space for random search.

Learning Rate Filters Kernel Size Recurrent Regularizer Kernel Regularizer Recurrent Dropout

0.001 16 2x2 0.0 0.0 0.0

0.0001 32 3x3 0.2 0.2 0.2

- 64 5x5 0.3 0.3 0.3

- 128 7x7 - - -

https://doi.org/10.1371/journal.pone.0230114.t001
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each feature, Sparse model uses a linear regression model for every tracked features through

time t − 10 to t.
Dense and DenseROT models use Dense Inverse Search optical flow algorithm [32] for cal-

culating displacement field using the previous t − 1 timestamps. The pixel values are then

extrapolated according to the displacement field using a backward constant-vector [10] and

Fig 4. Convergence of validation loss after 15 epochs for a ConvLSTM based model.

https://doi.org/10.1371/journal.pone.0230114.g004

Table 2. Hyperparameters in Convcast architecture.

Hyperparameters Value

Learning rate 0.0001

Batch Normalization True

Batch size 2

Loss function MSE

Activation function tanh (ConvLSTM),

ReLU (Conv3D)

Optimizer Adam

Hidden layers 4

Input data size 150 x 150

Number of filters (Input-to-state) 128

Number of filters (State-to-state) 64

Kernel size (Input-to-state) 7 x 7

Kernel size (State-to-state) 7 x 7

Dropout False

Regularizer False

Feature scaling True [0, 1]

https://doi.org/10.1371/journal.pone.0230114.t002
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semi-Lagrangian scheme [8] in case of Dense and DenseROT, respectively. It should be noted

that a constant-vector approach does not allow for the representation of roational motion

while a semi-Lagrangian consider rotational motion with the assumption of motion field to be

persistent.

Apart from the above optical flow baseline methods, we also use a simple LSTM layer net-

work for nowcasting. In this case, we flatten the input IMERG dataset of shape 150 x 150 to

22,500 cells and build a two layered LSTM network with 2048 units in the first layer and 1024

units in the second layer. We then pass it through a fully connected layer with 22,500 units to

predict the next 30-minute precipitation.

Evaluation on the test dataset

We nowcast the precipitation up to 150 minutes from the tenth precipitation data in the

sequence, as shown in Table 4. We assess the quality of the nowcasted precipitation up to 150

minutes using two methods. The first method is based on the dichotomous approach (binary

classification), where we convert the predicted and observed matrix to a binary matrix consist-

ing of zeros and ones. If a cell in the matrix has a positive value greater than zero (detected

rain), we assign a value one, otherwise zero (no rain). We compare each pixel value of the

observed and predicted binary matrices to form the contingency matrix, as shown in Table 5

and calculate accuracy indices.

The second method is based on the forecast of continuous variables, and it measures the

difference between the magnitude of observed and forecasted values. In this case, we form a

one-dimension array of size N (N = 5,445,000) from the 242 predicted and the observed pre-

cipitation matrix of size 150 x 150 and compute the accuracy indices directly from the

observed and predicted values.

Accuracy indices based on dichotomous (binary classification) method. From the vari-

ables in the contingency matrix as shown in Table 5, we calculate a total of nine accuracy

scores for evaluation of the model.

Table 3. Overview of the four baseline methods based on optical-flow algorithm.

Models Tracking algorithm Extrapolation

SparseSD Shi-Tomasi corner detector

with Lucas-Kanade

Constant delta-change and

affine transformation

Sparse Shi-Tomasi corner detector

with Lucas-Kanade

Linear regression and affine

transformation

DenseROT Dense Inverse Search Semi-Lagrangian advection

Dense Dense Inverse Search Constant-vector advection

https://doi.org/10.1371/journal.pone.0230114.t003

Table 4. Dataset sequence for nowcasting up to 150 minutes.

Timestamp(Nowcasted) Time difference from t10 Sequences used

(Convcast, Sparse, LSTM)

Sequences used

(DenseROT, Dense, SparseSD)

Observed Predicted Observed Predicted

t11 30 minutes t1 to t10 - t9, t10 -

t12 60 minutes t2 to t10 t11 t10 t11

t13 90 minutes t3 to t10 t11, t12 - t11, t12

t14 120 minutes t4 to t10 t11, t12, t13 - t12, t13

t15 150 minutes t5 to t10 t11, t12, t13, t14 - t13, t14

https://doi.org/10.1371/journal.pone.0230114.t004
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Accuracy is the fraction of correct forecasts by the model. This metric is heavily affected by

the dominating class (e.g. no precipitation).

Accuracy ¼
Hitsþ True Negatives

Total
ð2Þ

Bias measures the ratio of the frequency of forecasted events to the observed events. A value

greater greater than one indicates over forecast and a value less than one indicates under fore-

cast.

Bias ¼
Hitsþ False Alarms

HitsþMisses
ð3Þ

Equitable Threat Score (ETS) measures the forecast skill accounting for the hits due to ran-

dom chance. It is also used to compare forecasts in different regimes.

ETS ¼
Hits � HitsRandom

HitsþMissesþ False Alarms � HitsRandom
;where

HitsRandom ¼
ðHitsþMissesÞðHitsþ False AlarmsÞ

Total

ð4Þ

False Alarm Ratio (FAR) is the fraction of predicted rainfall events that actually did not

occur.

FAR ¼
False Alarms

Hitsþ False Alarms
ð5Þ

Heidke Skill Score (HSS) measures the fraction of correct forecasts after removing those

forecasts that may be due to random chance.

HSS ¼
ðHitsþ True NegativesÞ � ðRandom CorrectÞ

N � ðRandom CorrectÞ
;where

Random Correct ¼
1

N
½ðHitsþ False AlarmsÞðHitsþMissesÞ

þ ðTrue Negatives þ False AlarmsÞðTrue Negatives þMissesÞ�

ð6Þ

Odds Ratio Skill Score (ORSS) is also known as Yule’s Q and it measures the improvement of

forecast over random chance.

ORSS ¼
True Negatives � Hits � False Alarms � Misses
True Negatives � Hits þ False Alarms � Misses

ð7Þ

Probability of False Detection (POFD) is also known as false alarm rate and it measures the

precipitation events that were not observed but were incorrectly forecasted as precipitation

Table 5. Contingency matrix for the dichotomous forecast.

Observed (IMERG) Total

1 0

Predicted 1 Hits False Alarms Predicted ‘Yes’

0 Misses True Negatives Predicted ‘No’

Total Observed ‘Yes’ Observed ‘No’ Total (N)

https://doi.org/10.1371/journal.pone.0230114.t005
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events.

POFD ¼
False Alarms

True Negativesþ False Alarms
ð8Þ

Success Ratio measures the fraction of the forecasted precipitation events that were cor-

rectly observed.

Success Ratio ¼
Hits

Hits þ False Alarms
ð9Þ

Threat Score is also known as Critical Success Index (CSI) and it represents how well the fore-

casted ‘Yes’ precipitation events correspond to the observed ‘Yes’ precipitation events.

Threat Score=CSI ¼
Hits

Hits þ False Alarmsþ Misses
ð10Þ

Accuracy indices based on continuous variables. For calculation of the accuracy indices

based on continuous variables, we compare each value (Pi) in the forecasted matrix with corre-

sponding values (Oi) in the observed IMERG matrix and calculate three accuracy scores for

the model performance. Root Mean Square Error (RMSE) measures the average magnitude of

forecast errors. The effect of each error on RMSE is proportional to the size of the squared

error. It should be noted that it is influenced heavily by large errors than smaller errors.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðPi � OiÞ
2

s

ð11Þ

Multiplicative Bias compares the average value of forecast with the average value of observed

precipitation.

Multiplicative Bias ¼
PN

i¼1
Pi

PN
i¼1

Oi

ð12Þ

Correlation Coefficient indicates the correspondence of the predicted values to the observed

values and shows the phase relationship between them.

Correlation Coefficient ¼
PN

i¼1
ðPi �

�PÞðOi �
�OÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðPi �

�PÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1
ðOi �

�OÞ2
q ð13Þ

Results

We calculate the MSE loss on the validation set for the simple LSTM model, a ConvLSTM

model with a kernel size of 2 x 2 and 5 x 5, and the Convcast. We present the validation loss of

the four models in Table 6. From the table, it is evident that simple LSTM has a large error on

the validation dataset indicating that such model cannot capture spatial information because

of the flattening of the input precipitation data. We find that even a ConvLSTM architecture

with a small kernel size of 2 x 2 outperforms the simple LSTM model by 47.61%. The loss of

ConvLSTM based model decreases with the increase in the kernel size (5 x 5) and the number

of filters (64). Convcast achieves the minimum loss on the validation set. We do not further

present simple LSTM results on the test dataset because it achieves large errors similar to the

validation set and we only choose Convcast to evaluate on the test dataset as it achieves the
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minimum loss on the validation dataset. It should also be noted that the optical flow based

baseline methods do not require supervised learning and thus we only show their results on

the test dataset. We calculate the accuracy scores on the test dataset using Convcast and four

other baseline methods. The accuracy scores based on dichotomous and continuous variables

are shown in Figs 5 and 6, respectively. From Fig 5, we find that Convcast has better results

compared to other baseline methods. Only in the case of Odds Ratio Skill Score for 30 minutes

Table 6. Comparison of validation loss of Convcast with other LSTM models.

Models Validation loss

LSTM (-2048-1024-[22, 500]) 1.569

ConvLSTM (2x2-32-2x2-32-2x2-32-1x1x1) 0.822

ConvLSTM (5x5-64-5x5-64-5x5-64-1x1x1) 0.626

Convcast 0.6049

‘-2048’ and ‘-1024’ represents the number of units in LSTM cell ‘-[22, 500]’ is the number of units in the fully

connected layer. ‘2x2’ and ‘5x5’ represent input-to-state kernel size and ‘-2x2’ and ‘-5x5’ represent state-to-state

kernel size. ‘-32’ and ‘-64’ are the number of filters in the hidden states of the ConvLSTM layers. ‘-1x1x1’ refers to the

3D convolution.

https://doi.org/10.1371/journal.pone.0230114.t006

Fig 5. Variation of dichotomous accuracy scores with time.

https://doi.org/10.1371/journal.pone.0230114.g005
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lead time, Dense groups have more skills compared to Convcast. Similarly, from Fig 6 we find

that Convcast outperforms other baseline methods for 30 minutes lead time nowcasting.

In the case of dichotomous forecast results, we find that all accuracy scores except False

Alarm Ratio and Probability of False Detection decreases with time as shown in Table 7. It

should be noted that similar to the experiments in [18], there is negligible difference between

Dense and DenseROT models and they outperform Sparse group models. DenseROT achieves

slightly better results compared to Dense model because of rotation motion consideration.

Thus, we only compare DenseROT with Convcast for percentage change in forecast metric in

Table 7.

From Table 7, we find Convcast dominates DenseROT for less decrease in the accuracy

scores or more increase in error metrics as we forecast further in time. The decrease in accu-

racy scores is expected with further forecasting in time [13, 14, 17]. It has been further illus-

trated with an example in the test dataset of a storm nowcasted from t + 30 minutes to t + 150

minutes using Convcast as shown in Fig 7. It should be noted that the precipitation values in

Fig 7 have been scaled between zero and five for better visualization. It is evident from Fig 7

that as we forecast further in time, the accuracy of the model decreases. The model predicts

precipitation values well initially up to t + 90 minutes, but beyond t + 90 minutes, the model

struggles with the prediction of the magnitude of the precipitation value. It just tends to aver-

age the values from previous precipitation which is evident from the blurry images. Interest-

ingly, in all cases, the model preserves the direction and the speed of the storm.

Fig 6. Variation of accuracy scores based on continuous variables with time.

https://doi.org/10.1371/journal.pone.0230114.g006

Table 7. Percentage increase " and decrease # in the forecast metric scores.

Metric Convcast (t11 to t15) DenseROT (t11 to t15)

Accuracy 6.490 # 8.258 #

Bias 6.377 # 2.529 "

Equitable Threat Score 32.213 # 35.669 #

False Alarm Ratio 71.885 " 68.592 "

Heidke Skill Score 22.180 # 25.031 #

Odds Ratio Skill Score 5.720 # 7.327 #

Probability of False Detection 57.987 " 69.704 "

Success Ratio 13.601 # 18.477 #

Threat Score 25.440 # 26.961 #

Root Mean Square Error 72.567 " 79.833 "

Multiplicative Bias 7.217 # 6.625 "

Correlation Coefficient 41.058 # 40.893 #

https://doi.org/10.1371/journal.pone.0230114.t007
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Discussion

Results of comparison among simple LSTM and ConvLSTM models suggest that simple

LSTM models are not suitable for spatiotemporal problems and even a kernel with a small

receptive field in ConvLSTM outperforms simple LSTM models. This is expected as for simple

LSTM models we flatten the input (150 x 150) precipitation data into a vector of length 22,500

which breaks all the spatial correlations. However, nowcasting requires preservation of spatial

features as for a given event in a local region, the motion of cloud is consistent. ConvLSTM,

Fig 7. Nowcasting of a storm up to 150 minutes lead time using Convcast.

https://doi.org/10.1371/journal.pone.0230114.g007

Fig 8. Scatter density plots of magnitude of observed precipitation and predicted precipitation with lead time.

https://doi.org/10.1371/journal.pone.0230114.g008
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because of the embedded convolutional structures as shown in Eq 1, can preserve the spatial

information even with a small kernel of size 2 x 2. The accuracy of the ConvLSTM model

increases with increasing kernel size and the number of filters because a large kernel has more

receptive field and can capture more spatial information and larger number of filters can have

more number of feature maps. Since the ConvLSTM based architectures as shown in Table 6

have same backbone in terms of number of layers and activation functions as Convcast, the

least validation loss obtained by Convcast is due to the tuned hyperparameters obtained from

the AutoML experiment.

In general, the accuracy of the model tends to improve with an increasing kernel size but

that also increases the number of parameters of the model making it more complex and causes

the training and testing time to increase. From the hyperparameter tuning experiment, we

find that the accuracy of the model increases with increasing kernel size but we do not measure

a significant validation score difference between kernels of size 7 x 7 and 9 x 9 and we choose

kernel size of 7 x 7 in Convcast because of lesser number of parameters compared to a kernel

of size 9 x 9.

We find that Convcast outperforms optical flow based baseline methods both in dichoto-

mous and continuous metric scores. Similar to experiments in [18] on radar dataset, we find

that SparseSD model outperforms Sparse model for immediate t + 30 minutes lead time pre-

cipitation and it is outperformed by Sparse model for longer lead time precipitation. Better

performance of Sparse model for longer lead time nowcasting could be because of the larger

previous input precipitation information in the Sparse model which generalizes well for a lon-

ger lead time precipitation. Differences in Sparse groups (SparseSD and Sparse) and Dense

groups (DenseROT and Dense), could be because of the local features detected by Shi-Tomasi

corner detector does not represent the overall precipitation event as mentioned in [18]. In our

studies, we find that DenseROT performs similar to Dense model despite simpler extrapola-

tion technique in Dense model as compared to DenseROT as shown in Table 3. As mentioned

in [8] that despite theoretical superiority of Semi-Lagrangian advection scheme compared to

Constant-vector advection, they have similar performance because of the same interpolation

technique in them.

Differences between optical flow based approaches and Convcast is expected as Convcast

has been trained end-to-end using a large number of precipitation events that comprise several

precipitation. Boundary conditions, for example, sudden appearance of clouds are well han-

dled by Convcast because of presence of such examples in the training set. Such complex situa-

tions, however, cannot be handled by optical flow based methods. Further, because Convcast

is trained end-to-end, several intricate structures present in the precipitation data can be cap-

tured by the non-linear and convolutional structures [17].

From the nowcasting results on the test dataset, we find that the accuracy of nowcasting

decreases as we forecast further in time. In the case of dichotomous based forecasting, we find

that all accuracy scores decrease with lead forecast time. The HSS is particularly important as it

measures the improvement of the forecast over the standard forecast that may be due to ran-

dom chance. The range of HSS is from −1 to 1. When the value of HSS is negative, it means

that the chance forecast is better, zero means no skill, and a value of one indicates a perfect

forecast. For all forecasted timestamps, we obtain a minimum HSS of 0.623 for t + 150 minutes

which indicates that the performance of our model is much better than that due to the chance

forecast even for the 150-minutes forecast. This is also supported by the good ETS which

measures the skill of the forecast relative to random or chance events. We also notice that the

TS/CSI decreases with lead time which means that the fraction of observed events that are cor-

rectly predicted by the model decreases with time.
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The reason for the decrease in accuracy or increase in error metric with lead time is due to

the fact that in the forecasting of the next consecutive timestamp, we consider the previously

forecasted precipitation data. Since the previously predicted precipitation already has some

error, the error is propagated during the prediction of the next precipitation data which further

gets accumulated in the consecutive predictions eventually leading to large decrease in accu-

racy or increase in error metric for longer lead time.

The scatter plot of the observed and predicted precipitation, as shown in Fig 8 has high

density up to 8 mm/hour as very heavy precipitation (> 8 mm/hour) is not observed very

often. We also find that precipitation above 20 mm/hour has a very less density as such pre-

cipitation values are rare and are not present in the test dataset. The density of the points is

maximum near zero as many cells do not have precipitation in the observed and predicted

data. From the scatter plot, we find that the model makes significant errors in predicting pre-

cipitation beyond 20 mm/hour. It always underestimates the values of precipitation above 20

mm/hour as we rarely find predicted precipitation above 20 mm/hour. This is also shown by

the Multiplicative Bias score, which decreases below one quickly with lead forecast time. The

reason for this is the number of training samples is much less for higher precipitation values

and because of which Convcast is more biased towards the prediction of lower precipitation

values. This is also a general problem with imbalanced dataset in deep learning-based tech-

niques [33]. Convcast, however, estimates the speed and direction of the storms accurately

from previous precipitation data and the shape of the forecasted precipitation well corre-

sponds with the observed precipitation. This is because Convcast has learned the spatial cor-

relations between different timestamps from the previous sequences during end-to-end

training.

Conclusion

In this paper, we present a novel architecture Convcast for nowcasting precipitation from

spaceborne satellite data. We tune Convcast using a random search on relevant set of hyper-

parameters in an AutoML toolkit. Results from the hyperparameter tuning suggest that a

larger kernel size is better for the spatiotemporal nowcasting problem because of a larger

receptive field. Further, we find that simple LSTM models are not suitable for prediction from

spatiotemporal data and even a ConvLSTM model with a small receptive field and hidden

units outperforms simple LSTM models. We find that our model Convcast nowcasts precipita-

tion in various events such as tropical depression, hurricanes, stratiform system, convective

system, etc. in the test dataset with good accuracy even for a lead time of 150 minutes and con-

sistently outperforms state-of-the-art optical flow based methods.

We conclude that Convcast is very suitable for capturing spatiotemporal relations in the sat-

ellite-based precipitation dataset for short-term forecasting. The model well preserves the

speed and directions of the precipitation in the forecasted results. Satellite-based precipitation

nowcasting is quite important as radar data has limitations of not being available in all regions.

This is also helpful for future on-board processing of precipitation data.

We find that Convcast, however, is not suitable for nowcasting high precipitation because

of its nature to underestimate high precipitation values because of less samples of such precipi-

tation examples in the training data. In our subsequent studies, we would like to work on this

problem by increasing the high precipitation training examples, considering the type of precip-

itation and location information before nowcasting, and using a weighted loss function such

as Focal Loss [34]. Significant improvement in the results could be expected using increased

training set, pre-classification of storm type with geographical information, and using a

weighted loss function.
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