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N6-methyladenosine (m6A) methyltransferase has been shown to be an oncogene in a vari-
ety of cancers. Nevertheless, the relationship between the long non-coding RNAs (lncRNAs)
and hepatocellular carcinoma (HCC) remains elusive. We integrated the gene expression
data of 371 HCC and 50 normal tissues from The Cancer Genome Atlas (TCGA) database.
Differentially expressed protein-coding genes (DE-PCGs)/lncRNAs (DE-lncRs) analysis and
univariate regression and Kaplan–Meier (K–M) analysis were performed to identify m6A
methyltransferase-related lncRNAs. Three prognostic lncRNAs were selected by univari-
ate and LASSO Cox regression analyses to construct the m6A methyltransferase-related
lncRNA signature. Multivariate Cox regression analyses illustrated that this signature was an
independent prognostic factor for overall survival (OS) prediction. The Gene Set Enrichment
Analysis (GSEA) suggested that the m6A methyltransferase-related lncRNAs were involved
in the immune-related biological processes (BPs) and pathways. Besides, we discovered
that the lncRNAs signature was correlated with the tumor microenvironment (TME) and the
expression of critical immune checkpoints. Tumor Immune Dysfunction and Exclusion (TIDE)
analysis revealed that the lncRNAs could predict the clinical response to immunotherapy.
Our study had originated a prognostic signature for HCC based on the potential prognostic
m6A methyltransferase-related lncRNAs. The present study had deepened the understand-
ing of the TME status of HCC patients and laid a theoretical foundation for the choice of
immunotherapy.

Introduction
Worldwide, hepatocellular carcinoma (HCC) has become one of the most common malignancies and the
second leading cause of cancer-related deaths [1]. HCC is the main pathological type of primary liver
cancer, with a global incidence of 500000 new cases and more than 700000 deaths each year [2]. The
major risk factors for HCC are chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections,
alcoholic liver disease, diabetes and non-alcoholic fatty liver disease [3]. The current curative treatments
for early-stage HCC are surgery, thermal ablation, radiofrequency ablation or liver transplantation [4–7].
However, a large proportion of patients will have recurrence or distant metastasis after surgery [8]. For the
more than 70% of patients diagnosed with advanced stage, treatments can only provide limited therapeutic
benefit for a small subset of patients. Thus, elucidating the molecular mechanisms of HCC and identifying
new molecular targets are essential for its diagnosis and treatment.

N6-methyladenosine (m6A), the most popular internal modification in eukaryotic messenger RNAs
(mRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), plays a critical part in RNA

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

http://orcid.org/0000-0002-5315-9053
mailto:290636246@qq.com


Bioscience Reports (2021) 41 BSR20210760
https://doi.org/10.1042/BSR20210760

splicing, stability, export and translation [9,10]. The dynamic modification of m6A is regulated by methyltransferases
(m6A ‘writers’), demethylases (m6A ‘erasers’) and binding proteins (m6A ‘readers’) [11]. Numerous studies have de-
scribed that m6A regulators are closely related to the occurrence and progression of a variety of cancers. It has been
reported that m6A regulators are key participants in the malignant progression of gliomas and have potential roles
in both prognosis and treatment strategy formulation [12]. Recently, many studies have revealed that abnormal m6A
modification is involved in the development and progression of HCC [13–18]. METTL14 inhibits the metastatic
potential of HCC by regulating m6A-dependent primary miRNA processing [13]. Up-regulation of YTHDF2 sup-
pressed cell proliferation, tumor growth and activation of mitogen-activated protein kinase kinase (MAPKK/MEK)
and extracellular signal-regulated kinase (ERK) in HCC cells [14]. KIAA1429 facilitated migration and invasion of
HCC by altering m6A modification of ID2 mRNA [16].

LncRNAs are families of non-coding molecular transcripts with over 200 nucleotides in length and have been
recognized as having important functional roles in various human diseases [19,20]. The aberrant expression of
lncRNAs is also closely related to the malignancy of tumors, and it is no exception in HCC [21–25]. For exam-
ple, lncRNA MIAT was reported to promote proliferation and invasion of HCC cells via sponging miR-214 [21];
up-regulation of lncRNA SNHG16 inhibited HCC cell proliferation and chemotherapy resistance via functionally
sponging hsa-miR-93 [22] and lncRNA HULC can trigger autophagy by stabilizing Sirt1 and attenuate the sensi-
tivity of HCC cells to chemotherapeutic agents [23]. However, the role of m6A regulators in the dysregulation of
lncRNAs in cancer development is still unclear, and there are few studies focusing on the relationship between m6A
modification and lncRNA-dependent HCC. Therefore, understanding the relationship between the modification of
lncRNAs by m6A and the progression of HCC may contribute to identify biomarkers that may serve as therapeutic
targets.

In the present study, we constructed an m6A-related lncRNA prognostic signature (LINC02362, SNHG20 and
SNHG6) which had a high accuracy in predicting overall survival (OS) and was an independent prognostic factor.
Our results showed that this signature was implicated in immune-related terms and pathways that played a key role
in HCC tumorigenesis, and was highly connected with the tumor microenvironment (TME) and immunotherapy
responses. Our study had constructed a novel m6A-based prognostic model, which has potential prognostic value for
patients with HCC and may be helpful for the guidance of personalized immunotherapy.

Materials and methods
Acquisition of gene expression and clinical data
Normalized RNA-sequencing data and the associated clinical information of the HCC samples were downloaded from
the The Cancer Genome Atlas (TCGA) database. They included 374 tumor samples and 50 normal tissue samples.
Three samples with metastasis were eliminated. Thus, our study included 371 tumor tissues. The normalized gene
expression data of the TCGA-HCC database after log2-transformed were used for further analysis (Supplementary
Figure S1). Samples from the TCGA database were divided randomly into a training set (260 tumor samples, 35
normal samples) and an internal validation set (111 tumor samples, 15 normal samples) at a ratio of 7:3. Clinical data
such as gender, age, pathologic stage, Tumor-Node-Metastasis (TNM) stage, treatment type, treatment or therapy,
prior malignancy and survival time were also obtained from the TCGA database.

Analysis of differentially expressed PCGs and lncRNAs
In the training dataset, EdgeR package version 3.8.5 was used to analyze the differentially expressed RNAs between
tumor and normal samples, including differentially expressed protein-coding genes (DE-PCGs) and DE-lncRs [26].
The thresholds for DE-PCG and DE-lncR selection were based on a P≤0.05 and |logFC | ≥ 1. Hierarchical cluster
analysis served to analyze sample similarity.

Identification of m6A methyltransferase-related lncRNAs
The m6A methyltransferase-related genes were acquired from multiple literatures [27–29]. Four differentially ex-
pressed m6A methyltransferase-related genes (DE-m6A methyltransferase genes) were obtained through the in-
tersection analysis with DE-PCGs. The ssGSEA was applied to estimate the m6A methyltransferase score of each
sample in the TCGA-HCC training cohort [30,31]. Then, based on the Spearman correlation analysis, lncRNAs re-
lated to the m6A methyltransferase, which were highly correlated with the immune score, were identified (|R| > 0.3,
P<0.05). The prognosis-related lncRNAs were screened by Kaplan–Meier (K–M) survival analyses (P<0.2). The in-
tersection of m6A methyltransferase-related and prognosis-related lncRNAs were considered as the candidate m6A
methyltransferase-related lncRNAs.
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Table 1 Statistical analysis of all of the differentially expressed PCGs and lncRNAs

DE RNAs Total number
Number of

up-regulated
Number of

down-regulated
The most

up-regulated (logFC)

The most
down-regulated

(logFC)

PCG 1916 1500 416 AKR1B10 (3.84) HAMP (−5.90)

LncRNA 103 83 20 ST8SIA6-AS1 (2.60) LINC01093 (−3.59)

Abbreviation: DE RNA, differentially expressed RNA.

Establishment and validation of the prognostic gene signature
Univariate Cox regression analysis was used to select factors associated with prognosis. Then, in combination with
Cox and Lasso regression analyses, we used R package glmnet to choose the penalty regularization parameter lambda
(λ) of the cross-validation routine with an n-fold equal to 10 [32]. Meanwhile, the choice of variables was identified
by λ.min. Finally, according to the risk score for each patient, survival analysis, scatter diagram, and heatmap were
performed in R software. The time-dependent receiver operating characteristic (ROC) curves were used to evaluate
the prognostic prediction accuracy of gene signature and the area under curve (AUC) was measured by package
‘survivalROC’ in R [33]. The prognostic gene signature was verified in the internal validation set. Moreover, univariate
and multivariate Cox regression analyses were performed to identify independent prognostic factors.

Construction of a predictive nomogram
Univariate and multivariate Cox regression analyses were applied to find the independent prognostic factors, which
were further visualized via the ‘forestplot’ package in R. Then the nomogram was established by the ‘rms’, ‘nomo-
gramEx’ and ‘regplot’ package in R [34]. Subsequently, calibration curves were plotted to assess the agreement be-
tween actual and predicted survival. Furthermore, decision curve analysis (DCA) was used to evaluate the clinical
benefits of the nomogram.

Gene set enrichment analyses
We conducted GSEA to uncover the signaling pathways and biological processes (BPs) in which differentially ex-
pressed genes (DEGs) between high- and low-risk subgroups were enriched. A total of 454 DEGs (160 up-regulated
and 294 down-regulated) were identified as differentially expressed in high-risk compared with low-risk groups (Sup-
plementary Figure S2 and Table S1). GSEA was employed to obtain Gene Ontology (GO) information including BPs,
the cellular component (CC) and molecular function (MF). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis served to annotate the potential pathways. P<0.05 was considered significant and the graph was
constructed by the gplots package in R software.

ESTIMATE algorithm
Stromal and immune scores were evaluated by the ESTIMATE package (version 2.15.3) in R. ESTIMATE is an algo-
rithmic tool that uses the gene expression profiles of 141 immune genes and 141 stromal genes to generate ESTIMATE
score to predict tumor purity [30]. The presence of infiltrating immune cells in high- and low-risk groups was calcu-
lated with ssGSEA software.

Statistical analysis
All analyses were performed using R version 3.5.1. Unless otherwise noted, P<0.05 was considered to be significant.

Results
Identification of DE-PCGs and -lncRNAs in HCC
To identify PCGs and lncRNAs that may be involved in the pathogenesis of HCC, the transcription profiles of HCC
patients (n=260) and healthy subjects (n=35) were compared in the training set. After a robust filtering procedure
(P≤0.05 and |logFC| ≥ 1), 1916 PCGs were significantly modulated (Figure 1A; Supplementary Table S2). More
than a hundred lncRNAs were detectable, of which 80.6% were up-regulated and 19.4% were down-regulated (Figure
1B; Supplementary Table S3). The DE-PCGs and -lncRNAs with similar expression levels were clustered using the
systematic cluster analysis (Supplementary Figure S3). As displayed in Table 1, the most up-regulated PCG was
AKR1B10 with 3.84-logFC, and the most down-regulated PCG was HAMP with −5.90-logFC. Besides, the most
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Figure 1. DE-PCGs and DE-lncRs in HCC

(A,B) Volcano plots of DE-PCGs (A) and DE-lncRs (B) in HCC. The red dots in the plot represent up-regulated genes and blue dots

represent down-regulated genes with statistical significance. Gray dots represent no DEGs.

up- and down-regulated lncRNAs were ST8SIA6-AS1 (2.60-logFC) and LINC01093 (−3.60-logFC), respectively.
The expression patterns of the top ten up- and down-regulated PCGs and lncRNAs are illustrated in Supplementary
Figure S3, and Tables S4 and S5.

Identification of prognostic m6A methyltransferase-related lncRNAs
Transcription data of 260 patients in the TCGA-HCC training cohort with complete clinical information were used
in the present study. K–M survival analyses were used to screen out 45 prognostic-related lncRNAs (Figure 2A and
Table 2). Furthermore, the m6A methyltransferase scores in each sample were calculated through ssGSEA based on
the reference of the DE-m6A methyltransferase (METTL3, VIRMA, IGF2BP1 and IGF2BP2) gene sets derived from
the intersection analysis of 20 m6A methyltransferase genes and DE-PCGs (Figure 2B). After Spearman correlation
analyses, 21 lncRNAs were identified as m6A methyltransferase-related lncRNAs (|R| > 0.3, P<0.05; Figure 2C).
Finally, eight candidate m6A methyltransferase-related lncRNAs (LINC01093, LINC02362, SNHG20, SNHG17,
ZFAS1, SNHG6, SNHG7 and GAS5) were obtained by intersection analysis for further research (Figure 2D).

Establishment of m6A methyltransferase-related lncRNAs signature
The univariate Cox regression analysis demonstrated that LINC01093 (P=0.055) and LINC02362 (P=0.014) were
protective genes with hazard ratio (HR) less than 1, whereas SNHG20 (P=0.0033), SNHG17 (P=0.019), ZFAS1
(P=0.0093), SNHG6 (P=0.0084), SNHG7 (P=0.034) and GAS5 (P=0.046) were risky genes with HR greater than 1
(Figure 3A and Table 3). Following this, eight significant m6A methyltransferase-related lncRNAs (P<0.2) were sub-
jected to LASSO modeling (Figure 3B,C). Then, three m6A methyltransferase-related lncRNAs were selected based
on λ.min values, and the HR values of the three candidate lncRNAs were calculated (Figure 3D and Supplementary
Table S6).

We classified patients into low-risk or high-risk groups based on the median risk score. K–M survival curve indi-
cated that the low-risk patients in the training cohort had a better OS than high-risk patients (P=0.00064) (Figure
4A,B). Time-dependent ROC analysis showed that the AUC of the risk score predicted OS was 0.633 at 1 year, 0.636
at 2 years, 0.651 at 3 years, 0.663 at 4 years and 0.638 at 5 years in the training cohort (Figure 4C). Then, the prog-
nostic model was further validated in the testing set, and consistently, a high-risk score was associated with a worse
prognosis (Figure 4D,E). In the testing cohort, the significant prognostic value was P=0.031 and AUC with 1-, 2-, 3-,
4- and 5 years were 0.708, 0.674, 0.635, 0.603 and 0.611, respectively (Figure 4F). Also, the PCA analysis indicated
that there was a significant disparity in patients between high- and low-risk groups (Supplementary Figure S4).
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Figure 2. Identification of prognostic m6A methyltransferase-related lncRNAs

(A) K–M survival analysis of 45 prognosis-related lncRNAs. (B) Intersection analysis of m6A methyltransferase genes and DE-PCGs.

(C) Spearman correlation analysis of m6A methyltransferase scores and DE-lncRs. (D) Intersection analysis of prognostic-related

lncRNAs and m6A methyltransferase score-related lncRNAs.

Prognostic risk score displayed strong correlations with
clinicopathological features and survival in HCC patients
We used the median risk score as a cutoff to define the groups of HCC patients with high and low scores. The heatmap
showed the expression of the three m6A methyltransferase-related lncRNAs in high- and low-risk patients of the
training cohort. Significant differences between the high-risk and low-risk groups of patients concerning prior ma-
lignancy (P<0.05), T stage (P<0.05) and pathologic stage (P<0.05) were identified (Figure 5A). We then observed
that the risk scores were significantly different between patients categorized by prior malignancy, T stage and patho-
logic stage (Supplementary Figure S5). These results revealed that risk scores were positively associated with the T
stage and pathologic stage, and the ‘no prior malignancy’ subgroup exhibiting the worst prognosis had the highest
risk score. Stratification survival analyses showed that the risk score could efficiently predict the OS in most sub-
groups based on different clinical characteristics (Supplementary Figure S6). Similar procedures were performed in
the testing set, and the results were almost consistent with the training set (Supplementary Figures S7 and S8).

Based on the univariate and multivariate Cox proportional hazards regression analyses, only one independent pre-
dictor (risk score) was identified in the HCC. Univariate Cox proportional hazards regression analysis demonstrated
that age (P=0.44), gender (P=0.27), N stage (P = 0.31), prior malignancy (P=0.33), treatment type (P=0.21) and
BMI (P=0.21) had no impact upon OS (Figure 5B and Supplementary Table S7). Multivariate Cox proportional haz-
ards regression analysis showed a significant correlation between risk score (HR = 2, P=0.0037) and OS in HCC
patients (Figure 5C and Supplementary Table S8). Then, the predictor was incorporated to build the nomogram.

Based on the nomogram, each patient will obtain a corresponding score from each prognostic parameter to estimate
the 3- and 5-year survival rates. Patients with a higher total score represented a higher mortality rate. We concluded
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Figure 3. Establishment of m6A methyltransferase-related lncRNAs signature

(A) The univariate Cox regression analysis of eight m6A methyltransferase-related lncRNAs. (B–D) LASSO regression was per-

formed, calculating the minimum criteria (B,C) and forest plot summary of the HR values of the prognostic lncRNAs (D).
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Figure 4. m6A methyltransferase-related lncRNA signature was a prognostic biomarker for OS in the TCGA-HCC cohort

(A–F) K–M survival, risk score and time-dependent ROC curves of OS according to m6A methyltransferase-related lncRNA signature

groups in TCGA-HCC training and testing cohorts. The entire cohort was divided into the training and testing cohorts at the 7:3

cutoff. The cohorts were all stratified at a median cutoff of the risk-scores to form high-risk and low-risk groups. The AUC was

assessed at 1, 2, 3, 4 and 5 years.

Figure 5. Relationship between the risk scores and clinicopathological factors in the training cohort

(A) The heatmap showed the distribution of clinicopathological factors and three m6A methyltransferase-related lncRNAs between

the high- and low- risk groups. m6A methyltransferase-related lncRNA signature is an independent prognosis factor in the nomo-

gram. (B,C) Forest plot summary of the univariate (B) and multivariable (C) Cox analyses of the m6A methyltransferase-related

lncRNA signature and clinicopathological characteristics.
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Table 2 The 45 prognosis-related lncRNAs

Prognostic-related lncRNA P-value

CASC9 0.0148133

CH17.340M24.3 0.0268725

CRNDE 0.1003839

CYTOR 0.0001119

DUXAP8 0.0147407

ELF3.AS1 0.0517343

FAM99A 0.0046928

FAM99B 0.037008

FOXD2.AS1 0.0302527

GAS5 0.1616622

GSEC 0.0005606

HNF1A.AS1 0.1288273

HNF4A.AS1 0.0779326

LINC00511 0.0019846

LINC01093 0.0522651

LINC01370 0.1255833

LINC01419 0.1944095

LINC01554 0.0004055

LINC01703 0.0238661

LINC02037 0.0481163

LINC02055 0.1514205

LINC02163 0.1866274

LINC02362 0.1794657

LINC02377 0.1152222

LINC02506 0.1772376

LUCAT1 0.0278805

MAPKAPK5.AS1 0.0016472

MINCR 0.007126

MIR4435.2HG 0.0030908

MYLK.AS1 0.0309763

NALT1 0.0858859

PCAT6 0.0628995

PITPNA.AS1 0.0554125

PRR34.AS1 0.1776464

PVT1 0.1908601

PXN.AS1 0.0448655

RALY.AS1 0.0630094

SNHG17 0.1073125

SNHG20 0.0105894

SNHG6 0.1046746

SNHG7 0.049813

TSPEAR.AS2 0.1091516

UBR5.AS1 0.0293862

ZFAS1 0.0361043

ZFPM2.AS1 0.0013408

Table 3 The univariate Cox regression analysis of eight m6A methyltransferase-related lncRNAs

Gene ID Coefficient HR (95% CI for HR) Wald test z P.value

LINC01093 −0.14 0.87 (0.76–1) 3.7 −1.9 0.055

LINC02362 −0.16 0.85 (0.75–0.97) 6.1 −2.5 0.014

SNHG20 0.44 1.6 (1.2–2.1) 8.6 2.9 0.0033

SNHG17 0.29 1.3 (1–1.7) 5.5 2.4 0.019

ZFAS1 0.28 1.3 (1.1–1.6) 6.8 2.6 0.0093

SNHG6 0.27 1.3 (1.1–1.6) 7 2.6 0.0084

SNHG7 0.24 1.3 (1–1.6) 4.5 2.1 0.034

GAS5 0.2 1.2 (1–1.5) 4 2 0.046
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Figure 6. Functional enrichment analyses of the DEGs between the high- and low-risk groups

(A–C) The top ten GO of GSEA, including BPs (A), CC (B) and MFs (C). (D) KEGG pathway analysis. (E) Reactome pathway analysis.

that the risk score played an important role in patient prognosis. Moreover, calibration curves revealed that our model
had good prediction accuracy. The DCA demonstrated that the nomogram not only had the advantage of the risk
score but also a great potential for clinical application (Supplementary Figure S9).

Functional enrichment analyses of the DEGs between the high- and
low-risk groups
To explore the underlying molecular mechanisms of the signature, we conducted GSEA to compare 454 DEGs be-
tween high- and low-risk groups (risk DEGs) in 371 TCGA-HCC patients of the whole set. We enriched the functions
of these mRNA (P<0.05). As shown in Figure 6A, ‘negative regulation of transcription by RNA polymerase II’ and
‘microtubule cytoskeleton organization’ were significantly enriched for BPs (Supplementary Table S9), while for the
CC was ‘Golgi membrane’, for MFs were ‘transcription regulatory region sequence-specific DNA binding’ and ‘RNA
polymerase II regulatory region sequence-specific DNA binding’ (Figure 6B,C and Supplementary Tables S10 and
S11). KEGG pathway analysis revealed that the DEGs participated in ‘Herpes simplex virus 1 infection’, ‘Amyotrophic
lateral sclerosis’, ‘Human papillomavirus infection’ and ‘MicroRNAs in cancer’ (Figure 6D and Supplementary Table
S12). Furthermore, the DEGs participating in the ‘Axon guidance’ pathway indicated their involvement in the neuro-
logical invasion of HCC (Figure 6E and Supplementary Table S13). Moreover, the GSEA also demonstrated that the
terms/pathways of immune response and immune system process were highly enriched in the risk DEGs (Supplemen-
tary Table S14). All these demonstrated that the risk score could be related to the tumor immune microenvironment,
which was so important for HCC.
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Figure 7. The landscape of TME immune cells infiltration and evaluation of therapeutic response in the two risk subgroups

(A) StromalScore, ImmuneScore and ESTIMATEScore in the two risk subgroups. **P<0.01, ****P<0.0001. (B,C). The ratio of pro–

tumor signatures and anti-tumor signatures was significantly increased in the low-risk subgroup. (D,E). Almost all immune-check-

points and HLA expression were up-regulated in the high-risk subgroup. (F) TIDE algorithm showed differential immunotherapeutic

response in the two risk subgroups. Abbreviations: HLA, human leukocyte antigen; TIDE, Tumor Immune Dysfunction and Exclusion.

*P<0.05, ***P<0.001.

The landscape of TME immune cells infiltration in the two risk subgroups
The tumor immune microenvironment is considered the ‘seventh largest representative characteristic’ of tumor and
is composed of innate immune cells, adaptive immune cells, cytokines and cell surface molecules. These immune
microenvironment components constitute a complex regulatory network and play a pivotal role in tumorigenesis
and development [35,36]. Considering that the risk score also had a close connection with immune reactions, we
investigated the difference in immune signatures between the two risk subgroups.

Based on the ImmuneScore, StromalScore and ESTIMATEScore generated by the ESTIMATE algorithm, as shown
in Figure 7A, the stromal score and ESTIMATE score were significantly negatively correlated with the risk score

10 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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(P<0.01). ssGSEA analysis revealed that the ratio of pro-tumor signatures (CD56bright natural killer cell, central
memory CD8 T cell, effector memory CD8 T cell, natural killer cell, type 1 T helper cell) and anti-tumor signatures
(CD56dim natural killer cell, macrophage, neutrophil) were significantly elevated in the low-risk subgroup, indicating
that the low-risk subgroup was interrelated with increased immune/inflammation activity. On the other hand, the
high-risk subgroup had relatively higher activated CD4 T cells (Figure 7B,C).

Low-risk patients were likely to be more sensitive to immunotherapy
Pioneering investigations revealed that immunotherapy targeting immune-checkpoints and the human leukocyte
antigen (HLA) brought great hope for the clinical treatment of human cancers [37]. We investigated the asso-
ciation between the risk score and several well-known immune checkpoints and HLA expression levels in the
TCGA database. Then we discovered that the expression of almost all immune checkpoints (CTLA4, HAVCR2,
ICOS, PDCD1 and TIGIT) and HLA (HLA-DPB2, HLA-DQA2, HLA-DQB2, HLA-DRB6 and HLA-K) were
up-regulated in the high-risk group, which indicated the overexpression of immune checkpoints might be the reason
for the poor prognosis (Figure 7D,E). Here, patients in the high-risk group may be more suitable for immunotherapy.
Then, we used the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm to predict the likelihood of the risk
model for immunotherapy. Interestingly, patients in the low-risk group were more likely to respond to immunother-
apy than those in the high-risk group (Figure 7F). These data further confirmed that the low-risk group had a better
prognosis and might have a better treatment prospect for the immunotherapy.

Discussion
Currently, there is lack of effective clinical interventions in HCC, which lead to the high metastasis rate and mortality
rate. Thus, it is critical to understand the molecular mechanisms underlying HCC development. There is growing ev-
idence that m6A modification participates in the development and progression of HCC [13–18]. METTL3 increases
the expression of HCC-derived growth factor (HDGF) by up-regulating LINC00958, thereby promoting HCC pro-
gression and lipogenesis [38]. Lan et al. demonstrated that KIAA1429 promotes the progression of HCC by modifying
lncRNA GATA3 with m6A [39]. However, studies on m6A-related lncRNAs in the prognosis of HCC were limited.
Therefore, we focused on their interactions to identify potential prognostic biomarkers or therapeutic targets for
HCC.

We identified 21 m6A-related lncRNAs from 260 HCC patients, 3 of which were selected into the m6A-related
lncRNA prognostic signature (LINC02362, SNHG20 and SNHG6). LINC02362 was included in a prognostic model
for HCC, which was significantly correlated with tumor grade, stage and T stage (Zhao et al., 2020) [56]. Tu et al.
reported that HBV x protein promoted the proliferation of HCC cell through the lncRNA SNHG20/PTEN signaling
pathway [40]. According to reports, up-regulated SNHG6 activates the expression of SERPINH1 by competitively
binding miR-139-5p, thereby promoting the development of HCC [41]. These three lncRNAs have been reported
to be associated with HCC, but their interactions with m6A-related genes have not been studied yet. Our results
contribute to identify lncRNAs related to m6A modulators, and thus revealing their potential roles in the oncogenesis
and progression of HCC.

Our study showed that the lncRNA prognostic signature was closely related to the TME, which was correlated
with the prognosis of HCC patients. It has been reported that several components of the TME, including immune
cells, cytokines, chemokines, inhibitory receptors and ligands, are critical factors in tumorigenesis and progression
[42,43]. We further found that almost all immune checkpoints and HLA expression were significantly up-regulated
in high-risk patients, suggesting that poor prognosis might be related to the induction of high immune checkpoint
expression. In HCC, it is well known that the increase in the number of PD-1+ and CD8+ T cells in tumor tissues
and circulation indicates a high recurrence rate and poor prognosis after surgery [44]. Research also showed that the
up-regulation of PD-L1 in HCC cells was induced by a variety of cytokines, especially IFN-γ, which in turn impaired
anti-tumor immunity and promoted apoptosis of CD8+ T cells [45]. Although the numbers of NK cells and CD8+ T
cells were accumulated during tumor progression, the activity of which will be greatly inhibited after binding with
PD-Ls, thus weakening the anti-tumor effect of these cells [46]. On the other hand, our result showed that the ratio of
pro-tumor signatures and anti-tumor signatures was significantly elevated in low-risk patients, indicating that better
prognosis might be attributed to the increased immune/inflammation activity. Previous studies have demonstrated
that increased infiltrations of NK, T and NKT cells are positive prognostic factors for HCC [47–49]. In addition, Xu
et al. also showed that a higher immunoreactive environment could inhibit tumor growth, progression, invasion and
metastasis [50].

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Currently, immunotherapy has been applied to the treatment of various cancers and changed the landscape of can-
cer care. For example, blocking the combination of PD-1 and PD-L1 can rescue the function of effector T cells to
promote their function of killing tumor cells [51]. The expression of PD-L1 in tumors is the main factor in deter-
mining whether a patient is eligible for PD-1/PD-L1 axis immunotherapy. In clinical practice, however, quite a few
PD-L1 positive patients respond poorly to the PD-1/PD-L1 axis treatment, while some patients with negative PD-L1
have a surprising response to treatment [52–55]. Consistently, our study observed that patients in the high-risk group
with up-regulation of immune-checkpoints had a weaker response to immunotherapy. On the contrary, patients in
the low-risk subgroup with higher immune/inflammation activity were more likely to benefit from immunotherapy,
indicating that immune cells infiltration might be a predictor of immunotherapy response.

There were still limitations in our study. Firstly, our results were only based on the TCGA database without external
validation. Secondly, no experiment was used to confirm the interaction between the prognostic lncRNAs and m6A
modulators in HCC. However, we will conduct further research to provide a better understanding of the above results.
In conclusion, we established a novel prognostic signature for HCC based on m6A-related lncRNAs. Meanwhile,
the present study also deepened the understanding of the immune microenvironment status of HCC, and laid a
theoretical foundation for the prediction of immunotherapy for HCC patients.
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