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Comprehensive polar 
metabolomics and lipidomics 
profiling discriminates 
the transformed 
from the non‑transformed state 
in colon tissue and cell lines
Caroline Rombouts1,2,3, Margot De Spiegeleer1, Lieven Van Meulebroek1, 
Lynn Vanhaecke1,4,5* & Winnok H. De Vos3,5*

Colorectal cancer (CRC) is the fourth most lethal disease worldwide. Despite an urgent need for 
therapeutic advance, selective target identification in a preclinical phase is hampered by molecular 
and metabolic variations between cellular models. To foster optimal model selection from a 
translational perspective, we performed untargeted ultra-high performance liquid chromatography 
coupled to high-resolution mass spectrometry-based polar metabolomics and lipidomics to non-
transformed (CCD841-CON and FHC) and transformed (HCT116, HT29, Caco2, SW480 and SW948) 
colon cell lines as well as tissue samples from ten colorectal cancer patients. This unveiled metabolic 
signatures discriminating the transformed from the non-transformed state. Metabolites involved 
in glutaminolysis, tryptophan catabolism, pyrimidine, lipid and carnitine synthesis were elevated in 
transformed cells and cancerous tissue, whereas those involved in the glycerol-3-phosphate shuttle, 
urea cycle and redox reactions were lowered. The degree of glutaminolysis and lipid synthesis was 
specific to the colon cancer cell line at hand. Thus, our study exposed pathways that are specifically 
associated with the transformation state and revealed differences between colon cancer cell lines that 
should be considered when targeting cancer-associated pathways.

Colorectal cancer (CRC) is the second and third most diagnosed cancer in females and males, respectively, 
and the fourth leading cause of cancer-related mortality worldwide. The incidence rates are strongly variable 
throughout the world, whereby developed regions have more CRC patients than less developed countries. Disease 
risk is primarily associated with lifestyle factors, in particular Western habits such as the consumption of diets 
rich in fat and sugar, high in red and processed meat and limited physical activity1,2. Although the discovery of 
CRC-biomarkers and associated pathways has contributed to enhanced screening and improved treatment, the 
5-year survival rate of metastatic CRC is still only 10%, emphasizing the need for better therapeutic strategies3.

In cancer research, animal models have been of great value for discovering novel biochemical pathways and 
drug testing. The most common models are xenograft and chemically (e.g., azoxymethane) or genetically (e.g., 
Apc knockout) induced cancer rodent models4–6. In keeping with the 3R principles (Replacement, Reduction 
and Refinement), a framework that aims at minimizing animal use and suffering, researchers continuously seek 
bona fide alternatives wherever possible7. Therefore, many in vitro models, especially cell culture models, have 

OPEN

1Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of 
Veterinary Medicine, Ghent University, Salisburylaan 133, 9820  Merelbeke, Belgium. 2Department of Molecular 
Biotechnology, Cell Systems and Imaging, Faculty of Bioscience Engineering, Ghent University, Coupure Links 
653, 9000  Ghent, Belgium. 3Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, 
Faculty of Veterinary Medicine, Antwerp University, Universiteitsplein 1, 2610  Wilrijk, Belgium. 4Institute for 
Global Food Security, School of Biological Sciences, Queen’s University, University Road, Belfast  BT7 1NN, 
Northern Ireland, UK. 5These authors jointly supervised this work: Lynn Vanhaecke and Winnok H. De Vos. *email: 
Lynn.Vanhaecke@Ugent.be; Winnok.DeVos@UAntwerpen.be

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-96252-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:17249  | https://doi.org/10.1038/s41598-021-96252-4

www.nature.com/scientificreports/

been established to study CRC and therapeutic strategies8. Evidently, cell lines have less ethical constraints in 
comparison to animal models, and at the same time they are much easier in use, inexpensive and provide suf-
ficient material, enabling rapid experimental progress9.

Whilst primary cell cultures from healthy patients may be considered to resemble the native state more 
closely, they are less practical to culture and have limited life span. Immortalized cell lines make a valuable 
alternative since they are still representative for the tissue of origin and are easier to handle and to maintain 
in culture10. For example, the CCD841-CON and Fetal Human Colon (FHC) cell lines are both immortalized, 
but non-transformed (NT) colon cell lines obtained from fetal normal colon mucosa11–13. On the other side of 
the spectrum, transformed (T) cell lines isolated from (adeno)carcinomas may serve as representative samples 
for studying different cancer stages. For example, HT29, SW480 and SW948 were established from colorectal 
adenocarcinomas, whilst Caco2 and HCT116 were established from colorectal carcinomas14. These cell lines 
have been extensively used to study regulatory mechanisms in CRC as well as for the purpose of identifying 
chemopreventive and -therapeutic agents15. Preclinical data using in vivo and in vitro models revealed that only 
5% of candidate therapies demonstrate clinical efficacy in phase III trials. This high attrition rate can be attrib-
uted to some extent to the use of models that are not fully representative for the type of cancer of interest9,16. 
For example, it has been demonstrated that many cancer cell lines used to model various types of cancers were 
in fact derived from the HeLa cervical cancer cell line and not the corresponding tumor17. Moreover, it was also 
observed that long-term passaging of cells can lead to a reduced resemblance to the tumor of origin13,14. Therefore, 
several efforts have been made to reduce cell line misidentification, primarily by molecular phenotyping15,18,19. 
Although metabolites are the end-products in the gene-protein-metabolite cascade and thus key reporters of 
cellular activity, metabolic profiling or fingerprinting studies of cancer cells and tissue are scarce20. Pioneering 
studies have revealed a conspicuous metabolic rewiring in CRC. For example, both CRC tissue and cell lines 
have been found to display higher levels of phospholipids, of which certain (e.g., phosphatidylcholine) correlate 
with metastatic propensity21,22. Also, specific nucleotides and carbohydrates have been found upregulated in CRC 
patient tissue23. The latter may represent metabolic evidence for a Warburg phenotype21, although higher rates of 
oxidative phosphorylation have been reported in CRC cell lines as well23. Thus, our understanding of the exact 
metabolic status of CRC cells is far from complete. And, to the best of our knowledge, no studies are available 
that assessed whether metabolic differences between healthy and cancerous colon tissue can be extrapolated to 
cell cultures and vice versa. We have previously optimized and validated an untargeted ultra-high performance 
liquid chromatography coupled to high-resolution mass spectrometry-based (UHPLC-HRMS) metabolomics 
and lipidomics method for human colon tissue and colon cell lines24. In this work, we exploited the approach to 
unveil pathways linked to the CRC transformation processes in vivo and in vitro and to provide novel insights 
into the metabolic phenotype of different cell lines that could foster the selection of the optimal one(s) towards 
specific targets in cancer drug research.

Results
Metabolic profiles differ between the NT and T state in colon cell lines and tissue.  Untargeted 
UHPLC-HRMS metabolomics and lipidomics profiling was performed on samples of two NT (FHC and CCD 
841 CON) and five T (HT29, Caco2, HCT116, SW480 and SW948) colon cell lines as well as on cancerous (T) 
and flanking non-cancerous (NT) tissue biopsy samples from 10 CRC patients. Of each cell line, cellular extracts 
were obtained from three culture flasks (technical replicates) at three different passages (P1-3), separated by one-
week intervals (considered as biological replicates). To avoid metabolic shifts during storage from introducing 
bias between cell lines25, all cell lines of one passage were harvested at the same day, extracted and analyzed for 
metabolomics directly after. The remaining cell pellets were stored at − 80 °C and subjected for joint lipidomic 
extraction and analysis (all passages in one run). One sample of the FHC line (P3) was excluded for having too 
limited starting material. Chromatographic peak processing resulted in the detection of in total 879 metabolite 
and 17,432 lipid components, after removing those with a coefficient of variation (CV) > 30% in quality control 
(QC) samples composed of cell line or tissue matrix extracts. Valid orthogonal partial least squares discriminant 
analysis (OPLS-DA) models (Table 1) could be constructed for both colon cell line and tissue samples, allowing 
discrimination between the NT and T state24. For tissue, 196 and 722 discriminative components were retained 
for the NT and T state, respectively. For cell lines, 223 and 801 components were observed to be discriminative 

Table 1.   Validation parameter values of OPLS-DA models using whole untargeted datasets (PC = Principal 
Components; IM = Ionization Mode).

Colon tissue samples Nr PC R2Y Q2
CV-ANOVA
P value Permutation testing

Polar metabolomics (+ and – IM) 1 + 1 + 0 0.978 0.938  < 0.001 OK

Lipidomics (+ IM) 1 + 1 + 0 0.939 0.830  < 0.001 OK

Lipidomics (- IM) 1 + 2 + 0 0.897 0.713  < 0.001 OK

Colon cell line samples Nr of PC R2Y Q2
CV-ANOVA
P value Permutation testing

Polar metabolomics (+ and – IM) 1 + 1 + 0 0.962 0.943  < 0.001 OK

Lipidomics (+ IM) 1 + 1 + 0 0.719 0.674  < 0.001 OK

Lipidomics (− IM) 1 + 1 + 0 0.962 0.943 0.0054 OK
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for the NT or T state, respectively. Of all 1942 retained components, 316 were discriminative for T or NT state in 
both matrices (tissue and cell lines), which implies they had a significant contribution to the resulting model (as 
indicated by a Variable Importance parameter (VIP) value > 1.0). Thus, the untargeted UHPLC-HRMS approach 
revealed a specific set of metabolomic components that typify the transformation state (NT vs T) of cells and 
tissue.

Downstream analysis uncovers metabolites specific to the NT and T state, but also reveals cell 
line‑specific patterns.  The accurate mass of 1626 discriminative components was queried in the HMDB 
and LIPIDMAPS for putative identifiers (IDs). 377 IDs could be linked to components that were discriminative 
for the NT or T state in colon cell lines or tissue and were subsequently subjected to fragmentation experiments. 
This resulted in the identification of 55 metabolites with the highest levels of confidence, whereof 35 and 52 were 
discriminative (VIP value > 1.0 and/or P value < 0.05) for the transformation state in colon tissue and cell lines, 
respectively (Supplementary Tables S2-3). In total, 32 metabolites were shared between both datasets of which 17 
and 3 were upregulated in the T or NT state, respectively. Twelve metabolites showed discrepancies between the 
two matrices (Supplementary Table S3). Hierarchical clustering of the identified metabolites by their normal-
ized peak area revealed two main clusters of cell line samples, corresponding to NT and T state, and within the 
T state samples, three sub-clusters, one for Caco2 and HT29, one for HCT116 and SW948, and one for SW480 
(Fig. 1a). The individual passages of all but one cell line (HT29) clustered together, emphasizing the reproduc-
ibility of the measurements. The discrimination between T and NT state was also visible for the tissue samples, 
albeit to a lesser extent (Fig. 1b). OPLS-DA models that were constructed using only the subset of discrimina-
tive metabolites (VIP value > 1.0 and/or P value < 0.05) for colon tissue and cell lines confirmed their potential 
to discriminate transformation states and differentiate HT29 and HCT116 from SW480 and HCT116 cell lines 
(Table 2). Thus, these observations demonstrate the relevance of the identified metabolites for classification of 
the different cell lines.

Phospholipids are dominant differentiators within T cell lines.  Clustering of the discriminative 
metabolites revealed a clear separation between different T cell lines (Fig. 1, Supplementary Table S2). To reveal 
the major contributors of this separation, metabolite levels were statistically compared between the different 
T cell line types. Of the 52 identified metabolites that were discriminative between the T and NT state, 15 
were significantly (P value < 0.05) different between the cancer cell lines (Fig. 2). Of the polar metabolites, L/D-
glutamine and L/D-glutamic acid and L-aspartic acid were particularly low, and L/β-leucine and L/D-cysteine 
proportionally high in the SW480 when compared to other cancer cell lines (Fig. 2a). Overall, lipids were much 
more abundant in the Caco2 and HT29 cell line as compared to the other cell lines, but in-between both cell 
lines no significant differences could be observed (Fig. 2b). The HCT116 and SW948 cell lines were especially 
low in lipids, except for PC (38:1), which was highly abundant in the HCT116 cell line. The SW480 cell line 
demonstrated the highest levels of PG (36:2), but PC (0–34:0), PC (O-34:1), PC (0–36:1), PC (O-36:2), PI (18:1) 
and Cer (d36:2) were detected at similar relatively high abundances in the Caco2 and HT29 cell lines, while PC 
(33:2), PC (30:1), PC (32:2) and PC (35:2) were detected at relatively low levels (Fig. 2b). Thus, phospholipid 
composition defines T cell line identity.

Figure 1.   Heat map of metabolites that discriminate between the non-transformed and transformed state in 
(a) colon cell lines and (b) colon tissue. Normalization was performed by dividing the peak area (expressed 
by arbitrary units) of a specific component in a sample by the mean peak area of that component in the next 
two QC samples that were run after every ten samples. Hierarchical clustering was performed using Pearson 
correlation coefficient and Ward linkage. P1-3 = cell line passage 1–3 (1-week time interval, considered as 
replicate); PT1-10 = colorectal cancer patient 1–10.
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Pathways associated with the NT or T state in colon tissue and cell lines.  To unveil the major 
pathways involved in carcinogenesis, quantitative enrichment analysis was performed for each matrix by intro-
ducing the QC-normalized abundances of the discriminative metabolites in MetaboAnalyst 4.0. This resulted in 
49 and 33 significantly (FDR < 0.05) affected pathways for the colon cell line and tissue matrix, respectively (Sup-
plementary Table S4-5). Thirty-two pathways were shared between both datasets as listed in Table 3. Remark-
ably, L-glutamic acid played a central role in 23 of these pathways (Table 3). To reveal metabolic networks and 
improve the understanding of the metabolic fluxes of the identified metabolites further a metabolic map was 
constructed, listing the most important metabolites and their direct interaction as well as their regulating role 
in transformation status considering their behavior in both cell lines and tissue (Fig. 3). Using this approach, 
glutaminolysis, pyrimidine synthesis, lipid synthesis, carnitine biosynthesis and tryptophan catabolism emerged 
as dominant processes in the T state, whereas urea cycle, glycerol-3-phosphate shuttle and antioxidant responses 
were more prominent in the NT state. Non-essential amino acids metabolism showed no clear association with 
a particular state (Fig. 3).

Extent of glutaminolysis varies between the different T cell line types.  Based on the pathway 
analysis, we hypothesized that glutaminolysis plays a central role in the T state as opposed to the NT state in 
both matrices. Moreover, individual L-glutamine and L-glutamic acid levels were significantly different between 
the cancer cell lines. Therefore, as a case study, this pathway was investigated in more detail. First, the ratio of 
L-glutamine/L-glutamic acid was determined based on the detected metabolite levels in the samples (Fig. 4a) 

Table 2.   Validation parameter values of OPLS-DA models using solely the discriminative metabolites. 35 and 
52 discriminative metabolites (VIP value > 1.0 and/or P value > 0.05) were used to construct OPLS-DA models 
for colon tissue and cell lines, respectively.

Colon tissue samples N° of principal components R2Y Q2 CV-ANOVA P value Permutation testing

Non-transformed vs. transformed 1 + 1 + 0 0.837 0.597  < 0.01 OK

Colon cell line samples N° of principal components R2Y Q2 CV-ANOVA P value Permutation testing

Non-transformed vs. transformed 1 + 1 + 0 0.978 0.960  < 0.001 OK

Transformed colon cell line samples N° of principal components R2Y Q2 CV-ANOVA P value Permutation testing

Caco2 vs. HT29 1 + 1 + 0 0.996 0.707 0.405 NOK

Caco2 vs. HCT116 1 + 1 + 0 0.990 0.932 0.100 OK

Caco2 vs. SW480 1 + 1 + 0 0.987 0.929 0.105 OK

Caco2 vs. SW948 1 + 1 + 0 0.986 0.929 0.104 OK

HT29 vs. HCT116 1 + 1 + 0 1 0.980 0.030 OK

HT29 vs. SW480 1 + 1 + 0 0.999 0.909 0.134 OK

HT29 vs. SW948 1 + 1 + 0 0.997 0.954 0.068 OK

HCT116 vs. SW480 1 + 1 + 0 0.999 0.967 0.049 OK

HCT116 vs. SW948 1 + 1 + 0 0.995 0.934 0.097 OK

SW480 vs. SW948 1 + 1 + 0 0.989 0.959 0.061 OK

Figure 2.   Significantly altered metabolites between different transformed cell lines: (a) polar metabolites and 
(b) lipids. Normalization was performed by dividing the peak area (expressed in arbitrary units) of a specific 
component in a sample by the mean peak area of that component in the next two QC samples that were run 
after every ten samples. Cell lines assigned with different letters are statistically (P value  < 0.05) different from 
each other. Error bars represent standard deviations (n = 3 replicates).
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Table 3.   Quantitative enrichment analysis in MetaboAnalyst 4.0. Metabolites were upregulated in non-
transformed (green) or transformed (red) state and discriminative for both matrices (a), colon cell line (b) or 
tissue matrix (c). Metabolites that behaved contradictory in colon cell line and tissue samples are presented in 
black.

Significantly affected pathways in both colon cell 

line and tissue matrix

Metabolites

Alanine Metabolism, Folate metabolism, Glucose-

alanine cycle, Malate-Aspartate Shuttle, Phenylalanine 

and Tyrosine Metabolism, Propionate Metabolism

L-Glutamic acid (a)

Amino Sugar Metabolism, Ammonia Recycling, 

Warburg Effect, Purine Metabolism
L-Glutamic acid (a), L-Glutamine (b)

Arginine and Proline Metabolism L-Glutamic acid (a), L-Arginine (b), L/D-

Proline (a), Citrulline (b)

Aspartate Metabolism L-Glutamine (b), L-Glutamic acid (a), L-

Arginine (b), Citrulline (b)

Beta-Alanine Metabolism L-Glutamic acid (a), Uracil (a), 5,6-

Dihydrouracil (a)

Carnitine Synthesis L-Carnitine (a), Ascorbic acid (a),

N6,N6,N6-Trimethyllysine (b), L/D-

Lysine (b)

Cysteine Metabolism, Glutathione metabolism L-Glutamic acid (a), L-Cysteine (a)

Glutamate Metabolism L-Glutamic acid (a), L-Glutamine (b), L-

Cysteine (a)

Glycerol Phosphate Shuttle, Glycerolipid Metabolism Quinone (a), Glycerol-3-phosphate (b)

Glycine and Serine Metabolism L-Glutamic acid (a), L-Cysteine (a), L-

Arginine (b)

Homocysteine Degradation L-Cysteine (a)

Lysine Degradation L-Glutamic acid (a), L/D-Lysine (b)

Methionine Metabolism L-Cysteine (a)

Oxidation of Branched Chain Fatty Acids L-Carnitine (a), Ascorbic acid (a)

Pantothenate and CoA Biosynthesis L-Cysteine (a)

Pyrimidine Metabolism Thymine (a), 5,6-Dihydrouracil (a), Uracil 

(a), L-Glutamic acid (a), L-Glutamine (b)

Riboflavin Metabolism Quinone (a)

Tryptophan Metabolism L-Glutamic acid (a), L-Kynurenine (a)

Tyrosine Metabolism L-Glutamic acid (a), Ascorbic acid (a), L-

Aspartic acid (c)

Urea Cycle L-Glutamic acid (a), L-Aspartic acid (c), 

L-Arginine (b), Citrulline (b), L-

Glutamine (b)

Valine, Leucine and Isoleucine Degradation L-Glutamic acid (a), L-Leucine (b), L-

Isoleucine (b)
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and was found to be significantly (P value  = 0.012) lower in the SW480 than in the HCT116 cell line samples, 
implying more conversion of L-glutamine to L-glutamic acid in the SW480 cell line. The HT29 and Caco2 cell 
lines demonstrated similar conversion rates, whilst the ratio was less consistent in the SW948 cell line, as indi-
cated by the high standard deviation (Fig. 4a). To find out whether the higher conversion was due to an upregula-
tion of glutaminase, the expression of the glutaminase-encoding gene GLS1 was assessed by means of qPCR in 
the HCT116, SW480 and HT29 cell lines. This revealed that the expression of GLS1 was significantly lower in 
the HCT116 as compared to the HT29 (P value  = 0.0031) and the SW480 cell line (P value  = 0.0056), aligning 
with the higher L-glutamine/L-glutamic acid ratio and the lower conversion of L-glutamine to L-glutamic acid 
in the HCT116 cell line (Fig. 4b).

Figure 3.   Schematic overview of the interactions between the identified metabolites and the involved 
pathways in non-transformed or transformed state. Metabolites that were discriminative for both matrices are 
indicated with (a), whereas those that were only found colon cell lines are indicated with (b) or tissue matrix 
with (c). Metabolites that are regulated in an opposite direction of the identified pathway are indicated in red 
and metabolites with conflicting changes between cell line and tissue samples or without a particular state 
association are written in lighter fray and italic.

Figure 4.   Conversion of L-glutamine to L-glutamic acid and expression of GLS1 in vitro. (a) Ratio L-glutamine/
glutamic acid was determined by using the individual metabolite abundances in the transformed cell line 
samples; (b) Expression of GLS1, encoding glutaminase was assessed in the HCT116, HT29 and SW480 cell 
line by means of qPCR and expressed as log2 fold change relative to the HT29 cell line. Cell lines assigned 
with different letters are statistically (P value  < 0.05) different from each other. Error bars represent standard 
deviations (n = 3).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:17249  | https://doi.org/10.1038/s41598-021-96252-4

www.nature.com/scientificreports/

Discussion
In this work, untargeted metabolomics and lipidomics was performed on NT and T colon cell line and tissue 
samples to identify common molecular signatures. Based on the metabolic profiles, validated OPLS-DA models 
were constructed that allowed discrimination of the two states in both matrices and the identification of 35 
and 52 discriminative metabolites in colon cell lines and tissue, respectively, of which 32 were shared between 
matrices. Glutaminolysis, pyrimidine synthesis, phospholipid synthesis, carnitine biosynthesis and tryptophan 
metabolism appeared to be hyperactivated in the T state, whereas urea cycle, glycerol-3-phosphate shuttle and 
antioxidant responses were more prominent in the NT state. The extent of glutaminolysis and lipid content were 
distinct between the different cell line types.

L-glutamic acid was characteristic for colon cancer cell lines and tumor tissue and is generated during glu-
taminolysis, i.e., the degradation of L-glutamine. These results are in concordance with Hirayama et al. (2009), 
who observed higher L-glutamic acid and lower L-glutamine levels in colon tumor tissue, respectively26. Amongst 
the T cell lines, the SW480 cell line showed the highest rate of glutaminolysis as represented by higher conver-
sion of L-glutamine towards L-glutamic acid. Also, qPCR results showed higher expression of glutaminase in 
this cell line indicating more enzyme availability promoting this metabolite conversion. Compared to HCT116 
cells, SW480 cells displayed significantly lower L-glutamine and L-glutamic acid levels, which could indicate 
lower absorption of L-glutamine, but higher efficiency in utilizing this metabolite as an energy source for the 
latter. Interestingly, it has been shown that the removal of L-glutamine from media results in increased sensitivity 
of the SW480 as opposed to HCT116 and HT29 cell cultures, hence supporting the function of this metabolite 
as a more convenient energy source in the former27. L-leucine was more abundant in this cell line compared to 
the other cancer cell lines, which may hint towards increased activation of glutamate hydrogenase. Glutamate 
hydrogenase converts L-glutamic acid into α-ketoglutaric acid, an intermediate of the TCA cycle, thus promoting 
glutaminolytic activity28. Targeting glutaminolysis by inhibiting involved enzymes in cancer has gained interest 
and has already been proven to reduce the proliferation of cancer cells29.

Only recently, it has been shown that carbon and nitrogen of L-glutamine is incorporated into building 
blocks of cells, especially during high cell proliferation30. This is also in concordance with the higher presence of 
pyrimidines (e.g., uracil and derivatives and thymine) and lipids (mainly PCs) in T samples22,30,31. In our study, 
especially saturated, mono-unsaturated and low-polyunsaturated PCs were discriminative for transformation, 
which aligns with a study that performed lipidomics on breast cancer and normal tissue and cell line samples32. 
Especially the HT29 and Caco2 cell line displayed relatively high PC levels. The HCT116 cell line was character-
ized by a lower abundance of lipid species, which may be linked to its decreased metastatic potential. Carcino-
genesis has been linked with de novo lipogenesis and increased saturation of membrane lipids. The latter results 
in decreased membrane fluidity and permeability, which make cancer cells less prone to lipid peroxidation and 
chemotherapy in comparison to normal cells22. Based on this, it can be speculated that strategies to modulate 
membrane fluidity could improve the treatment of cancer33. Glycerol-3-phosphate, an intermediate in lipid 
synthesis, was detected at lower concentrations in the T state as opposed to the NT state, which further supports 
increased phospholipid biosynthesis in the T state34.

In our study, several antioxidants (taurine, nicotinic acid and quinone) were determined to be discrimina-
tive for NT samples in vitro and in vivo and are considered to be important in mitigating the damaging effects 
of ROS. These compounds act as a coenzyme in redox reactions, improve mitochondrial function resulting 
in less superoxide generation and scavenge superoxide radicals, respectively35–37. It is a common feature that 
ROS are elevated in cancer cells, where they are responsible for activating signaling pathways involved in cell 
proliferation38. However, when ROS are present in excessive amounts, they cause oxidative damage to macro-
molecules. To prevent this, cancer cells overproduce antioxidants30. Indeed, Kibi et al. (2019) observed higher 
taurine levels in CRC as opposed to adjacent tissue samples derived from 10 patients39. Therefore, one would 
intuitively expect that increased antioxidants would be linked to the T state, which was not the case in our work. 
Nevertheless, Hernandez-Lopez (2018) demonstrated that antioxidant responses between non-tumor adjacent 
tissue samples retrieved from patients with different stages of CRC differed, where non-tumor adjacent tissue of 
stage IV showed increased antioxidant levels in comparison to those of stage III40. In our work, 3 CRC patients 
had classification of tumors below stage II, whereas the tumors of the other 7 patients were classified in stage III 
and IV (Table 1). Hence, selection bias could have affected the antioxidant level interpretation.

The urea cycle is a metabolic pathway that is responsible for converting excess nitrogen from L-aspartic 
acid and ammonia, which results from amino acid catabolism, into urea. The urea cycle metabolites L-arginine 
and citrulline were downregulated in T cell lines as opposed to NT cell lines. These results are in accordance 
with Nagamani et al. (2016), who demonstrated that metabolic wiring accompanying carcinogenesis includes 
enhanced flux of L-aspartic acid towards pyrimidine synthesis and hence, decreased synthesis of L-arginine41.

Tryptophan metabolism involves the conversion of L-tryptophan into N’-formylkynurenine and L-kynurenine 
and this is depending primarily on indoleamine-2,3-oxygenase (IDO1), which is highly expressed in the colon. 
IDO-1 is one of the most upregulated in CRC and is strongly induced by inflammatory cytokines such as IFNγ42. 
L-kynurenine, which was elevated in the T state in colon tissue and cell lines, is associated with tumor immune 
escape and growth and hence, is considered as a hallmark of carcinogenesis43.

It has been reported that L-carnitine is elevated in cancer cells and associated with enhanced fatty acid uptake, 
oxidation and formation of ROS38. L-lysine is a precursor of N6,N6,N6-trimethyllysine, which can be converted 
to L-carnitine and further transformed to L-ascorbic acid. L-Carnitine is responsible for transporting fatty acids 
into the mitochondria or peroxisomes by conjugation with the acyl-CoA moiety to form acylcarnitines. Inside 
these cell organelles, acyl-CoA is released and enters the β-oxidation resulting in the formation of acetyl-CoA, 
that can in turn enter the TCA cycle37. In this study, only L-carnitine showed a clear association with the T state 
in both matrices. L-lysine, L-ascorbic acid and N6,N6,N6-trimethyllysine on the other hand were significantly 
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elevated in the NT as opposed to the T state in cell line samples, but showed an opposite trend in the T colon 
tissue samples. Nevertheless, this observation was not significant for L-lysine and N6,N6,N6-trimethyllysine. 
Based on these findings, it can be concluded that L-carnitine biosynthesis and lysine degradation are higher in 
the T state. However, at the tissue level, such metabolic fluxes were less clearly observed, which can be due to 
genetic heterogeneity of samples. In concordance with these findings, elevated carnitine levels in plasma and 
tissue have been associated with breast, bladder and colon cancer, respectively44–46.

It is important to note that discrepancies were observed in metabolic profiles between the cell line and tissue 
samples. This may be due to the cell culture methodology that differs from the in vivo situation. For example, 
cell lines do not have a physiological extracellular matrix, 3D organization, and are much more homogeneous 
than tissue. Also, cell lines are adapted to their culture conditions, whereby media are composed in such a way 
that cell growth and viability are optimally supported47. Conversely, cells in tumor tissue are subjected to harsh 
conditions, including hypoxia and limited nutrient availability47,48. In this study, it was observed that L-ascorbic 
acid was significantly upregulated in the T as opposed to the NT tissue samples while a higher abundance was 
detected in NT as compared to the T cell line samples. In vivo trials have demonstrated that L-ascorbic acid is 
more abundant in cancer cells than normal cells through facilitated transport by glucose transporters, explaining 
the higher concentrations in colon cancer tissue. Nevertheless, this metabolite acts as a pro-oxidant in tumor cells, 
since these lack the enzyme catalase that converts L-ascorbic acid-induced ROS (H2O2) into water and oxygen49. 
Thus, cancer cells are more vulnerable than normal cells to the effects of this metabolite and can eventually stop 
growing or undergo apoptosis50,51. Hence, it could be hypothesized that cell lines have adapted to culture condi-
tions by rewiring their utilized energy sources, for example through the absorption and use of L-glutamine, which 
is highly abundant in commercial cell culture media. This way, cancer cell lines are more protected against the 
detrimental effects of L-ascorbic acid. Indeed, recent research has shown that increased extracellular availability 
of glucose does not influence the rate of glucose utilization by cell line models. It was also demonstrated that 
higher glutamine concentrations in media resulted in higher glutamine fermentation in cell culture52.

In conclusion, despite the fact that in vitro cell culture models do not fully represent the in vivo situation, 
we discovered shared metabolites and corresponding pathways between colon tissue and cell lines involved 
in carcinogenesis. Glutaminolysis, associated pyrimidine and lipid synthesis, tryptophan catabolism, glycerol-
3-phosphate shuttle and carnitine biosynthesis were enhanced in the malignant as opposed to the non-malignant 
state. In the NT state, urea cycle and antioxidant levels were more prominent. Moreover, it was clear that glu-
taminolysis, characterized by high expression of glutaminase and high conversion of L-glutamine to L-glutamic 
acid, was most abundant in the SW480 cell line as opposed to the other T cell lines. In addition, the HT29 and 
Caco2 cell lines contained the most saturated and one or double bonds-containing phospholipids, essential con-
stituents of cell membranes and thus affecting membrane permeability towards cancer drugs. Hence, this work 
provides insights in pathways associated with colon carcinogenesis as well as valuable information to select the 
most appropriate cancer cell lines in the testing of novel chemotherapeutic agents.

Materials and methods
Biological samples.  The human colorectal cell lines HT29, Caco2, HCT116, SW480 and SW948 (T state) 
and the immortalized colon cell lines FHC and CCD841-CON (NT state) were obtained from ATCC (Manassas, 
VA, U.S.A.). Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% Fetal Bovine Serum (FBS) 
and 1% penicillin/streptomycin (P/S), was used to culture the cancer cell lines and CCD841-CON in a humidi-
fied incubator at 37 °C and 5% CO2/95% air. FHC cells were cultured in DMEM:F12 supplemented with 10 mM 
HEPES, 0.005 mg mL-1 insulin, 0.005 mg mL-1 transferrin, 100 ng mL-1 hydrocortison, 10% FBS and 1% P/S. All 
cell reagents were purchased from Life Technologies (Ghent, Belgium).

Cancerous colon material (100 mg) and corresponding healthy tissue (100 mg) from 10 individuals were 
provided by Biobank@UZA (Antwerp, Belgium; ID: BE71030031000; Belgian Virtual Tumorbank funded by 
the National Cancer Plan). The use of human colon tissue samples in this study was ethically approved by the 
University Hospital of Antwerp (ECD 16/37/368, Antwerp, Belgium) and patient details are listed in Supple-
mentary Table S1.

Metabolomics and lipidomics fingerprinting.  In recent work, the applied two-step metabolomics and 
lipidomics extraction protocols for colon (cancer) cell lines and tissue were successfully optimized and validated. 
More information about the optimized parameters and validation experiments can be consulted in Rombouts 
et al. (2019)24. For each matrix (i.e., cell lines and tissue samples), quality control (QC) samples were made from 
a pool of the matrix-specific samples and run in duplicate after every 10 samples.

Analytical standards were purchased from Sigma-Aldrich (St-Louis, Missouri, USA), ICN Biomedicals Inc. 
(Solon, Ohio, USA), TLC PharmChem (Vaughan, Ontario, Canada) or Cambridge Isotope Laboratories Inc. 
(Tewksbury, Massachusetts, USA). Detailed information about chromatographic and mass spectrometric features 
of the reference metabolite and lipid compounds can be consulted in De Paepe et al. (2018) and Van Meulebroek 
et al. (2017), respectively53,54. Solvents were of LC–MS grade for extraction purposes and obtained from Fisher 
Scientific (Loughborough, UK) and VWR International (Merck, Darmstadt, Germany). Ultrapure water was 
obtained by usage of a purified-water system (VWR International, Merck, Darmstadt, Germany).

An Ultimate 3000 XRS UHPLC system (Thermo Fisher Scientific, San José, CA, USA) and a Q-Exactive™ 
stand-alone bench top Orbitrap mass spectrometer (MS) (Thermo Fisher Scientific, San José, CA, USA), equipped 
with a heated electrospray ionization source (HESI II) operating in polarity switching mode, were used for 
polar metabolomics and lipidomics analysis as described by De Paepe et al. (2018) and Van Meulebroek et al. 
(2017), respectively52,53. For fragmentation experiments, the following MS/MS settings were applied during 
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parallel reaction monitoring (PRM): resolution of 17,500 Full Width at Half maximum (FWHM), Automatic 
Gain Control (AGC) target of 2 × e4 ions, maximum injection time of 40 ms and an isolation window of 2.0 m/z.

Data analysis.  All cellular LC–MS data, together with tissue LC–MS data were processed simultaneously 
using Compound Discoverer™ 2.1 or Sieve™ 2.2 software (both obtained from Thermo Fisher Scientific, San 
Jose, CA, USA) for the metabolomics and lipidomics experiment, respectively. Herein, chromatographic peak 
alignment and component extraction was performed as described earlier24. In brief, components were identified 
using the following criteria: a minimum peak intensity of 500,000 au, minimum signal-to-noise ratio of 10, min-
imum number of isotopes of 2, retention time window of 0.75 min, maximum retention time shift of 0.25 min 
and maximum mass shift at 5 ppm. This resulted in the construction of one metabolomics dataset (two ioniza-
tion modes combined) and two lipidomics datasets (positive and negative ionization modes separately). Next, 
unsupervised hierarchical clustering (Pearson correlation coefficient, Ward linkage) and multivariate statistical 
analysis (SIMCA™ 14.1 software, Umetrics AB, Umea, Sweden) were performed, whereby OPLS-DA models 
were built to discriminate the NT from the T state in tissue and cell lines separately. For modeling, data were log-
transformed and Pareto-scaling was applied55. Validity of the obtained OPLS-DA models was evaluated based 
on several parameters including R2Y (> 0.5), Q2 (> 0.5), CV-ANOVA (p < 0.05), as well as permutation testing 
(n = 100)56. Selection of components that discriminated between the NT and T state in cell lines and tissue was 
based on a Variable Importance in Projection (VIP) score > 1.0 and a Jack Knife confidence interval that did not 
include 057. Screening of components of interest was established based on accurate mass (Δ ppm < 6 ppm) in the 
Human Metabolome Database (HMDB) and LIPIDMAPS58,59. For those components that could be linked to 
putative IDs, fragmentation experiments were conducted, and MS/MS profiles were scored in CSI FingerID or 
compared with these of in-house analytical standards60. Components were then classified into different levels of 
assignment according to the recommendations for standard metabolite identification from the Chemical Analy-
sis Working Group61. Based on this, retained compounds were described as identified compound (type 1; based 
on accurate mass, RT and MS/MS spectra that matched these of an analytical standard) or putatively annotated 
compound (type 2; based on accurate mass and MS/MS spectra that matched these of in silico MS/MS data 
generated with CSI FingerID).

Statistical evaluation.  Identified and putatively annotated metabolites were statistically evaluated (P 
value  < 0.05) in MetaboAnalyst 4.0, thereby using the independent two-sample or paired sample Wilcoxon test 
for, data from the colon cell lines and tissue samples, respectively. To this end, metabolites obtained from the tis-
sue matrix were also statistically evaluated in the cell line matrix and vice versa. This approach allowed pinpoint-
ing metabolites relevant for discrimination between NT and T state in tissue or cell lines as well as those relevant 
in both matrices making extrapolation and comparison easier. Significantly different metabolites between the 
transformed cell line types were assessed using One-Way Anova and Tukey-adjusted post hoc  testing for all 
pairwise comparisons, whereby P value s < 0.05 were considered significant.

Data visualization, enrichment and pathway analysis.  Heat maps presenting the abundances of the 
discriminative metabolites (VI P value  > 1.0 and/or P value  < 0.05) were constructed and hierarchical cluster-
ing (Pearson correlation coefficient and Ward linkage) was performed of the colon cell line and tissue samples 
in MetaboAnalyst 4.0 (www.​metab​oanal​yst.​ca). This software program was also used for quantitative enrich-
ment analysis using biologically relevant human metabolic pathways of the Small Molecular Pathway Database 
(SMDB)62. Pathways with a false discovery rate (FRD) < 0.05 were considered significantly altered. Next to this, 
the KEGG Compound Database (www.​genome.​jp/​kegg/​compo​und) and scientific literature was consulted to 
provide a broader overview of transformation-associated pathways in colon tissue and cell lines.

Quantitative PCR.  RNA was extracted using the Nucleospin Triprep kit (Macherey–Nagel, Düren, Ger-
many) and quality control was performed with the NanoDrop 2000 (Thermo Fisher Scientific, San Jose, CA, 
USA). Next, 1 μg of RNA was converted to cDNA synthesis with Superscript® II Reverse Transcriptase (RT) (Life 
Technologies, 18064-014) (Thermo Fisher Scientific, San Jose, CA, USA). qPCR reactions were performed on a 
CFX Connect™ system (Bio-Rad, California, USA) using SsoAdvanced™ Universal SYBR® Green Supermix (Bio-
Rad, California USA) according to the manufacturer’s instructions. Primers were used for GLS1 (forward: CTC​
CAA​GAA​TAC​CAA​GTC; reverse: TTA​CAA​CAA​TCC​ATC​AAG​A) and reference genes GADPH (forward: GAA​
GGT​GAA​GGT​CGG​AGT​CAAC; reverse: CAG​AGT​TAA​AAG​CAG​CCC​TGGT), ACTB (forward:CCT​TGC​
ACA​TGC​CGGAG; reverse: GCA​CAG​AGC​CTC​GCCTT) and TUB (forward: AGC​AAG​AGG​GCG​ATT​CCC​
TT; reverse: GGG​AAG​ACA​CGC​CCT​GAA​AG)63. qPCR technical replicates (n = 4) that deviated more than 0.3 
Cq units and genes with inconsistent melting curves were removed from downstream analysis. Relative quanti-
fication was performed using the 2−ΔΔCT method, whereby the HT29 samples were used as reference64. One-way 
ANOVA together with Tukey-adjusted post hoc testing for all pairwise comparisons was performed in RStudio 
2.1, whereby P value s < 0.05 were considered significant.
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