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Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and lethal interstitial lung
disease characterized by consistent pulmonary inflammation. Although protein kinase
C delta (PKCδ) is involved in broad scope cellular response, the role of PKCδ in IPF is
complicated and has not been fully defined yet. Here, we reported that PKCδ deficiency
(PKCδ−/−) aggravated bleomycin (BLM)-induced pulmonary fibrosis and inflammation.
Upon challenge with BLM, the pulmonary capillary permeability, immune cell infiltration,
inflammatory cytokine production, and collagen deposition were enhanced in PKCδ−/−

mice compared to that in PKCδ+/+ mice. In response to poly(I:C) stimulation, PKCδ

deficient macrophages displayed an increased production of IL-1β, IL-6, TNF-α, and IL-
33, which were associated with an enhanced NF-κB activation. Furthermore, we found
that PKCδ could directly bind to and phosphorylate A20, an inhibitory protein of NF-κB
signal. These results suggested that PKCδ may inhibit the NF-κB signaling pathway via
enhancing the stability and activity of A20, which in turn attenuates pulmonary fibrosis,
suggesting that PKCδ is a promising target for treating pulmonary fibrosis.

Keywords: PKC δ, pulmonary fibrosis, inflammation, macrophage, NF-κB signal pathway

INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive, devastating, and lethal interstitial lung disease.
It has a prevalence of 7∼10 per 100,000 people worldwide and a mean survival of only 3∼4 years
since diagnosis (Dempsey, 2006). Characterized by inflammation, fibroblast accumulation, and
extracellular matrix deposition, pulmonary fibrosis eventually leads to the disruption of lung
architecture that hinders blood gas exchange (Nie et al., 2017). Since the etiology and mechanism
of IPF have not been fully unveiled (Desai et al., 2018) and current therapies have limited efficacy
(Fujimoto et al., 2015), it is vital that new drug targets are to be identified as treatment options for
the management and resolution of IPF.

Although the etiology of pulmonary fibrosis is complicated and unclear, inflammation
is definitively involved in pathogenesis of IPF (Bringardner et al., 2008). Damaged tissue
releases various inflammatory stimuli from the nucleus or cytosol, such as high mobility group
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box 1(HMGB1), DNA, RNA and heat shock proteins, which
function as danger associated molecular patterns to trigger the
sterile inflammation response (Mack, 2018). Among them, RNA
is an important endogenous ligand for TLR3 that activates NF-κB
signal pathway and double-stranded RNA released from damaged
or death cells upregulates the expression of inflammatory
mediators to enhance inflammation response (Kariko et al.,
2004; Cavassani et al., 2008; Nelson et al., 2015; Li et al., 2017;
Zhan et al., 2017). Poly(I:C), a mimic of dsRNA, is commonly
used to study the role of RNA in immune response (Zhan
et al., 2017). Pulmonary fibrosis has been considered as the
result of wound repair and tissue remodeling. Epithelial injury
leads to chronic inflammation and activation of inflammatory
cells, such as macrophages and neutrophils, which release
harmful reactive oxygen species, cytokines, and growth factors
that regulate the proliferation and activation of fibroblasts and
ultimately result in pulmonary fibrosis (Desai et al., 2018).
Bleomycin (BLM) administration is the most widely used for
inducing lung fibrosis in animal models, which triggers DNA
strand scission in alveolar epithelial cells and subsequently
induces cells damage or death (Della Latta et al., 2015).
Double-stranded RNA released from damaged epithelial cells
can activate NF-κB signal pathway to trigger inflammatory
response and enhance pro-inflammatory cytokine expression
(Nelson et al., 2015). Chronic and excessive inflammation
triggers the continual unrestrained growth of fibroblasts in the
formation of pulmonary fibrosis. Hence, the immune response
and inflammatory environment play an important role in IPF
(Wynn and Vannella, 2016).

PKCδ is the first identified member of the novel PKC
subfamily, which is ubiquitously expressed in mammalian
cells, including macrophages (Zhao et al., 2012). Tyrosine
phosphorylation is an important way to regulate PKCδ

activity. Hiroaki Konishi et al. have proved that Tyr311 is
the predominant modification site compared with Tyr332
and Tyr512. Through the tyrosine phosphorylation detection
in vitro and kinetic analysis, they demonstrated that the Tyr311
phosphorylation enhances the PKCδ basal enzymatic activity and
elevates its maximal velocity in the presence of diacylglycerol.
The mutation of Tyr311 to phenylalanine prevents an increase
in this maximal activity (Konishi et al., 2001). In addition,
several other groups have also demonstrated the important
effect of the Tyr311 phosphorylation on PKCδ activity (Kikkawa
et al., 2002; Hall et al., 2007; Nakashima et al., 2008). Hence,
the Tyr311 phosphorylation can be used as a marker for
the research of PKCδ activation. The PKCδ activation plays
a critical role in many cellular response such as cell growth,
differentiation, apoptosis, and phagocytosis. However, the role
of PKCδ in macrophage activation and pulmonary is still
controversial. PKCδ deficiency enhances the expression of IL-6
and TNF-α in macrophages and increases the IL-6 production
in spleen tissue after infection of Listeria monocytogenes, which
suggests that PKCδ can attenuate inflammatory response and
the macrophages activation (Anita Schwegmann et al., 2007).
During Mycobacterium tuberculosis-induced lung injury, PKCδ

inhibits the expression of proinflammatory cytokines IL-1β, IL-
6, and TNF-α by using PKCδ deficient mice and a PKCδ specific

inhibitor (Parihar et al., 2018). In contrast, it was also reported
that PKCδ is required for NF-κB activation and IL-8 expression
in fibroblasts and epithelial cells in response to TNF-α treatment
(Li et al., 2009; Lee et al., 2018). Hence, the role of PKCδ

in inflammatory response is controversial and needed to be
further investigated.

Alveolar macrophages are important immune cells present
in the lung and play a key role in pulmonary diseases (Qian
et al., 2015; Huang et al., 2019). Macrophages can promote
fibroproliferation and lead to uncontrolled wound repair
via secretion of various proinflammatory cytokines, fibrotic
mediators and growth factors, such as TNF-α, IL-1β, CCL-18,
IL-33, and TGF-β (Li et al., 2014; Nabe, 2014; Theoharides
et al., 2015; Wynn and Vannella, 2016). BLM administration
induces IL-33 production in murine pulmonary macrophages,
which recruits and activates immune cells and finally promotes
pulmonary fibrosis (Cayrol and Girard, 2014; Li et al., 2014; Xia
et al., 2015). The NF-κB signal pathway is important for the
regulation of inflammatory cytokine production (Wertz et al.,
2004) which can be down-regulated by the A20 deubiquitinase,
also known as tumor necrosis factor α-induced protein 3
(TNFAIP3) (Das et al., 2018). However, it is still unknown
whether and how PKCδ modulates NF-κB signal activation in
pulmonary fibrosis and TLR3-mediated signal pathway.

In this study, we used PKCδ deficient mice to determine
the effect of PKCδ on BLM-induced pulmonary fibrosis.
We found that PKCδ deficiency remarkably enhances BLM-
induced inflammation and pulmonary fibrosis. Moreover, PKCδ

deficiency enhances the proinflammatory cytokine expression
in lung tissues and poly(I:C)-stimulated macrophages. In
addition, PKCδ attenuates NF-κB activation through inducing
phosphorylation and stability of A20. Our results indicated
that PKCδ inhibits BLM-induced pulmonary fibrosis and is a
promising drug target for IPF.

MATERIALS AND METHODS

Mice
The original PKCδ knockout (PKCδ−/−) mice in C57BL/6× 129
were kindly provided by Dr. Robert Messing (Chou et al.,
2004) (Ernest Gallo Clinic and Research Center, University
of California, San Francisco), these were backcrossed for 10
generations with Balb/c mice. The age- and sex- matched
wild-type littermate controls were used for the experiments.
Mice were housed in specific pathogen free conditions at the
Laboratory Animal Center of Shanghai Jiao Tong University. The
procedures were approved by the Institutional Animal Care and
Use Committee at Shanghai Jiao Tong University.

Bleomycin (BLM)-Induced Pulmonary
Fibrosis Mouse Model
The male PKCδ+/+ or PKCδ−/− mice (6–8 weeks) were
administered BLM (BioTang, Beijing, China) dissolved in saline
via a single intratracheal instillation under anesthesia at a dose
of 1.6 U/kg body weight to induce pulmonary fibrosis (Nie
et al., 2017). Control groups were administered with an equal
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volume of sterile saline. Mice were sacrificed at days 3, 7, 14,
and 21 after BLM administration when the bronchoalveolar
lavage fluid (BALF) and lung tissue were collected for further
analysis. This included the number of infiltrating lymphocytes,
total protein concentration in BALF, histology of lung tissue,
as well as the level of cytokine expression and collagen content
in lung tissues.

Immunohistochemistry (IHC)
The lung tissue specimens were taken from six healthy donors
(2 female, 47 and 35 years old; 4 male, 51, 53, 68, and 54 years
old) and six recipients (3 female, 55, 49 and 52 years old; 3
male, 59, 74, and 48 years old) with pulmonary fibrosis during
lung transplantation in Wuxi People’s Hospital (Jiangsu, China),
using procedures approved by the Institutional Review Board
of Wuxi People’s Hospital. Sections (5 µm) were cut from the
paraffin-embedded blocks prepared from the human lung tissues.
Washed the slides with the specific reagents in the following
order: xylene, two times, 5 min each; 100% ethanol, two times,
5 min each; 95% ethanol, two times, 5 min each; 80% ethanol,
once, 5 min; 70% ethanol, once, 5 min; 50% ethanol, once, 5 min;
ddH2O, two times, 5 min each. In order to quench endogenous
peroxidase, the slides were incubated in 3% H2O2 in distilled
water for 5∼10 min. Following being rinsed with PBS three times,
slides were incubated with 3% normal serum in PBS for 1 h to
block non-specific binding. The slides were then incubated with
p-PKC-delta antibody overnight at 4◦C. Following being rinsed
with PBS three times, slides were incubated with HRP-goat anti-
rabbit polyclonal secondary antibody (1:200) for 1 h. Following
being rinsed with PBS, the slides were covered with chromogen
of final developmental DAB. Stained and differentiated slides in
hematoxylin. After the dehydration, transparency and mounting
of the slides, images of the tissues sections were captured by
digital microscope.

Lung Histology
On days 3, 7, 14, and 21 post-BLM treatment, the lungs
from mice in each treatment group were collected. The right
lungs were frozen until further use, while the left lung was
collected after inflating with 1 ml of 4% paraformaldehyde
(Sangon, Shanghai, China) under constant pressure and placed
in 4% paraformaldehyde. The left lung tissues were then
embedded in paraffin blocks and cut into 5 µm sections for
hematoxylin and eosin (H&E) staining or Masson trichrome
staining to observe the inflammatory cell infiltration and collagen
deposition respectively (NanJing Jiancheng Bioengineering
Institute, Nanjing, China).

Lung Homogenization and Analysis
Hydroxyproline is an indicator of the level of collagen present
in a sample. The hydroxyproline content was assayed in lung
hydrolyzate according to the manufacturer’s protocol for the
hydroxyproline assay kit (NanJing Jiancheng Bioengineering
Institute, Nanjing, China). The absorbance of the colored product
was measured at 550 nm using a microplate reader to evaluate
collagen deposition. In addition, myeloperoxidase (MPO) activity

in lung tissue was assessed using tetramethylbenzidine (TMB), as
previously described (Qian et al., 2012).

Bronchoalveolar Lavage
Mice were sacrificed on days 3 and 7 after treatment with saline or
BLM. Following blood collection by cardiac puncture, the trachea
was exposed and intubated with a polyethylene catheter. Lungs
were lavaged three times with 0.6 ml PBS (PH 7.4). All resulting
BALF was collected and centrifuged at 500 g for 5 min. The
supernatant was used to detect total protein concentration using
a BCA Protein Assay Kit (Beyotime, Shanghai, China) and the
pellet was resuspended to determine the number of infiltrating
cells using a hemocytometer (He et al., 2017).

Isolation of Total RNA and Quantitative
PCR (QPCR)
Frozen right lung lobes were homogenized with the TissueLyser
system (Qiagen). Total cellular RNA in lung tissue homogenates
or bone marrow derived macrophages (BMDM) as well as
Raw264.7 cells were extracted by Trizol reagent (Thermo Fisher
Scientific) (Wu et al., 2018). The cDNA was prepared by ReverTra
Ace qPCR RT Kit (Toyobo, Japan) and amplified by real time
PCR in an Applied Biosystems PCR instrument with target genes
primer sets: α-SMA (forward 5′-GACGCTGAAGTATCCGATA
GAACACG-3′, reverse 5′-CACCATCTC-CAGAGTC-CAGCAC
AAT-3′), fibronectin (forward 5′-TCTGGGAAATGGAAA-
AGGGGAATGG-3′, reverse 5′-CACTGAAGCAGGTTTCC
TCGGTTGT-3′), IL-33 (forward 5′-GATGGGAAGAAG-
CTGATGGTG-3′, reverse 5′-TTGTGAAGGACGAAGAAG
GC-3′), TNF-α (forward-5′-GGCAGG-TCTACTTTGGAGTC
ATTGC-3′, reverse 5′-ACATTCGAGGCTCCA-GTGAATTC
GG-3′), IL1-β (forward5′-AGGACATGAGCACCTTCTTTT
CC-3′, reverse5′-ACGT-CACACACCAGCAGGTTA-3′), IL-6
(forward5′-TCGGAGGCTTAATTACACATGTTC-3′, rever-se
5′-CATACAATCAGAATTGCCATTGC-3′). Relative gene
expression levels was measured using the 2−11Ct method and
was normalized to the GAPDH mRNA level.

Preparation of Bone Marrow-Derived
Macrophages (BMDM)
Femoral and tibia bone marrow was isolated from both PKCδ+/+

and PKCδ−/− mice as previously described (Qian et al.,
2019). The primary bone marrow cells were washed with PBS
(PH = 7.4) and cultured in Dulbecco’s modified Eagle’s medium
(DMEM, Thermo Fisher Scientific) with 10% fetal bovine serum
(FBS Beyotime, Shanghai, China), 1% penicillin/streptomycin
(Thermo Fisher Scientific), and 10 ng/ml M-CSF (Peprotech,
Rocky Hill, CT, United States) for 6 days. These BMDMs were
then stimulated by poly(I:C) (Invivogen, French, 100 µg/ml)
before the cells were lysed in Trizol or RIPA Lysis buffer for RNA
and protein expression analysis.

Western Blotting (WB)
Three days after BLM administration, the right lungs were
collected and lysed by RIPA Lysis buffer (Beyotime, Shanghai,
China). The tissue lysate was analyzed by immunoblotting using
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an antibody against mouse IL-33. BMDMs were plated in six-well
plates at 1 × 106 cells per well overnight and challenged with
100 µg/ml poly(I:C) or PBS for different lengths of time. After
platting THP1 cells in six-well plates at 1× 106 cells per well, the
cells were pretreated by rottlerin for 30 min and then challenged
with 100 µg/ml poly(I:C) or PBS for 2 h. The cells were lysed
by addition of 1 x loading buffer and analyzed by SDS-PAGE
followed by immunoblotting using antibodies against phospho-
p65, p65, phospho-p38, p38, phospho-JNK, JNK, phospho-ERK,
ERK, phospho-PKCδ, PKCδ, IκBα, A20, β-actin, phospho-hA20,
Myc, and Flag. The IL-33 antibody was purchased from R&D
Company and other antibody reagents were obtained from
Cell Signaling Technology. Quantification of Western blots was
performed with ImageJ software.

Immunofluorescent Staining
BMDM cells were washed three times with PBS, fixed on
coverslips with 2.5% paraformaldehyde (Sigma) for 10 min at
room temperature, rinsed twice with PBS, and treated with 0.5%
Triton X-100 (Roche Molecular Biochemicals, Indianapolis, IN,
United States) for 10 min at room temperature. Cells were
then blocked with 100 µl of 3% BSA for 1 h followed by
addition of 100 µl of NF-κB antibody diluted 1:500 in 3% BSA
overnight at 4◦C, and then washed with PBS (3 × 5 min).
The FITC-conjugated goat anti-rabbit antibody was diluted
1:1000 and 100 µl of the antibody solution was placed on each
coverslip for 1 h at room temperature, followed by washing
with PBS (3 × 5 min). Nuclei were stained with 0.1 µg/ml
propidium iodide. The coverslips were mounted face down on
microscope slides with mounting medium (Vector Laboratories,
Inc., Burlingame, CA, United States) and viewed on a Zeiss
410 confocal microscope (Carl Zeiss, Germany). The slides were
stored in a lightproof black box. The fluorescence intensity
in the nucleus and cytoplasm were analyzed and calculated
by Laser software.

Cell Culture, Transfection, and
Co-immunoprecipitation (Co-IP)
HEK-293T cells were obtained from ATCC and cultured in
DMEM supplemented with 10% FBS. Raw264.7 cells were
obtained from ATCC and grown in RPMI containing 10% FBS.
Since commercial anti-mouse phosphorylated A20 antibodies are
not available, we constructed eukaryotic expression plasmids for
human PKCδ and human A20 which respectively been fused
with Flag tag and Myc tag in order to detect their interaction.
Flag-PKCδ and Myc-A20 were generated by PCR and were
respectively cloned into the BamH1, Xbal1 and EcoR1, Xbal1
sites of pcDNA3.1. The full-length A20 protein was divided
into three truncated regions, A20-1(1-383aa) included OTU
domain, A20-2 (384-790aa) included Zn fingers domain and
A20-3 (258-491aa) was an overlap region between A20-1 with
A20-2. HEK-293T cells were transfected with pcDNA3.1-Flag-
PKCδ, pcDNA3.1-Myc-A20 or three A20 truncates expression
vectors by PEI method. We detected the phosphorylation level
of human A20 in cells that were co-transfected with a different
quantity of pcDNA3.1-Flag-PKCδ by WB. The co-IP assays

were performed as previously described to detect the binding
interaction between PKCδ and A20 both in 293T cells and
macrophages (Yang et al., 2019). After addition of the appropriate
amount of RIPA buffer (Beyotime, Shanghai, China) to the
cell culture plate, and the lysate was transferred to a 1.5 ml
EP tube then placed on ice for 15 min for full lysis. Lysates
were centrifuged at 14,000 g for 15 min and the supernatant
collected. A small amount of lysate was used for subsequent WB
analysis. To remove non-specific protein binding, an appropriate
amount of 50% protein G agarose was added to the remaining
lysate and gently shaken for 10 min on the ice. The samples
were then centrifuged at 3000 g for 30 s and the supernatant
collected. The appropriate corresponding antibody (1 µg) was
added to the supernatant, which was then gently shaken and
incubated for 5 h at 4◦C. Protein G agarose beads were washed
three times with an appropriate amount of lysis buffer and
centrifuged at 3000 g for 30 s before using. Pretreated protein
G agarose beads were added to the cell lysate, which was
incubated overnight at 4◦C with gentle shaking and centrifuged
at 3000 g for 30 s at 4◦C. The supernatant was removed with
a pipette and the agarose beads washed three times with 1 ml
of lysis buffer. Then, an equal volume of 2 × SDS loading
buffer was added to the beads which were incubated in a
100◦C heating block for 5 min and subjected to SDS-PAGE
and WB analysis.

Statistical Analysis
All data are presented as means ± SEM. Differences between
2-experimental groups were analyzed using Student’s t-test. One-
way ANOVA, followed by Dunnett’s post hoc test, was used for
multiple comparisons. Prism 5.0 software (GraphPad Software,
La Jolla, CA, United States) was used for statistical analyses.
A value P < 0.05 was considered statistically significant.

RESULTS

PKCδ Inhibits BLM-Induced Idiopathic
Pulmonary Fibrosis
To investigate whether the activation of PKCδ plays a role
in the pathogenesis of pulmonary fibrosis in human, we
detected the PKCδ phosphorylation in the lung tissue of
patients with pulmonary fibrosis and that of healthy human by
immunohistochemistry (IHC) staining. As shown in Figure 1A,
the PKCδ phosphorylation in the lung tissue of patients
was significantly higher than that of healthy human. These
results indicated that PKCδ activation is involved in human
pulmonary fibrosis. To determine whether PKCδ modulates IPF,
we examined the effect of PKCδ on BLM-induced pulmonary
fibrosis by using PKCδ deficient mice. As shown in Figure 1B, the
expression of PKCδ was ablated in the lung tissue of PKCδ−/−

mice. Fourteen and twenty one days after BLM treatment, lung
tissue of PKCδ−/− mice displayed more aggravated multifocal
fibrotic pulmonary lesions and inflammatory cell accumulation
(Figure 1C). By using Masson trichrome staining, we found that
the pulmonary interstitium of PKCδ−/− mice contained more
collagen deposition than that of PKCδ+/+ mice (Figure 1D).
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FIGURE 1 | PKCδ deficiency enhances BLM-induced pulmonary fibrosis. (A) p-PKCδ staining by IHC in lung tissue of patients with IPF and that of healthy human
(original magnification ×200). (B) To identify PKCδ knockout mice, we collected the lung tissues of PKCδ+/+ and PKCδ−/− mice (n = 3) to detect the expression of
PKCδ protein by western blotting. (C) PKCδ+/+ and PKCδ−/− mice were injected intratracheally with saline or BLM (1.6 U/kg) (n = 5–8 mice in each group), after 14
and 21 days lung samples were collected, sectioned and stained with H&E (original magnification ×400), the arrows indicate infiltration of inflammatory cells.
(D) Masson trichrome staining was performed to detect collagen deposition in the lung tissue of PKCδ+/+ and PKCδ−/− mice, treated as described in (C) (original
magnification ×400), and the arrows indicate collagen deposition. (E) Hydroxyproline was detected in the lung tissue of mice, treated as described in (C). The
expression of fibronection (F) and α-SMA (G) was detected by quantitative RT-PCR in samples from the lung tissue of mice, treated as described in (C). *p < 0.05,
**p < 0.01, ***p < 0.001.

In addition, the expression of hydroxyproline (Figure 1E),
fibronectin (Figure 1F), and alpha smooth muscle actin (α-SMA)
(Figure 1G) was up-regulated in the lung tissue of PKCδ−/−

mice after BLM treatment, compared to that of PKCδ+/+ mice.
Collectively, these data suggested that PKCδ inhibits BLM-
induced pulmonary fibrosis.
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PKCδ Attenuates BLM-Induced
Pulmonary Inflammation
Given inflammation is important in the development of
pulmonary fibrosis, we determine whether PKCδ regulates BLM-
induced pulmonary inflammation. As shown in Figure 2A, the
PKCδ phosphorylation (Phospho-Tyr311) in lung tissue was
obviously increased by BLM treatment for 3 and 7 days. The
lung tissue of PKCδ−/− mice displayed more aggravated lung
injury and inflammatory cell infiltration than that of PKCδ+/+

mice (Figure 2B). In addition, the total protein concentration
(Figure 2C) and inflammatory cells (Figure 2D) in BALF and
the activity of myeloperoxidase (MPO) (Figure 2E) in the lung
tissue were dramatically increased in PKCδ−/− mice after BLM
treatment. These data indicated that PKCδ inhibits BLM-induced
pulmonary inflammation.

PKCδ Alleviates BLM-Induced Cytokine
Production in the Lung Tissue
Inflammatory cytokines play a critical role in the regulation of
IPF (Hallstrand et al., 2014). Three days after BLM treatment,

the production of IL-1β (Figure 3A), IL-6 (Figure 3B), TNF-α
(Figure 3C), and IL-33 (Figure 3D) were up-regulated in the
lung tissue of PKCδ−/− mice, compared to that in PKCδ+/+

mice. As shown in Figures 3E–G, PKCδ deficiency enhanced
the expression of both full-length and mature IL-33 protein in
lung tissue, in which mature IL-33 has biological function. These
data suggested that PKCδ inhibits the expression of inflammatory
cytokines in in vivo.

PKCδ Attenuates Cytokine Production in
Macrophages
Given macrophages are critical immune cells in regulation of
inflammatory response, we examined the effect of PKCδ on
cytokine production in macrophages. As shown in Figure 4A,
the PKCδ phosphorylation (Phospho-Tyr311) in macrophages
was increased by poly(I:C) stimulation. After poly(I:C) treatment
for 0, 4, 8, and 12 h, bone marrow derived macrophages
(BMDMs) isolated from PKCδ−/− mice produced more IL-
1β (Figure 4B), IL-6 (Figure 4C), TNF-α (Figure 4D), and
IL-33 (Figure 4E). Consistently, PKCδ also inhibits mature
IL-33 protein expression in BMDM (Figures 4F,G) in vitro.

FIGURE 2 | PKCδ deficiency enhances BLM-induced inflammation. (A) PKCδ+/+ mice were injected intratracheally with BLM (1.6 U/kg) (n = 3) for 0, 3, and 7 days.
Collected the lung tissues to detect the phosphorylation of PKCδ by western blotting. (B) PKCδ+/+ mice and PKCδ−/− mice were intratracheally injected with saline
or BLM (n = 5–8 mice in each group), after 3 days and 7 days, lung sections were harvested and stained with H&E (original magnification × 400), the arrows indicate
infiltration of inflammatory cells. The total protein concentration (C) and the total number of infiltrating cells (D) in BALF from mice treated as described in (B), were
quantified. (E) The level of MPO activity was detected in lung tissue of the mice, as described in (B). *p < 0.05 **p < 0.01, ***p < 0.001.
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FIGURE 3 | PKCδ deficiency increases cytokine production in the lung tissue of a BLM-induced mice model. PKCδ+/+ mice and PKCδ−/− mice were challenged by
saline or BLM (1.6 U/kg). After 3 days, the mRNA expression of IL-1β (A), IL-6 (B), TNF-α (C), and IL-33 (D) in lung tissues was detected by qPCR. (E) Full length
IL-33 (fIL-33) and mature IL-33 (mIL-33) protein expression was detected by western blotting in lung tissues of mice treated as described in (A). The statistical
results of fIL-33 (F) and mIL-33 (G) were analyzed by ImageJ software. *p < 0.05 **p < 0.01, ***p < 0.001.

In addition, to further demonstrate that PKCδ activation
inhibits the inflammatory cytokines expression, rotterlin (4
µm) was used to inhibit the PKCδ activity in poly(I:C)
stimulated Raw264.7 cells (Arisaka et al., 2010) and the
expression of IL-1β, IL-6, TNF-α, and IL-33 was detected.
The results showed that rottlerin could significantly enhance
the expression of IL-6 (Figure 4I), TNF-α (Figure 4J),
and IL-33 (Figure 4K) but not the expression of IL-1β

(Figure 4H) in the poly(I:C) stimulated Raw264.7 cells.
Collectively, these data suggested that PKCδ activation attenuates
cytokine production in macrophages.

PKCδ Inhibits NF-κB Signaling Activity
and Increases A20 Expression
Among TLR3-mediated macrophage activation, MAPK and NF-
κB signals are required for cytokine production including IL-33
(Li et al., 2017). To determine how PKCδ regulates cytokine
production, we examined the effect of PKCδ on the activity of
MAPK and NF-κB signaling pathways. As shown in Figure 5A,
PKCδ had no significant effect on the phosphorylation of
JNK, ERK, and p38 MAPK. However, in response to poly(I:C)
treatment, the phosphorylation of p65 and degradation of
IκBα were increased in PKCδ deficient BMDMs (Figures 5B–D;
Straughn et al., 2019). In addition, the expression of A20
was attenuated in PKCδ deficient BMDMs (Figures 5B,E).
To further confirm the role of PKCδ in NF-κB activation,
immunofluorescent microscopy was performed to define the
subcellular localization of the p65 in poly(I:C) stimulated-
BMDM. As shown in Figures 5F,G, the transport of p65 into
the nucleus was increased in PKCδ deficient macrophages. These
data indicated that PKCδ inhibits NF-κB signaling activity and
enhances the expression of A20.

PKCδ Directly Binds to and
Phosphorylates A20
According to that PKCδ deficiency is associated with decreased
expression of A20, we next determined whether PKCδ can
bind to and phosphorylate A20. As shown in Figure 6A, the
phosphorylation of A20 was increased in HEK293 cells that
were co-transfected with Flag-PKCδ and Myc-A20. Meanwhile,
rottlerin was used to inhibit the endogenous PKCδ activation in
the poly(I:C) stimulated THP1 cells and the A20 phosphorylation
was detected. We found that both 2.5 µm and 5 µm
concentrations of rottlerin could inhibit the A20 phosphorylation
(Figure 6B). In addition, PKCδ directly bound to A20 based
on immunoprecipitation assay (Figure 6C). As shown in
Figures 6D,E, A20 was divided into three region (A20-1 1-
383aa, A20-2 384-790aa, A20-3 258-491aa) and only A20-2
region was bound with PKCδ, suggesting that the 492-790aa
region of A20 bound to PKCδ. Additionally, we carried out
immunoprecipitation experiments by using anti-PKCδ and anti-
A20 antibodies, the endogenous PKCδ directly bound to A20
in both Raw264.7 cells (Figure 6F) and BMDMs (Figure 6G)
with no effect of poly(I:C). Therefore, these results suggested that
PKCδ directly binds to and phosphorylates A20.

DISCUSSION

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal
interstitial lung disease for which current therapies have limited
efficacy (Dempsey, 2006). It is imperative to improve our
understanding of IPF development for the invention of effective
treatments. Although PKCδ has been reported to be involved
in the progression of pulmonary fibrosis, the role of PKCδ

in IPF is still under controversy. Here, we found that the
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FIGURE 4 | PKCδ attenuates cytokine production in macrophages. (A) The BMDMs from PKCδ+/+ mice were stimulated by addition of 100 µg/ml poly(I:C) for 0,
0.5, 1.0,1.5, and 2 h. Cell lysate samples were collected to detect the phosphorylation level of PKCδ. BMDMs of PKCδ+/+ mice and PKCδ−/− mice were stimulated
by 100 µg/ml poly (I:C) for 0, 4, 8, and 12 h. After cell lysis, RNA samples were used to detect the expression levels of mRNA for IL1-β (B), IL-6 (C), TNF-α (D), and
IL-33 (E). (F) Mature IL-33 (mIL-33) protein expression was detected by WB in the lysates of poly(I:C) stimulated BMDM, as described in (E). (F) The statistical results
of mIL-33 were analyzed by ImageJ software. The Raw264.7 cells were pretreated by rottlerin (4 µm) or DMSO for 30 min and then stimulated by poly(I:C) for 0, 4, 8,
and 12 h. After cell lysis, RNA samples were used to detect the levels of mRNA for IL-1β (H), IL-6 (I), TNF-α (J), and IL-33 (K). *p < 0.05 **p < 0.01, ***p < 0.001.

PKCδ phosphorylation was significantly increased in lung tissue
of patients with pulmonary fibrosis and the PKCδ deficiency
enhanced BLM-induced inflammation and pulmonary fibrosis,
suggesting that PKCδ plays a protective role in IPF. In addition,
we identified that PKCδ could bind to and phosphorylate
A20, which suggested that PKCδ may inhibit NF-κB signal via
promoting the phosphorylation and stability of A20. Our findings
revealed that PKCδ reduces IPF development by attenuating
NF-κB signaling.

In this study, we found that PKCδ deficient mice displayed
severe inflammation and pulmonary fibrosis in BLM-induced
pulmonary fibrosis model, which was controversial in the field.
PKCδ has been reported to enhance the expression of fibronectin,
collagen, and α-SMA in fibroblasts, indirectly suggesting that
PKCδ promotes IPF (Kucich et al., 2000; Jimenez et al., 2001;

Nakanishi et al., 2015). However, most these studies used
PKCδ inhibitor rottlerin to inhibit the activity of PKCδ, which
might cause some non-specific inhibitory effects, such as on
PKCα and PKCβ (Gschwendt et al., 1994; Jimenez et al.,
2001; Nakanishi et al., 2015). In addition, PKCδ deficient
mice protect against asbestos-induced pulmonary fibrosis via
promoting proinflammatory and profibrotic cytokine expression
(Shukla et al., 2007). The inconsistent results from PKCδ deficient
mice may be caused by different stimulant conditions and
mice strains. In our study, PKCδ deficient mice were used to
investigate the role of PKCδ in pulmonary fibrosis in BLM-
induced pulmonary fibrosis mouse model. Even though we used
BLM-insensitive Balb/c background mice, PKCδ deficiency still
obviously exacerbated inflammation and fibrosis, suggesting that
PKCδ plays a negative role in the pathological process of IPF.
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FIGURE 5 | PKCδ deficiency enhances phosphorylation of p65 and expression of A20. (A) BMDMs from PKCδ+/+ mice and PKCδ−/− mice were stimulated by
addition of 100 µg/ml poly(I:C) for 0, 0.5, 1.0, 1.5, and 2 h, cells were lysed and used to detect the phosphorylation of MAPKs, including the ERK, JNK, and p38
MAPK. (B) Phosphorylation of p65, degradation of IκBα, and A20 expression were measured. The quantitative assay of p-p65 (C), IκBα (D), and A20 (E) were
performed by ImageJ software. (F) Immunofluorescent staining was performed to detect the subceullar localization of p65 in the PKCδ+/+ and PKCδ−/− BMDMs
after poly(I:C) stimulation for 2 h. (G) The statistical results of the fluorescence ratio between the nucleus and the cytoplasm in BMDMs was analyzed by LAS AF Lite
software. *p < 0.05 **p < 0.01, ***p < 0.001.

Based on our results, PKCδ is an inhibitory kinase in macrophage
activation and BLM-induced pulmonary fibrosis.

Macrophages, as a central contributor to pulmonary fibrosis,
have many effects on regulating fibrotic response (Desai et al.,
2018). However, the role of PKCδ in macrophage activation
is unknown. In this study, PKCδ deficient macrophages
generated more inflammatory cytokines, which was associated
with enhanced pulmonary fibrosis, suggesting that PKCδ may
inhibit pulmonary fibrosis through attenuation of inflammatory

cytokine production. Among the various proinflammatory
cytokines we detected, IL-33 is an important enhancer of
the inflammatory response that could be induced in active
macrophages. IL-33 plays critical roles in metabolic homeostasis,
infection, inflammation, cancer and central nervous system
diseases (Liew et al., 2016). The IL-33-mediated signal pathway
is also required for pulmonary diseases (Xu et al., 2016;
Gabryelska et al., 2019). In BLM-induced pulmonary fibrosis
model, ST2 deficiency, anti–IL-33 antibody treatment, or

Frontiers in Physiology | www.frontiersin.org 9 April 2020 | Volume 11 | Article 367

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00367 April 20, 2020 Time: 17:29 # 10

Wang et al. PKCδ Inhibiting Pulmonary Fibrosis and Inflammation

FIGURE 6 | PKCδ directly binds and phosphorylates A20. (A) 293T cells were transfected with 0, 0.5, 1, 2 µg pcDNA3.1-Flag-PKCδ respectively and 2 µg
pcDNA3.1-Myc-A20. Forty eight after transfection, the expression of Myc-A20, Flag-PKCδ, and the phosphorylation of A20 was detected by WB. (B) THP1 cells
were pretreated by 2.5 or 5 µm rottlerin for 30 min and then stimulated by poly(I:C) for 2 h. The endogenous A20 phosphorylation was detected by WB. (C) Co-IPs
were performed to detect the binding interaction between human PKCδ and A20 in 293T cells by using anti-Flag antibody to immune-precipitate cell lysate. (D) The
schematic diagram of full length A20 and three truncated regions. (E) Co-IPs were performed to detect the region that human PKCδ binds to A20. (F) Raw264.7
cells were treated with poly(I:C) or PBS for 2 h. Cell lysate was immunoprecipitated with anti-PKCδ antibody, co-IP was performed to detect the interaction of
endogenous PKCδ and A20. (G) BMDM cells were also treated with poly(I:C) or PBS for 2 h. And cell lysate was immunoprecipitated with anti-PKCδ antibody, co-IP
was performed to detect the interaction of endogenous PKCδ and A20. The “*” represent the specific bands corresponding to the target proteins.

alveolar macrophage depletion attenuated BLM-induced lung
inflammation and fibrosis. Inversely, exogenous IL-33 or
adoptive transfer of ILC2s enhanced BLM-mediated pulmonary
fibrosis (Li et al., 2014). Therefore, IL-33 is a novel profibrogenic
factor that promotes the initiation and progression of BLM-
induced IPF by recruiting inflammatory cells and enhancing
profibrogenic cytokine production in a macrophage-dependent
manner (Li et al., 2014). The effect of PKCδ on regulating
cytokine expression in macrophage is still controversial based
on data from different groups. PKCδ inhibits IFN-γ-stimulated

IL-6 expression in BMDMs (Anita Schwegmann et al., 2007)
while promotes IL-1β and IL-6 expression in trehalose 6,6-
dibehenate (TDB)-induced macrophages (Duan et al., 2018). Our
results indicated that PKCδ inhibits poly(I:C)-triggered cytokines
included IL-33 production in macrophages. Therefore, the effect
of PKCδ on inflammatory cytokine production should be further
investigated by using more stimulants and more inflammatory
signal pathways should be detected.

Several inflammatory signals are involved in the regulation
of proinflammatory cytokine expression (Polumuri et al., 2012).
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In macrophages, the NF-κB signal is involved in the pathogen-
associated molecular patterns (Theoharides et al., 2015), while
mitogen-activated protein kinase (MAPK) signaling is associated
with RSV (Qi et al., 2017). In this study, we demonstrated
that PKCδ inhibits the activity of NF-κB but not the MAPK
pathway, which reduces the cytokine expression. Several groups
found that PKCδ can regulate on NF-κB signal pathways
(Onose et al., 2006; Bijli et al., 2008; Minhajuddin et al.,
2009). For instance, PKCδ promotes thrombin-induced NF-κB
activation by phosphorylation of protein-tyrosine kinase Syk
in endothelial cells (Bijli et al., 2008). Activated PKCδ leads
to activation of the IκBβ kinase that, in turn, phosphorylates
IκBα and triggers NF-κB activation (Rahman et al., 2002).
In this study, we found that PKCδ inhibited TLR3-mediated
NF-κB activation in macrophage. As a serine threonine kinase,
PKCδ regulates gene expression by phosphorylating other various
substrate proteins in both the cytoplasm and the nucleus (Brodie
and Blumberg, 2003). In addition to NF-κB, several other
transcription factors have also been regulated by PKCδ, such
as Sp1, p300, Stat1, Stat3, among others (Novotny-Diermayr
et al., 2002; Yuan et al., 2002; Kim et al., 2007; Kwon et al.,
2007). In this context, phosphorylation of the Sp1 transcription
factor promotes cyclin D3 expression in cells treated with
the histone deacetylase apicidin (Kim et al., 2007). PKCδ also
phosphorylates the acetyl transferase p300 at Ser89 inhibiting
its activity in vitro and in vivo (Yuan et al., 2002). Moreover,
Stat1 is phosphorylated at Ser727 to allow the transcription of the
CIITA promoter (Kwon et al., 2007) and Stat-3 phosphorylation
enhances the interaction between Stat3 and IL-6 receptor subunit
glycoprotein (gp) 130 (Novotny-Diermayr et al., 2002). Due to
the fact that NF-κB is the most extensive signaling pathway
for inflammatory response, our research focused on activating
NF-κB in cytoplasm by enhancing A20 phosphorylation which
is regulated by poly(I:C) stimulation. We firstly identified that
A20 was a new substrate of PKCδ which could be bound- and
phosphorylated- by PKCδ. Since A20 is an effective inhibitor
of the NF-κB signaling pathway, phosphorylation of A20
enhances its stability and inhibitory activity, thereby reducing
the activation of NF-κB pathway (Hutti et al., 2007). These
results indicated that PKCδ plays a different role in the NF-
κB pathway, which may depend on cell types and different
stimulants. In TLR3-mediated macrophage activation, PKCδ is
a negative feedback regulator to inhibit NF-κB pathway and
balance the inflammatory response. Interestingly, A20 is not only
an inhibitor of NF-κB but also its target gene, the temporal
relationship between the stability of PKCδ enhanced A20 protein
and the down-regulation of A20 expression by NF-κB pathway
needs further investigation.

NF-κB activity is tightly controlled by different signals,
one of which is an important regulatory zinc finger (de)
ubiquitinating enzyme A20, which can be induced by tumor
necrosis factor receptor (TNFR) and Toll-like receptor (TLR)
pathways. Generally, A20 serves as a (de)ubiquitinating enzyme
to deactivate the NF-κB signal pathway (Shembade et al., 2010;
Shembade and Harhaj, 2012; Das et al., 2018). The A20 activity
can be regulated by phosphorylation on several sites. The
phosphorylation of A20 at Ser381 by IκB kinaseβ enhances

downregulation of pro-inflammatory signaling (Hutti et al.,
2007). Except for Ser381, Ser480, Ser565, and Thr625 are also
important for A20 activity, alanine substitution of all four
phosphorylated residues or of Ser381 alone attenuate cleavage
of K63-linked tetraubiquitin (Wertz et al., 2015). Here, we
detected that PKCδ could bind to A20 and also phosphorylate
it at Ser381 that may enhance its stability and activity. Several
inflammatory and autoimmune diseases are correlated with the
increased expression of A20, such as polyarthritis, inflammatory
bowel disease, cystic fibrosis, and chronic inflammatory lung
disease (Kang et al., 2009; Catrysse et al., 2014; Bannon et al.,
2015; Momtazi et al., 2019). Therefore, in this study, not
only did we find that A20 is a new substrate that is bound
to- and phosphorylated by PKCδ, but also confirmed that
excessive expression of A20 inhibits pulmonary inflammation
and finally reduces IPF.

Collectively, our study defined an important role for PKCδ

in BLM-induced pulmonary fibrosis and inflammation. We
demonstrated that PKCδ inhibits the activation of the NF-κB
signal pathway by binding and phosphorylating A20, which in
turn reduces the expression of IL-33 and alleviates IPF, suggesting
that PKCδ is a potential drug target for treating IPF.
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