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Primary immunization of humans with smallpox vaccine (live vaccinia virus (VACV)) consistently elicits
antibody responses to six VACV virion membrane proteins, including A13. However, whether anti-A13
antibody contributes to immune protection against orthopoxviruses was unknown. Here, we isolated a
murine monoclonal antibody (mAb) against A13 from a mouse that had been infected with VACV. The anti-
A13 mAb bound to recombinant A13 protein with an affinity of 3.4 nM and neutralized VACV mature virions.
Passive immunization of mice with the anti-A13 mAb protected against intranasal VACV infection. The
epitope of the anti-A13 mAb was mapped to a 10-amino acid sequence conserved in all orthopoxviruses,
including viriola virus and monkeypox virus, suggesting that anti-A13 antibodies elicited by smallpox vaccine
might contribute to immune protection against orthopoxviruses. In addition, our data demonstrates that anti-
A13 mAbs are effective for treating orthopoxvirus infection.
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Introduction

Smallpox, once a deadly infectious disease afflicting millions of
people, was officially eradicated more than 30 years ago through a
global immunization campaignwith live vaccinia virus (VACV). Routine
smallpox vaccination has since stopped, as the vaccine carries risk for a
significant portion of the population (Fulginiti et al., 2003), including
pregnant women and immunocompromised individuals. The current
population largely lacks protective immunity to smallpox, which is now
considered to be a potential bioterrorism agent, and to monkeypox,
which is still endemic in parts of Africa. Monkeypox virus causes a
smallpox-like disease in humanswith approximately 10%mortality rate
(Parker et al., 2007). It was accidentally imported to the U.S. in 2003,
causing a brief outbreak in the Midwest. Currently, the only licensed
therapeutics to treat infection by an orthopoxvirus is Vaccinia Immune
Globulin (VIG) (Hopkins and Lane, 2004), a blood product derived from
people immunized with smallpox vaccine. VIG contains neutralizing
antibodies against VACV and is used to treat complications of VACV
vaccination. However, the exact composition of VIG is not well defined
and its supply depends on the availability of people vaccinated with
smallpox vaccine, so there has been considerable interest in developing
well-defined immunotherapies for treating orthopoxvirius infection.

VACV, the prototypical orthopoxvirus, produces two types of
infectious virions that are biologically and antigenically different
(Condit et al., 2006; Moss, 2007; Smith et al., 2002). The majority of
the virions produced is intracellular mature virions (MVs), which
remain inside the cell until cell lysis. MVs contain an envelope with
more than 20 envelope proteins. A fraction of MVs gain additional
membranes inside the cells and eventually exit the cells as the
extracellular enveloped viruses (EVs) (Smith et al., 2002). EV contains
an additional envelope with at least six envelope proteins. Antibodies
against both MV and EV are required for optimal immune protection
against orthopoxvirus. Among the EV proteins, B5 is the major target of
neutralization antibodies (Bell et al., 2004; Benhnia et al., 2009; Putz
et al., 2006), while A33 is the target of protective antibody (Galmiche
et al., 1999). Depletion of ant-B5 antibodies from sera of vaccinated
individuals greatly reduced in vitro neutralization of EVs (Bell et al.,
2004; Putz et al., 2006). Among the MV envelop proteins, A27
(Rodriguez et al., 1985), L1 (Ichihashi and Oie, 1996; Wolffe et al.,
1995),D8 (Hsiao et al., 1999),H3 (Davies et al., 2005), A28 (Nelson et al.,
2008) and A17 (Wallengren et al., 2001) are known to be the targets
of neutralizing antibodies. However, no single protein has been found
to be the dominant MV-neutralizing target, as depletion of individual
or a combination of the major MV-neutralizing antibodies from sera of
vaccinated individuals did not significantly reduce neutralization of
MV (Aldaz-Carroll et al., 2005; Benhnia et al., 2008; He et al., 2007).

Primary VACV immunization in humans consistently elicits anti-
body response to at least 12 antigens (Davies et al., 2007), including
membrane proteins on MV (A13, A17, D8 and H3) and EV (B5 and
A33). However, it was unknown whether anti-A13 antibodies play
any role in immune protection against orthopoxvirus. In the current
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study, we isolated an anti-A13 monoclonal antibody (mAb) from a
mouse that had been infected with VACV. The characterization of the
anti-A13 mAb shows that anti-A13 antibodies can contribute to
immune protection against orthopoxviruses and that anti-A13 mAbs
are effective for treating orthopoxvirus infection.

Results

Identification and characterization of an anti-A13 mAb

Similar to what we reported recently (Meng et al., 2011), we
developed anti-VACV mAbs from a BALB/c mouse that had been
infected with WR strain of VACV. Among the mAbs, one (clone name
11F7) immunoprecipitated a 12-kda protein from HeLa cells that had
been infected with VACV (Fig. 1A). The 11F7 mAb also recognized the
12-kda protein in aWestern blot of VACV-infected HeLa cells (Fig. 1B).
Mass spectrometry finger-printing analysis of the 12-kDa protein
matched two peptides with that of VACV A13 protein (30% sequence
coverage, data not shown). This identification was confirmed by an
enzyme-linked immunosorbent assay (ELISA) in which 11F7 specif-
ically recognized recombinant A13 protein expressed in E. coli.
(Fig. 1C). The isotype of 11F7 was determined to be IgG2a (data not
shown). A13 has a theoretical molecular mass of 8-kda, but it was
previously shown to migrate as a 12-kda protein on SDS-PAGE (Unger
and Traktman, 2004). It is phosphorylated at a serine residue, thus
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Fig. 1. Identification and characterization of an anti-A13 mAb 11F7. A). HeLa cells were infe
-cysteine from 8 to 16 hpi. The cells were lyzed and immunoprecipitated with either the cu
proteins were analyzed by SDS-PAGE, and the autoradiograph is shown. B). Proteins from un
using the culture supernatant from 11F7. The same membranes were also blotted with anti-
or MBP fused with VACV A13 were used to coat ELISA plates, and ELISA were performed wit
D). BHK cells grown on cover-slips were infected with VACV WR at a MOI of 0.5 PFU/cell fo
antibody was stained with a Cy3-conjugated goat anti-mouse secondary antibody (red), an
explaining the faint band that migrated slightly above the 12-kda
band in Fig. 1A. 11F7 stained viral factories and virion-size particles in
immunofluorescence analysis of infected cells (Fig. 1C), consistent
with A13 being a MV membrane protein.
Anti-A13 11F7 neutralizes VACV MV

Since A13 is a dominant antibody target in smallpox vaccine (Davies
et al., 2007), we were interested in finding out whether anti-A13
antibody contributes to protection against orthopoxviruses. We thus
tested the ability of 11F7 to neutralize VACVMVwith a plaque reduction
assay. Purified VACVMVs were incubated in the presence or absence of
the antibody for one hour and then inoculated to a cell monolayer. The
inoculum was removed after one hour, and the number of plaques that
appeared after 2 dayswas enumerated. To facilitate plaque counting, the
amount of viruses that were initially used for inoculation were just
enough toyield on average55plaques perwell in a6-well plate (Fig. 2A).
Under this condition, 11F7, at a concentration from 4 to 100 μg/ml,
reduced the plaque number by approximately 30-40%, similar to a
murine monoclonal antibody against H3 (#41, IgG2a) (McCausland
et al., 2010). Complement has been previously reported to enhance the
neutralization of MVs in vitro (Isaacs et al., 1992). Indeed, 11F7 together
with 2% rabbit complement reduced the plaque number by 90%, while
complement alone reduced the plaque number only by 20% (Fig. 2A).
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Fig. 2. Neutralization of VACV MV by 11F7. Sucrose-gradient purified VACV mature virions were incubated with the indicated amount of purified anti-A13 mAb 11F7, anti-H3 mAb
#41, or anti-WR148mAb HE7 in the presence (+) or absence (−) of rabbit complement for 1 h at 4 °C. The mixture was then added to monolayers of BS-C-1 cells, and the inoculum
was removed after one hour. The number of plaques that appeared after 2 days was enumerated. The amount of viruses used for inoculation in (B) was three times of that in (A). The
average number of plaques from untreated inoculum is 55 for (A) and 184 for (B). The number of plaques obtained under the indicated condition as the percentage to the number of
plaques from untreated inoculums is shown. The average and standard deviation are from three independent inoculums.
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To seewhether a greater plaque reduction effect could be observed
with a larger inoculum, we repeated the neutralization experiment by
tripling the amount of input viruses (Fig. 2B). In the absence of any
antibodies, the inoculum yielded on average 184 plaques per well in a
6-well plate. In the presence of an increasing concentration of 11F7
(from 0.03 to 4 μg/ml), there was a corresponding increase in % plaque
reduction (from ~30% to ~70%). In contrast, a murine anti-WR148
mAb (HE7, IgG2a) (Meng et al., 2011) did not significantly reduce the
plaque number. Complement (2%) alone or together with anti-WR148
reduced the plaque number by 60–70%, while complement and 11F7
reduced the plaque number by more than 90%. Comparing the two
neutralization experiments, a greater plaque reduction by 11F7 was
observed when a larger inoculum was used. This may due to that a
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Fig. 3. Protection of mice from intranasal VACV infection by 11F7. (A and B). Groups of 5 BALB
antibodies (anti-A10, anti-A13 11F7, and anti-H3 #41) on day−1 and challenged with 1×1
with SEM (A) and survivals (B) of each group are shown. (C and D). The experiment was d
small amount of input virus was somehow inaccessible for neutral-
ization by antibodies and thus became a more significant background
when the inoculum was smaller.

Anti-A13 11F7 protects mice against VACV infection

Next, the efficacy of 11F7 in protection against orthopoxvirus
infection was tested with a mouse intranasal (i.n.) infection model
using VACV WR strain. Groups of five BALB/c mice were given by the
intraperitoneal (i.p.) route either purified antibodies or phosphate-
buffered saline (PBS) and challenged subsequently with 1×LD50 of
VACV WR by the i.n. route. The body weight and survival of the mice
were monitored for at least 15 days after the challenge.
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/c mice were given by the intraperitoneal route with either PBS or 2 mg of the indicated
04 PFU of VACVWR by the intranasal route on day 0. The average body-weight changes
one as in (A and B) except with different antibodies.
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Fig. 4. Identification of epitope for 11F7. A). E. coli strains were either not induced (−)
or induced with IPTG (+) to express fusion of MBP with the indicated A13 fragments.
Proteins from the whole cell lysates were resolved by SDS-PAGE and analyzed by either
Coomassie staining or by Western blot with 11F7. B). The multiple sequence alignment
of A13 orthologues from vaccinia virus (VACV), monkeypox virus (MPXV) and variola
virus (VARV). The box indicates the identified 11F7 epitope.
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In the first experiment (Figs. 3A and B), the efficacy of 11F7 was
compared to anti-H3 antibody #41 and a murine anti-A10 antibody
9C2 (IgG2a). 9C2 does not neutralize VACV by plaque reduction assay
(data not shown), so it was intended as a negative control. After
challenged with VACV WR, all mice lost significant body weight, but
mice that received either 11F7 or anti-H3 #41 lost less weight on
average than mice that received either PBS or anti-A10 antibody
(Fig. 3A). The difference in average body weight loss reached
statistical significance (student t test, pb0.05) for those between
11F7-treated group and PBS-treated group after 10 days post
infection. In addition, more mice that received 11F7 (80%) or anti-
H3 (80%) survived the challenge than mice that received anti-A10
(20%) or PBS (40%).

In the second experiment (Figs. 3C and D), the efficacy of 11F7 was
tested in comparison to and in combination with an EV-neutralizing
murine anti-B5 antibody B126 (IgG2a) (Benhnia et al., 2009), which
was previously shown to provide excellent in vivo protection against
VACV WR challenge. Again, mice treated with 11F7 lost on average
less body weight after WR challenge than mice mock-treated with
PBS, and the difference in this experiment was statistically significant
from day 5 post challenge. 80% of 11F7-treated mice survived the
challenge in comparison to 20% survival in the mock-treated group.
The survival rate of 11F7-treated mice was statistically better than
that of mock-treated mice, when the survival data from both
experiments are analyzed together to increase the group size to 10
(Log-rank test, P=0.03). Mice treated with anti-B5 antibody, either
by itself or in combination with 11F7, did not lose significant body
weight and all survived. Mice treated with the combination of ant-B5
and anti-A13 antibodies gained more weight over the time than mice
treated with anti-B5 only, and the difference is statistically significant
after 11 days post challenge.

Mapping the epitope of 11F7

To find out whether the epitope of 11F7 is conserved in
orthopoxviruses, we mapped the epitope of 11F7 by using fragments
of A13 proteins fused with maltose binding protein (MBP). The MBP-
A13 fusion proteins were expressed in E. coli, and their bindings to
11F7 were evaluated by Western blot (Fig. 4A). Among the whole
lysate of bacterial cells, 11F7 specially recognized A13 residues from
59 to 69 fused with MBP (MBP-A13aa-59–69) and all A13-MBP fusion
proteins that contain this 10 amino acids. The identical 10 amino acids
are present in A13 orthologues of variola virus and monkeypox virus
(Fig. 4B).

To assess the affinity of 11F7 to A13, we purified recombinant A13
proteins from E. coli and studied the binding of the recombinant
proteins to 11F7 with Surface Plasmon Resonance (SPR) (Fig. 5). 11F7
was immobilized on a BIAcore sensor chip and its binding to MBP,
MBP fused with the ectodomain of A13 (residue 23–70), or MBP fused
with A13 residue 59–69, was monitored in real time. As expected,
11F7 did not bind to MBP (data not shown). It binds to MBP-A13
(aa23-70) and MBP-A13(aa59–69) with an affinity of 3.4 nM and
0.2 μM, respectively. The reduced affinity to MBP-A13(aa59–69) is
probably due to steric hindrance to antibody binding caused by the
bulky MBP at the N-terminus.

Discussion

In this study, we identified VACV A13 as a neutralization target for
VACV MVs. A13 was recently identified as one of the immunodomi-
nant targets of antibody response to smallpox vaccine (Davies et al.,
2007), but it was previously unknown whether anti-A13 antibodies
could contributes to immune protection against orthopoxviruses. In
fact, the only study that tested neutralization potency of anti-A13
antibodies showed that a particular polyclonal anti-A13 antibody did
not neutralize MV (Unger and Traktman, 2004). We showed here,
however, that an anti-A13 mAb 11F7 neutralized MV with similar
potency as a proven neutralization antibody for VACV, an anti-H3
mAb. Furthermore, we revealed a neutralization epitope on A13 by
mapping the epitope of 11F7. The minimal epitope that was found to
bind 11F7 in Western blot is a 10-amino acid sequence located at
the C-terminus of A13. A13 is a small membrane protein with only
70 amino acids. The transmembrane domain of A13 is located at the
N-terminus with the rest of A13 pointing outside the virion (Salmons
et al., 1997). The epitope at the C-terminal end of A13 probably
extends furthest away from virion membrane and thus is most
accessible for antibody binding. This may be one of the reasons why
11F7 neutralizes VACV while the previous polyclonal anti-A13
antibody does not. Most importantly, the neutralization epitope is
conserved entirely in A13 orthologues of variola virus andmonkeypox
virus, suggesting that anti-A13 antibodies elicited by smallpox
vaccination might contribute to immune protection against smallpox.
The identification of A13 as the neutralizing target and mapping the
neutralizing epitope provide knowledge for the development of next-
generation subunit vaccine for smallpox.

Among all the known targets for MV neutralization (D8, H3, A27,
L1, A28 and A17), A13 is one of the very few that are not involved in
binding or entry/fusion of MV with the host cells. D8, H3 and A27
interact with cell surface molecules and mediate MV binding to the
cells. A28 is part of the multi-protein entry/fusion complex (EFC) of
VACV, while L1 associates with EFC. Both A28 and L1 are essential for
VACV entry/fusion with the host cells. Antibodies to these proteins
neutralize MV presumably by disrupting the functions of these
proteins in MV binding or entry/fusion with the cells. In contrast,
A13 is not known to interact with any cell surface molecule or the EFC
but plays an essential role in virion morphogenesis (Unger and
Traktman, 2004). A13 is an abundant virion membrane protein
(Chung et al., 2006). One possible mechanism by which anti-A13
antibodies neutralizes VACV is that the binding of the antibodies with
A13 on virion surface creates steric hindrance to prevent virions from
binding and fusing with cell membrane. Another possible mechanism
is that anti-A13 antibodies aggregate virions by crosslinking A13
on different virions. Similar to A13, A17 also plays a role in virion
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morphogenesis (Rodriguez et al., 1995), although it was also
suggested to be involved in fusion of VACV with the cells (Kochan
et al., 2008). The finding of A13 as the neutralization target suggests
that additional VACV virion membrane proteins that are not
functional in VACV entry/fusion pathway may also serve as neutral-
ization targets.

We showed that passive administration of the anti-A13 mAb 11F7
in mice significantly reduced the morbidity (measured by body
weight loss) and mortality associated with i.n. infection by 1×LD50

(104 PFU) of VACV WR. This level of protection is similar to what was
reported for other MV-neutralizing antibodies. The i.n. challenge
represented amore stringent test than the i.p. challenge for evaluating
in vivo efficacy of VACV-neutralizing antibodies (Sakhatskyy et al.,
2006). Significant protection from the i.n. challenge byMV-neutralizing
antibodies is usually observed only when the challenge dose is rather
modest, no greater than a few LD50. For example, passive transfer
of polyclonal MV-neutralizing antibodies protected mice against
challenge of 3×103 PFU (b1×LD50) of VACV WR but failed to do
the same when the challenge dose was 5×104 PFU (N1×LD50) (Law
et al., 2005). Anti-L1 appears to be slightly more efficacious than other
MV-neutralizing antibodies, providing significant protection against
challenge with 2 to 3×LD50 of VACVWR (Fogg et al., 2008; Lustig et al.,
2004). In contrast, anti-A27 polyclonal antibodies failed to protect
mice from challenge with 2×LD50 of VACV WR, even though anti-A27
was more potent than anti-L1 at neutralizing VACV in vitro (Fogg et al.,
2008). Anti-A28 polyclonal antibodies provided protection to mice
that were challenged with 1×104 PFU (~0.7×LD50) of VACV WR
(Nelson et al., 2008), similar to what we observed for 11F7. Anti-
H3 polyclonal antibodies could protect mice from challenge with
1×LD50 dose of VACV WR but could not reproducibly protect against
challenge with 3×LD50 dose of VACV WR (Davies et al., 2005). In
our direct comparison between 11F7 and an anti-H3 mAb, we also
found that these two mAbs are similar in their in vivo efficacy. In
contrast, an EV-neutralizing anti-B5 mAb B126 was much more
efficacious than 11F7 at protecting mice from VACV challenge. It was
shown previously that, in addition to being able to neutralize EV, B126
could bind to VACV-infected cells and direct complement lysis of
infected cells (Benhnia et al., 2009). These activities together maymake
B126 much more effective than other VACV-neutralizing antibodies at
providing in vivo protection. The combination of 11F7 with the anti-B5
mAb provided a slightly better protection than the anti-B5 mAb
alone, consistent with previous studies that showed EV- and MV-
neutralization antibodies together provided the best protection against
VACV challenge (Lustig et al., 2005).

VIG is currently the only licensed treatment for side effects
associated with smallpox vaccination (Hopkins and Lane, 2004).
Because the composition of VIG is ill-defined and its supply is uncertain,
there is a need for highly specific monoclonal antibodies for replacing
VIG. As illustrated by the fact that 11F7 neutralizesMVwhile polyclonal
anti-A13 antibodies do not, a defined set of monoclonal neutralization
antibodies should have a much higher efficacy than the polyclonal VIG
for treating smallpox vaccine complication and possibly even for
treating smallpox or human monkeypox. 11F7 binds to A13 with an
affinity of 3.4 nM, recognizes an epitope that is conserved in all
orthopoxviruses, and has similar in vivo efficacy as other MV-
neutralizing mAbs, suggesting that an anti-A13 mAb could be a useful
component of a mAb cocktail for replacing VIG.

Material and methods

Cells and viruses

BS-C-1 cells were maintained in minimum essential medium with
Earle's salts supplemented with 10% fetal bovine serum (FBS). BHK
and HeLa cells were maintained in Dulbecco's modified Eagle's
medium (DMEM) with 10% FBS. Wild-type (WT) WR viruses were
propagated on BS-C-1 cells.

Hybridoma generation and characterization

The generation and characterization of the hybridomas were
performed as described recently (Meng et al., 2011) except some
changes in the immunization protocol described here. A six-week old
BALB/c mouse was infected intranasally with 5×103 plaque-forming-
unit (PFU) ofWT VACVWR. Seven weeks after the infection, themouse
was injected intravenously with 7×107 PFU of UV-inactivated WR
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virus. Three days afterwards, the spleen of themousewas harvested for
hybridoma generation. Anti-H3mAb #41 (McCausland et al., 2010) and
anti-B5 mAb 126 (Benhnia et al., 2009) were described before.

Antibody production and purification

Hybridoma cells were cultured in 175-mm flasks with hybridoma
serum-free medium (Invitrogen) supplemented with OPI Media
Supplement (Sigma-Aldrich, #O5003). Monoclonal antibodies were
purified from the conditioned culture media with a HiTrap Protein
G-Sepharose column (GE Healthcare Life Sciences). The antibodies are
in PBS after going through a PD-10desalting column (GEHealthcare Life
Sciences). The concentration of the antibodies was calculated from
OD280 using the formula (concentration in mg/ml=1.43×OD280).

MV neutralization assay

WR viruses used in neutralization and in vivo protection assay
were purified successively through a sucrose cushion and a sucrose
gradient step, according to the standard protocol (Earl et al., 1998).
The viruses were mixed with PBS or purified antibodies for 1 h at 4 °C
(in a total volume of 1 ml). When complement is used in neutrali-
zation, baby rabbit complement (Cedarlane Laboratories) was added
to the mixtures at a final concentration of 2%. For each neutralization
condition, three independent mixtures were set up and inoculated
ontomonolayers of BS-C-1 cells in 6-well plate. After 1 h incubation at
37 °C, the inoculum was replaced with 2 ml DMEM supplemented
with 1% FBS and 0.5% (w/v) methylcellulose (Sigma-Aldrich,
#M0512). The plates were incubated for 2 days at 37 °C before
being processed for plaque counting.

Expression and purification of recombinant proteins

The plasmids for expressing the fusion of MBP and A13 were
constructed by PCR-amplifying the viral gene from WR DNA and
cloning the PCR fragment into a modified pET28b vector that encodes
maltose-binding protein (MBP) with an N-terminal 6-histidine tag
(Krumm et al., 2008). The expression of the fusion protein in E. coli
BL21 strain was induced with isopropyl-beta-D-thiogalactoside (IPTG;
Invitrogen). For Western blot analysis, the bacteria were lyzed via
sonication in SDS-PAGE sample buffer, and the clarified cell lysates
were directly used in Western blot analysis. For recombinant protein
purification, the bacteria were lysed via sonication in a buffer
containing lysozyme. Recombinant proteins were purified from
soluble fraction of the cell lysates through metal affinity chromatog-
raphy with Ni-nitrilotriacetic acid resin (Qiagen). The protein
concentrations were determined by Bradford protein assay (Biorad).

Surface Plasmon Resonance (SPR)

Purified 11F7 antibody was immobilized onto a BIAcore CM5
sensor chip through standard amino-coupling method as described
(Xiang and Moss, 1999). The chip was injected with purified
recombinant proteins at a flow rate of 20 μl/min and regenerated
with a half-min pulse with 10 mM glycine (pH 1.5). Affinity constants
were obtained by fitting the binding data to a 1:1 binding model with
the BIAEVALUATION software (BIACORE).

In vivo protection

Groups of five female BALB/c 5-week-old mice were given
intraperitoneal (i.p.) injection of 2 mg antibodies or PBS in equivalent
volume. One day later, the mice were anesthetized and infected
intranasally with 104 PFU of VACVWR in 20 μl PBS as described (Meng
et al., 2008). Individual mice were weighed each day, and mice lost
more than 30% original body weight were euthanized in accordance
with an established IACUC protocol. Changes of body weight were
analyzed with unpaired, two-tailed T-test with Pb0.05 considered
significant (Microsoft Excel). Survival curves significancewas calculated
using log-rank (Mantel-Cox) test of Kaplan-Meier curves (Graphpad
Prism).
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