
Journal of Minimally Invasive Surgery Vol. 26. No. 4, 2023 https://doi.org/10.7602/jmis.2023.26.4.167

Mastering data visualization with Python: practical tips 
for researchers

Soyul Han, Il-Youp Kwak

Department of Applied Statistics, Chung-Ang University, Seoul, Korea

REVIEW ARTICLE
pISSN 2234-778X • eISSN 2234-5248

J Minim Invasive Surg 2023;26(4):167-175

INTRODUCTION

This article will cover the following topics: (1) why data visualiza-

tion is important; (2) data visualization libraries in Python; and (3) 

method of drawing graphs using data visualization libraries.

WHY IS DATA VISUALIZATION 
IMPORTANT?

What is data visualization?
Data visualization refers to the graphical representation of ‘raw’ 

data and simple summary information. It is also useful for data 

cleaning, exploration of data structures, outlier detection, clus-

tering and pattern discovery, evaluation of modeling results, and 

presenting findings [1]. Owing to these benefits, effective visu-

alization aids researchers in understanding their data and con-

veying insights [2]. Additionally, graphics stimulate researchers 

to propose questions and ideas. However, interpreting graphics 

requires experience, and to prevent overinterpretation, statisti-

cal knowledge is necessary [1].

Data exploration
Through data visualization, complex datasets can be under-

stood more easily. Valuable insights that are difficult to grasp 

from raw data alone can be obtained. Visual representation 

facilitates the identification of patterns and correlations more ef-

Big data have revolutionized the way data are processed and used across all fields. In the 
past, research was primarily conducted with a focus on hypothesis confirmation using sample 
data. However, in the era of big data, this has shifted to gaining insights from the collected 
data. Visualizing vast amounts of data to derive insights is crucial. For instance, leveraging big 
data for visualization can help identify and predict characteristics and patterns related to 
various infectious diseases. When data are presented in a visual format, patterns within the 
data become clear, making it easier to comprehend and provide deeper insights. This study 
aimed to comprehensively discuss data visualization and the various techniques used in the 
process. It also sought to enable researchers to directly use Python programs for data 
visualization. By providing practical visualization exercises on GitHub, this study aimed to 
facilitate their application in research endeavors.

Keywords: Big data, Data visualization, Matplotlib, Seaborn, Python

© 2023 The Korean Society of Endo-
Laparoscopic & Robotic Surgery 
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License 
(http:// creativecommons.org/licenses/
by-nc/4.0/) which permits unrestricted 
non-commercial use, distribution, and 
reproduction in any medium, provided 
the original work is properly cited. 

Received	 August 21, 2023
Revised	 October 17, 2023
Accepted	 November 10, 2023

Corresponding author 
Il-Youp Kwak
Department of Applied Statistics, 
Chung-Ang University, 84 Heukseok-
ro, Dongjak-gu, Seoul 06974, Korea 
E-mail: ikwak2@cau.ac.kr
https://orcid.org/0000-0002-7117-7669

mailto:ikwak2@cau.ac.kr


Han and Kwak

https://doi.org/10.7602/jmis.2023.26.4.167168

fortlessly.

Identifying trends and anomalies
Data visualization aids in grasping trends, outliers, extreme 

values, and more. It is useful in identifying sudden increases or 

decreases in the data, possible performance improvements, 

and factors influencing specific outcomes.

Effective communication
Visualization is a powerful tool for conveying data to others. It 

allows complex concepts and results to be presented in a visu-

al and intuitive manner, enabling smooth communication. Data 

visualization promotes communication and collaboration among 

experts from various fields, facilitating informed decision-making 

based on information.

In summary, data visualization is an essential tool for obtain-

ing meaningful insights from data, ultimately leading to better 

outcomes.

DATA VISUALIZATION LIBRARIES IN 
PYTHON

Data visualization tools and techniques are essential for ana-

lyzing vast amounts of information and making data-driven 

decisions. Although there are several programming languages 

available for this purpose, the present study focuses only on 

data visualization libraries commonly used in Python. This pro-

gramming language provides rich libraries for data visualization, 

and we describe the Matplotlib and Seaborn libraries in this 

study. Using these libraries, we can generate various charts 

such as bar charts, histograms, and scatter plots.

Matplotlib
Matplotlib [3] is a graphic library for data visualization that has 

been well-established, undergoing almost 20 years of con-

tinuous development. It is the most popular data visualization 

library in Python and is used by scientists and researchers 

worldwide [4]. Matplotlib is a comprehensive package with all 

the modules and libraries included, and it offers great flexibility 

to precisely control the arrangement and visual appearance of 

objects within plots.

Seaborn
Seaborn is a Python data visualization library based on Mat-

plotlib and closely integrated with numpy and pandas data 

structures [5]. It is a specialized interface for creating statistical 

graphics. Seaborn provides simpler syntax and more appealing 

designs than Matplotlib. It automatically maps data values to vi-

sual attributes like color, size, and style, and internally computes 

statistical transformations [6].

METHOD OF DRAWING GRAPHS USING 
DATA VISUALIZATION LIBRARIES

In this study, we aimed to explain how to implement data visu-

alization using Python’s Matplotlib and Seaborn libraries. Practi-

cal code and data can be downloaded from GitHub for learning 

purposes (https://github.com/soyul5458/Python_data_visual-

ization). The practical exercises were conducted using Google 

Colab, which is free and can be accessed anytime, anywhere 

with a Gmail account, without the need to download any sepa-

rate program.

Matplotlib

Basic visualization

Using Matplotlib, various types of graphs can be easily drawn. 

The “pyplot” module is a sub-module of Matplotlib that provides 

a simple and user-friendly interface for generating different 

types of graphs, such as line plots, bar plots, histograms, and 

scatter plots. To use it conveniently, we import it with the alias 

“plt.”

Generally, the visualization process in Fig. 1 consists of three 

steps: (1) step 1: import the visualization library; (2) step 2: de-

cide which data to display on the x and y axes; and (3) step 3: 

enter the graph output function.

Fig. 1. Line graph representation using Matplotlib.

# Step 1. Importing the 
Matplotlib library 
import matplotlib.pyplot as plt 
 
# Step 2. Generating arbitrary x, 
y data 
x = [1, 2, 3] 
y = [1, 5, 10] 
 
# Step 3. Displaying the graph 
plt.plot(x, y);

Specifying options for creating figures

When creating graphs for data visualization, there are several 

options that can be used to effectively present the figures. For 

example, adding graph titles, x- and y-axis names, legends, 

and other options can help the reader to better understand the 

figures.



Mastering data visualization with Python: practical tips for researchers

https://doi.org/10.7602/jmis.2023.26.4.167 169

1) Title (Fig. 2)

Fig. 2. Setting the graph title.

# Drawing the graph. 
import numpy as np 
 
x = [1, 2, 3] 
y = [21, 25, 33] 
 
plt.plot(x, y) 
 
# Setting the graph title. 
plt.title("Line graph");

2) Axis labels (Fig. 3) 

Fig. 3. Setting names for the x and y axes.

# Setting names for the x and y 
axes. 
plt.xlabel("X-Axis") 
plt.ylabel("Y-Axis");

3) Legend (Fig. 4) 

The plt.legend() function is used to add a legend, and the 

label of the added legend is displayed with the name set in the 

label argument of the plot() function. The position of the legend 

can be set using the loc argument.

Fig. 4. Adding a legend.

# Adding a legend. 
plt.plot(x, y, label="Mean 

temperature (\u2103)") 

plt.legend(loc="lower right");

4) Line width (Fig. 5)

Fig. 5. Setting the line width.

# Adding a legend. 
plt.plot(x, y, label="Mean 
temperature (\u2103)") 
plt.legend(loc="lower right");

5) Line style (Fig. 6)

Four different styles listed in Table 1 can be used. Using the 

linestyle argument, different line styles can be displayed as 

shown in Fig. 6.

Fig. 6. The line graph displays four different line styles.

# Setting the four styles  
x1 = np.array(x) 
x2 = x1 + 2 
x3 = x1 + 5 
x4 = x1 + 10 
 
plt.plot(x1, y, linestyle="-", 
label="x1") 
plt.plot(x2, y, linestyle="--", 
label="x2") 
plt.plot(x3, y, linestyle="-.", 
label="x3") 
plt.plot(x4, y, linestyle=":", 
label="x4") 
plt.legend();

6) Marker (Fig. 7)

If you want to represent points, add the marker argument. 

The shape of the marker can be changed in various ways, and 

the types can be found in matplotlib.markers (https://matplotlib.

org/stable/api/markers_api.html). The size of the marker can 

also be set as desired.

Fig. 7. Setting the marker.

# Setting the square marker 
plt.plot(x, y, marker="s"); 
 
# Adjusting the marker size 
plt.plot(x, y, marker="o", 
linestyle=":", markersize=13);

7) Color (Fig. 8)

Graph color is added to the plot function using the color ar-

gument. It is possible to change to default colors using color 

abbreviations, and various colors can be selected from the 

Matplotlib gallery. Not only the line color but also the color of the 

marker and its edge can be changed.

In addition to the above, practical codes for resizing the 

graph, setting dpi, background color, axis ranges, axis ticks, 

grid, and saving the graph can be found in the matplotlib.ipynb 

Table 1. Line styles in Matplotlib

CharacterCharacter DescriptionDescription

- solid

-- dashed

-. dash-dot

: dotted



Han and Kwak

https://doi.org/10.7602/jmis.2023.26.4.167170

file on GitHub.

Fig. 8. Setting color.

# Keywords 
plt.plot(x, y, color="red"); 
 
# Abbreviations 
plt.plot(x, y, color="r");

Basic plotting with Matplotlib

1) Line plot (Fig. 9)

Line graphs are frequently used to represent trends over 

time.

Fig. 9. Line graph representation with Matplotlib.

# Data Preparation 
import seaborn as sns 
tips = sns.load_dataset("tips") 
 
# Data Confirm 
tips.head() 
 
# Line plot 
plt.plot(tips.total_bill);

2) Bar plot

Bar graphs are used to represent group differences. Each 

bar’s length corresponds to the respective value. Both vertical 

and horizontal bar graphs can be created. Additionally, patterns 

can be added to the bars and adjust their widths.

(1) Vertical bar graph (Fig. 10)

Fig. 10. Vertical bar graph representation with Matplotlib.

# Generating data 
year = [2010, 2012, 2014, 2016, 
2018, 2020, 2022] 
n_std = [40, 60,55, 75, 62, 
46,80] 
 
# Drawing bar plot 
plt.bar(year, n_std);

(2) Horizontal bar graph (Fig. 11)

Fig. 11. Horizontal bar graph representation with Matplotlib. 

# Horizontal Bar Graph : barh 
plt.barh(year, n_std, color = 'r') 
 
plt.ylabel("Year") 
plt.xlabel("Student numbers") 
plt.xlim(0, 100);

(3) Displaying different bar colors (Fig. 12)

Bars can be displayed in different colors based on categori-

cal variables, as demonstrated in the following example, where 

we will perform a practical code exercise to show colors cor-

responding to major categories.

Fig. 12. Displaying different bar colors based on categorical 
variables.

# Step 1. Creating Data for 
Practice 
df1 = pd.DataFrame({'Year': year, 
'Students' :n_std, 'Major' : 
['A','B','C','C','B','A','A']}) 
 
# Step 2. Extracting Data by 
Major 
sub1 = df1.loc[df1["Major"]=='A'] 
sub2 = df1.loc[df1["Major"]=='B'] 
sub3 = df1.loc[df1["Major"]=='C'] 
 
# Step 3. Displaying Different Bar 
Colors Based on the Major 
plt.bar(sub1.Year, sub1.Students, 
color = 'r', label="A") 
plt.bar(sub2.Year, sub2.Students, 
color = 'b', label="B") 
plt.bar(sub3.Year, sub3.Students, 
color = 'y', label="C") 
plt.legend(ncol=3, loc="upper 
center");

3) Box plot

Box plots are exploratory graphs that represent data distribu-

tions. They quickly show the range, median, and outliers of the 

dataset.

(1) Drawing a single box plot (Fig. 13)

Fig. 13. Visualization of a single box plot with Matplotlib.

# Load data 
iris = sns.load_dataset("iris") 
iris.head() 
 
# Drawing a single box plot 
plt.figure(figsize = (10, 5)) 
plt.boxplot(iris['sepal_length']);

(2) Drawing multiple box plots (Fig. 14)

Fig. 14. Visualization of multiplt box plot with Matplotlib.

# To draw multiple box plots like 
this, you need to create a list 
and pass it as an argument. 
plt.figure(figsize = (10, 5)) 
plt.boxplot([iris['sepal_
length'], iris['sepal_width'], 
           iris['petal_length'], 
iris['petal_width']]); # list

4) Histogram

Histograms graphically represent frequency distribution 



Mastering data visualization with Python: practical tips for researchers

https://doi.org/10.7602/jmis.2023.26.4.167 171

tables. The horizontal axis represents intervals, and the vertical 

axis represents frequencies. The hist() function can be used 

to create histograms that divide data values into equal inter-

vals called bins, and the size of bins affects the frequency and 

shape of the histogram.

(1) Basic histogram (Fig. 15)

Fig. 15. Visualization of histogram with Matplotlib.

# Loading 'titanic' dataset from 
seaborn 
import seaborn as sns 
titanic = sns.load_
dataset("titanic") 
 
# Histogram 
plt.hist(titanic.age);

(2) Adjusting the graph using various options (Fig. 16)

Fig. 16. Adjusting the histogram using various options.

# Adjusting the number of bins to 
15 
# Setting transparency, color, 
and edgecolor 
plt.hist(titanic.age, bins=15, 
alpha=0.5, color="steelblue", 
edgecolor="navy", 
histtype="bar");

5) Scatter plot (Fig. 17)

Scatter plots graphically represent the correlation between 

two variables on a coordinate plane using dots. Scatter plots 

can easily be drawn using the scatter() function. The markers 

can be changed to different shapes using the marker argument 

described above.

Fig. 17. Visualization of scatter plot with Matplotlib.

# Data Preparation 
import seaborn as sns 
tips = sns.load_dataset("tips") 
 
# Scatter plot 
plt.scatter(tips.total_bill, 
tips.tip) 
plt.xlabel('Total bill') 
plt.ylabel('Tip');

6) Pie chart

Pie charts are used to visually display the overall proportions 

of categorical data. They provide a convenient way to see the 

size and relative proportions of each section. The autopct argu-

ment in the pie() function specifies the format of the numbers 

displayed inside the sectors. The value %.2f displays numbers 

up to two decimal places. The percentage symbol can be in-

cluded by inputting %.2f%% consecutively. A legend can also 

be added using the legend() function.

(1) Data preparation (Fig. 18)

Fig. 18. Verification of data quantity.

import seaborn as sns 
titanic = sns.load_
dataset("titanic") 
 
titanic.head() 
 
total = titanic["sex"].value_
counts() 
total

(2) Drawing pie chart (Fig. 19)

Fig. 19. Visualization of pie chart with Matplotlib.

# labels: adding labels 
plt.pie(total,labels=total.
index);

(3) Displaying percentage (Fig. 20)

Fig. 20. Displaying percentages in a pie chart.

# Rounding the ratio to two 
decimal places and displaying as 
a percentage. 
 
plt.pie(total, labels=total.
index, autopct="%.2f%%");

Seaborn

Figure-level vs. axes-level function

Seaborn functions can be broadly categorized into ‘figure-

level’ and ‘axes-level’ functions. The three large boxes at the 

top in Fig. 21 (replot, displot, catplot) are figure-level functions, 

and the smaller boxes below are axes-level functions. Figure-

level functions create a Seaborn figure separately from Mat-

plotlib and perform plotting on that figure. Therefore, the layout 

can be changed using facetgrid (Seaborn’s figure). Axes-level 

functions, on the other hand, specify where to plot using the ax 



Han and Kwak

https://doi.org/10.7602/jmis.2023.26.4.167172

replot
(relational)

scatterplot

lineplot

displot
(distributions)

histplot

kdeplot

ecdfplot

histplot

catplot
(categorical)

stripplot

swarmplot

boxplot

violinplot

pointplot

barplot
Fig. 21. Seaborn library structure.

Table 2. Types of Seaborn graphs

NoNo TypeType NameName Figure-level functionFigure-level function Axes-level functionAxes-level function

1 Relational plot Scatter plot sns.relplot(kind=“scatter”) sns.scatterplot()

2 Line plot sns.relplot(kind=“line”) sns.lineplot()

3 Distribution plot Histogram plot sns.displot(kind=“hist”) sns.histplot()

4 Kernel density plot sns.displot(kind=“kde”) sns.kdeplot()

5 Cumulative distribution plot sns.displot(kind=“ecdf”) sns.ecdfplot()

6 Rug plot - sns.rugplot()

7 Distribution plot sns.distplot() -

8 Categorical scatter plot Strip plot sns.catplot(kind=“strip”) sns.stripplot()

9 Swarm plot sns.catplot(kind=“swarm”) sns.swarmplot()

10 Categorical distributiona plot Box plot sns.catplot(kind=“box”) sns.boxplot()

11 Violin plot sns.catplot(kind=“violin”) sns.violinplot()

12 Letter value plot sns.catplot(kind=“boxen”) sns.boxenplot()

13 Categorical estimate plots Point plot sns.catplot(kind=“point”) sns.pointplot()

14 Bar plot sns.catplot(kind=“bar”) sns.barplot()

15 Count plot sns.catplot(kind=“count”) sns.countplot()

16 Regression plot Regression line and scatter plot - sns.regplot()

17 Multiple regression plot sns.lmplot() -

18 Residual plot - sns.residplot()

19 Matrix plot Heatmap - sns.heatmap()

20 Dendrogram and Heatmap - sns.clustermap()

21 Multi-plot grids Grid settings sns.FacetGrid() -

22 Multivariable plot sns.pairplot() -

23 Multivariate grid settings sns.PairGrid() -

24 Bivariate plot sns.jointplot() -

25 Bivariate grid settings sns.JointGrid() -



Mastering data visualization with Python: practical tips for researchers

https://doi.org/10.7602/jmis.2023.26.4.167 173

parameter, and thus the layout can be changed using methods 

such as plt.figure(). Table 2 summarizes the various graphs 

available in the Seaborn library.

Data type determines visualization

Table 3 summarizes the statistical analysis and visualization 

methods based on variable types. Understanding variable types 

is crucial during the visualization process because different 

graphic methods are used depending on the type. Visualization 

guides based on variables are well-documented on the Python 

gallery page, so please refer to it (https://www.data-to-viz.com/).

Basic plotting with Seaborn

1) Relational plot: scatter plot (Table 2, No. 1)

Scatter plots represent graphs using points on the x and y 

axes. In other words, they show the relationship between two 

different continuous variables using dots. Both codes below are 

for outputting scatter plots.

· �sns.relplot(x, y, data, kind=“scatter”, hue, style, size, sizes)

· �sns.scatterplot(x, y, data, hue, style, size, sizes)

relplot is a higher-level function for scatter plots and line plots 

(Fig. 21). Therefore, both scatter plots and line graphs can be 

drawn using the replot() function. Note that the kind argument 

of replot() defaults to “scatter.” The functions’ features are sum-

marized below, and the functionality of each argument can be 

verified through practice code. When specifying hue, style, and 

size together, the complexity may increase, making it difficult to 

understand the relationships between variables. Please be cau-

tious when using them.

  - �hue: Specifies the column to distinguish features (distin-

guishes by color).

  - �style: Specifies the column to distinguish features (distin-

guishes by marker shape).

  - �size: Specifies the variable that sets the size of markers, 

applicable to both continuous and categorical variables.

  - �sizes: Specifies the minimum and maximum size of the 

markers.

(1) hue (Fig. 22)

Fig. 22. Utilization of the hue option with Seaborn.

# Loading the 'tips' Sample Data 
tips = sns.load_dataset("tips") 
 
# Using hue allows representing 
different colors for each group. 
sns.relplot(x="total_
bill", y="tip", data=tips, 
hue="smoker");

(2) style (Fig. 23)

Fig. 23. Utilization of the style option with Seaborn.

# Using style allows customizing 
the appearance of each group. 
sns.relplot(x="total_bill", 
y="tip", data=tips, hue="smoker", 
style="smoker");

(3) size (Fig. 24)

Fig. 24. Utilization of the size option with Seaborn.

# Adjusting the marker size 
sns.relplot(x="total_bill", 
y="tip", data=tips, size="size");

Table 3. Visualization by variable type

VariableVariable AnalysisAnalysis Recommended VisualizationRecommended Visualization

Single Variable Categorical Frequency analysis, Cross-tabulation Countplot

Continuous Descriptive statistics Histogram

Two Variables Continuous/Continuous Correlation analysis Scatter plot

Categorical/Categorical Chi-square test Heatmap

Categorical/Continuous Multivariate analysis Violin plot

 Strip plot

   Swarm plot



Han and Kwak

https://doi.org/10.7602/jmis.2023.26.4.167174

(4) sizes (Fig. 25) 

Fig. 25. Utilization of the sizes option with Seaborn.

# Specifying the range for marker 
size 
# In such cases, normalize the 
data within that range before 
plotting. 
sns.relplot(x="total_bill", 
y="tip", data=tips, size="size", 
sizes=(15, 200));

2) Distribution plot: kernel density plot (Table 2, No. 4)

Seaborn provides additional features compared to simple 

histograms in Matplotlib, such as kernel density, rug display, 

and multidimensional composite distribution. Among them, the 

kernel density plot displays a smoother distribution curve than 

a histogram by overlapping kernels. Both codes below are for 

outputting kernel density plots.

· �sns.displot(kind=“kde”)

· �sns.kdeplot(x, y, data, bw_adjust, cumulative)

  - �bw_adjust: Adjusts the data interval for density estimation 

(default = 1).

  - ��cumulative: If True, estimates the cumulative distribution 

function.

For kernel density plots, by assigning variable values to the 

y axis instead of the x axis, the graph can also be drawn hori-

zontally or overlapped. Additionally, multiple variables can be 

overlaid on one graph. Please refer to the GitHub practice code 

for details.

(1) Kernel density plot (Fig. 26)

Fig. 26. Visualization of kernel density plot with Seaborn.

# Drawing a kernel density 
estimation plot 
sns.kdeplot(x="tip", data=tips);

(2) Horizontal density plot (Fig. 27)

Fig. 27. Visualization of horizontal density plot with Seaborn.

# Drawing horizontally 
sns.kdeplot(y="tip", data=tips);

(3) Estimate with different colors by category (Fig. 28)

Fig. 28. Displaying estimations in different colors by categorical 
variables.

# Estimate with different colors 
based on time. 
sns.kdeplot(x="tip", data=tips, 
hue="time");

3) Distribution plot: rug plot (Table 2, No. 6; Fig. 29)

A rug plot is used to describe the distribution of data by 

showing data positions as small vertical lines (rugs) on the x-

axis.

Fig. 29. Visualization of rug plot with Seaborn.

# Rug plot 
sns.kdeplot(x="tip", data=tips) 
sns.rugplot(x="tip", data=tips);

4) Categorical scatter plot: strip plot (Table 2, No. 8; Fig. 30)

A strip plot is a graph that represents all data points as dots, 

similar to a scatter plot.

Fig. 30. Visualization of strip plot with Seaborn.

# Stip plot 
sns.stripplot(x="day", y="tip", 
data=tips);

5) Categorical scatter plot: swam plot (Table 2, No. 9; Fig. 31)

A swarm plot is similar to a strip plot but arranges the dots 

horizontally to avoid overlap of data points. 

Fig. 31. Visualization of swarm plot with Seaborn.

# Swarm plot 
sns.swarmplot(x="day", y="tip", 
data=tips, s=3);



Mastering data visualization with Python: practical tips for researchers

https://doi.org/10.7602/jmis.2023.26.4.167 175

6) Categorical distribution plot: box plot (Fig. 32)

The Seaborn library’s box plot can be used with a strip plot 

overlaid.

Fig. 32. Visualization of box plot with Seaborn.

# Box plot 
sns.boxplot(x="day", y="tip", 
data=tips);
 

# Adding a Jitter Plot 
sns.boxplot(x="day", y="tip", 
data=tips) 
sns.stripplot(x="day", 
y="tip", data=tips, color="b", 
marker="*"); 

7) Categorical distribution plot: violin plot (Fig. 33)

A violin plot is a visualization of data distribution, resembling a 

box plot combined with a kernel density plot.

Fig. 33. Visualization of violin plot with Seaborn.

# Violin plot 
sns.violinplot(x="day", y="tip", 
data=tips);

CONCLUSIONS

In conclusion, data visualization is essential. It presents com-

plex concepts in an easy-to-understand manner, allowing for 

the identification of patterns and trends, gaining insights, and 

making better decisions more quickly. In the field of clinical re-

search, large amounts of data are being collected, and Python 

visualization tools are effective for visual representation. Using 

appropriate data visualization tools according to data types 

can significantly improve the quality and impact of research, 

enabling readers to understand complex concepts easily.

Notes

Authors’ contributions
Conceptualization, Data curation, Formal analysis, Investigation, 

Methodology, Visualization: SYH

Project administration: IYK

Writing–original draft: SYH

Writing–review & editing: SYH, IYK 

Conflict of interest
All authors have no conflicts of interest to declare.

Funding/support
None.

Data availability
The data presented in this study are available at: https://github.

com/soyul5458/Python_data_visualization. 

ORCID
Soyul Han, https://orcid.org/0000-0003-0156-250X

Il-Youp Kwak, https://orcid.org/0000-0002-7117-7669

REFERENCES

1.	 Unwin A. Why is data visualization important? What is 

important in data visualization? Harvard Data Sci Rev 

2020;2:1-7. 

2.	 Tukey JW. Exploratory data analysis. Addison-Wesley 

Pub.; 1977. 

3.	 Hunter JD. Matplotlib: a 2D graphics environment. Comput 

Sci Eng 2007;9:90-95. 

4.	 Odegua R. DataSist: a Python-based library for easy 

data analysis, visualization and modeling [Prepint]. 

arXiv:1911.03655; 2019. https://doi.org/10.48550/arX-

iv.1911.03655

5.	 harkiran78. Top 10 libraries for data visualization in 2020 

[Internet]. GeeksforGeeks; 2020 [cited 2023 Oct 17]. Avail-

able from: https://www.geeksforgeeks.org/top-10-libraries-

for-data-visualization-in-2020/ 

6.	 Sial AH, Rashdi SYS, Khan AH. Comparative analysis 

of data visualization libraries matplotlib and seaborn in 

Python. Int J Adv Trends Comput Sci Eng 2021;10:2770-

2281.

https://www.geeksforgeeks.org/top-10-libraries-for-data-visualization-in-2020/
https://www.geeksforgeeks.org/top-10-libraries-for-data-visualization-in-2020/



