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Abstract

Wavelet Neural Networks are a combination of neural networks and wavelets and have

been mostly used in the area of time-series prediction and control. Recently, Evolutionary

Wavelet Neural Networks have been employed to develop cancer prediction models. The

present study proposes to use ensembles of Evolutionary Wavelet Neural Networks. The

search for a high quality ensemble is directed by a fitness function that incorporates the

accuracy of the classifiers both independently and as part of the ensemble itself. The

ensemble approach is tested on three publicly available biomedical benchmark datasets,

one on Breast Cancer and two on Parkinson’s disease, using a 10-fold cross-validation

strategy. Our experimental results show that, for the first dataset, the performance was simi-

lar to previous studies reported in literature. On the second dataset, the Evolutionary Wave-

let Neural Network ensembles performed better than all previous methods. The third

dataset is relatively new and this study is the first to report benchmark results.

Introduction

Breast cancer is the second leading cause of cancer-related deaths in Australian women [1],

while Parkinson’s disease is the second most common neurological condition in Australia [2].

The identification and assessment process for both diseases is multi-staged, that is tedious,

time-consuming, and challenging where data needs to be manually labeled. Such assessments

might also lead to misdiagnosis. In medical practice, in order to reduce the risk of misdiagno-

sis, opinions from multiple doctors (or specialist doctors) are taken into account. A similar

approach is used in the computational intelligence domain, where performance of prediction

models (or specialist models) is improved by combining multiple models, thus creating an

ensemble of classifiers [3].

Ensemble classifiers and their use have been an active area of research for the past two

decades, with Bagging [3] and Boosting [4] being two popular techniques, particularly in the

field of applied statistics, pattern recognition and machine learning [5–7]. Many of the predic-

tion models have been improved by using ensembles of support vector machines [8, 9], latent
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class analysis (LCA) [10], artificial neural networks [11], k-nearest neighbour [12], and even

combinations of these classifiers [6].

Wavelet Neural Networks (WNN) are complex machine learning algorithms that use wave-

let analysis and neural networks to generate prediction and control models. WNNs have been

applied before in several areas, including time-series prediction and control [13, 14]. Evolu-

tionary Wavelet Neural Networks (EWNN) are a recently proposed method for training

WNNs and have been used to generate models for breast cancer and Parkinson’s disease classi-

fication [15]. However, there have been no studies on the prediction performance of an ensem-

ble of EWNN classifiers, yet.

The motivation of this research is to evaluate the performance of EWNN and ensembles of

EWNNs (EWNN-e) and compare them with other ensemble techniques used on the same

data reported in literature. The findings of this paper aim to provide future researchers an

alternative and effective model to compare with. Moreover, this study also investigates a newly

published Parkinson’s disease dataset with multiple speech recordings.

The paper is organized as follows. Background provides an overview to Wavelet Neural

Networks and its structure, EWNN and its response to a two-spiral task, related work on prun-

ing ensembles, and description of some of the performance measures used in our study. The

biomedical datasets, proposed mechanism and the experimental setup are described in the

Experimental Methodology section. Results & Discussion presents the outcome of experiments

and compares the method’s effectiveness with other techniques reported in literature. That sec-

tion is then followed by the conclusions and future work.

Background

Wavelet Neural Networks

Wavelet Neural Networks are a class of neural networks that combine the theory of wavelets

and neural networks [16]. In standard neural networks, weights and biases are the only param-

eters that are trained and the most common activation functions used are sigmoid, hyperbolic

tangent and linear functions. The activation functions found in WNNs are those that belong to

the family of wavelet basis functions, with the most common being the Morelet and Mexican
hat. In addition to weights and biases, three other parameters are used in WNNs: translate,

dilate and rotate. The use of standard gradient methods to adjust WNN parameters, in particu-

lar the weights, biases, the translate and dilate parameters, often resulted in premature conver-

gence [16, 17]. For that reason, global optimization approaches, such as genetic algorithms

and evolutionary programming techniques, have been used in applications such as air and

ground traffic flow [18, 19], energy consumption [20], large scale function estimation [21],

function approximation [22] and power transformer monitoring [23]. A diagram of a WNN is

shown in Fig 1. WNNs generally have a feed-forward structure, with one hidden layer having

m wavelons (ψm) and a neuron in the output layer. There are also n shortcut connections from

the inputs to the output neuron.

Evolutionary Wavelet Neural Networks

EWNNs were first proposed by Khan et al. [15] as a method for optimizing all WNN parame-

ters concurrently. The method was tested successfully on both simulated and real datasets [15].

For a detailed description of EWNN characteristics and performance, we refer the reader to

reference [15].

Fig 2 is an example of the EWNN applied to a standard benchmark two-spiral task shown

in Fig 2(a). Two-spiral is a non-linear task with two spirals (shown as black and white dots)

each with 97 sample data points in a 2D Cartesian space [24, 25]. The two-spiral task is fairly a
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challenging problem where for an Artificial Neural Network (ANN) with architecture 2-5-5-5-

1 took 10,000–20,000 epochs in [24]. While in [26] a 2-50-1 ANN was trained by employing a

second-order Newton optimization method where training took only 650 epochs. In contrast,

for EWNNs with a wavelet activation function of Morelet shown in Fig 2(b), the optimum

response of the EWNNs was achieved within 9 generations and with two wavelons only. This

indicates its potential to separate non-linear classes effectively and efficiently.

Classifier ensembles and pruning

The role of a classifier C is to learn how to map the feature set to a set of class label(s). The data

samples are divided into training U and test V sets. The C is first trained on U where it learns

the mapping process and then the performance of the C is measured on V. A multiple classifier

system, or ensemble (Ens), is composed of a set of base classifiers that are trained on the same

training dataset, and combined in a manner that improves the classification performance of

the system. There are two main methods for creating an ensemble: averaging and voting [27].

Averaging is normally used for classifiers with numeric outputs. While voting is used for

Fig 1. Structure of a Wavelet Neural Network. The network has n inputs in the input layer, m wavelons in the hidden

layer and one neuron in the output layer. A bias θ is added to the WNN output response. Also, notice the n shortcut

connections from the inputs to the output neuron.

https://doi.org/10.1371/journal.pone.0192192.g001

Fig 2. Training of an EWNN on a two-spiral task. (a) two-spiral classification task, each spiral consisting of 97 data

points in the 2D Cartesian space. (b) Morelet wavelet activation function and (c) Optimal response on the task where a

EWNN with Morelet wavelet activation function has separated the two classes successfully.

https://doi.org/10.1371/journal.pone.0192192.g002
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categorical outputs (e.g. binary), and is used in the present study. Each sample is classified

independently by the k classifiers that constitute the ensemble. The final outcome of classifica-

tion will be the most represented class labels. It is the one that received the most votes. The

ensemble Ens classification for a sample V is described in Eq 1 (for the binary classification

case).

EnsðVÞ ¼

1; if
Pk

i¼1
CiðVÞ >

k
2

0; otherwise

ð1Þ

8
>>>><

>>>>:

Ensemble pruning, selective ensembles, ensemble selection and ensemble thinning are all

different names given to the same task—reducing ensemble sizes. Pruned ensembles exhibit

better performance and robustness with lower computational and memory costs [28], com-

pared to traditional ensemble techniques [29, 30]. The three most popular ensemble pruning

techniques are ranking, clustering and optimization [31], and this study focuses on the latter.

Among the optimization techniques for ensemble pruning the most commonly used are evolu-

tionary algorithms, semi-definite programming and hill climbing [32–34].

GASEN-b was one of the earliest algorithms for ensemble pruning, and was introduced by

[32]. The ensemble is represented as a bit string, with each decision tree model using a bit. The

bit string representation provides a direct mechanism of adding or removing classifiers, as

opposed to a weighting mechanism with a predefined threshold. A similar approach was also

used in [6] to select/remove classifiers from a heterogeneous pool of networks.

Zhang et al. [33] chose a quadratic integer programming approach for pruning. The weights

were kept binary and the size of the final ensemble was prefixed. In terms of computational

complexity, the algorithm could run in polynomial time.

Hill climbing methods generally use either forward selection or backward elimination of

classifiers, and include various performance measures, e.g. diversity, weighted accuracy [35–

39]. More recently, human-like foresight has been used as a measure to prune ensembles via

hill climbing [34].

In this study, a pool of optimized EWNNs is pruned using genetic algorithms so that a

better prediction model is obtained. The approach follows the GASEN-b mechanism [32]

of pruning classifiers directly through bits so that to reduce the amount of parameter

tuning. Our method introduces a fitness function that involves the sum of two accuracy

measures: the accuracy of each individual classifier; and the ensemble accuracy using the

voting method.

Network performance measures

There are many performance measures for binary classification problems available in the liter-

ature. Power [40] investigated those measures and generalized them for multiclass problems.

Next, we present the measures used in this work:

• Training Accuracy (Tracc): fraction of correctly classified samples in the training set U.

• Test Accuracy (Teacc): fraction of correctly classified samples in the test set V. This is also

known as the classification accuracy, and expressed as Teacc = (TP + TN)/(P + N). TP repre-

sents true positive cases, i.e. accurate classification of control (non-diseased) samples; TN

represents true negative cases, i.e. accurate classification of diseased samples; and (P + N) is

the total number of positive and negative test samples.
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• Sensitivity (Sens): measurement of the fraction of true positive cases, mathematically

expressed as Sens = TP/(TP + FN). FN is the number of false negatives and reflects the more

serious mistake of classifying a disease sample as control.

• Specificity (Spec): measurement of the fraction of true negative cases, mathematically repre-

sented as Spec = TN/(TN + FP). FP reflects the misclassification of control samples as dis-

eased ones.

• Mathew’s Correlation Coefficient (MCC): is a balanced measure of quality for binary classifi-

cation problems, normally used if classes are unbalanced. The measure was introduced in

[41] and is expressed as:

MCC ¼W1=
ffiffiffiffiffiffiffiffi
W2
p

;where

W1 ¼ TP � TN � FP � FN

W2 ¼ ðTPþ FPÞ � ðTP þ FNÞ � ðTN þ FPÞ � ðTN þ FNÞ

Experimental simulations

This section provides a description of the three biomedical datasets, references to some related

studies and the experimental settings for the proposed approach. An overview of the datasets’

characteristics is given in Table 1.

Datasets

Digital Database for Screening Mammography (DDSM). The DDSM is an online repos-

itory of mammographic images (available at: http://marathon.csee.usf.edu/Mammography/

Database.html) with different resolutions and obtained from various hospitals [46, 47]. The

suspicious areas on the mammograms were manually marked by two experienced radiologists.

For analysis, these markings are represented as chain codes and hence can be extracted easily.

In the dataset used by [48], 200 mammographic images scanned by a HOWTEK scanner at

43.5 micron per pixel spatial resolution were downloaded and extracted via the chain code.

That dataset had an equal number of benign and malignant samples. Even though [48] derived

25 features from the extracted region, only 6 of the features were actually investigated in the

present study, in order to provide a fair comparison with previous works that used the same

dataset [11, 49]. Among those 6 features, there are 4 BIRADS (Breast Imaging Reporting and

Data System established by [50]) lexicon features: mass shape, mass margin, assessment, breast
density, specified by an expert radiologist; and 2 features: Patient age and subtlety, that were

extracted from the individual mammographic records.

Little’s Parkinson’s Dataset (LPD). This dataset (available at: http://archive.ics.uci.edu/

ml) was acquired from the online machine learning database repository from the University of

California at Irvine (UCI) [51, 52]. It is a challenging, imbalanced dataset that has been investi-

gated previously by several researchers [9, 53–55]. It contains 195 samples, each with 22 differ-

ent biomedical voice measurements. These voice measurements were taken from 31

individuals, where 23 had Parkinson’s disease. Each patient has between 6 and 7 records in the

data set, totalling 195 samples.

Sakar’s Parkinson’s Dataset (SPD). The dataset by Sakar et al. [45] is a recent entry

(from 2014) in the UCI database (available at: http://archive.ics.uci.edu/ml) [43]. The dataset

contains multiple speech recordings that include sustained vowels (a, o, u), numbers from 1 to

10, four short rhyming sentences and nine turkish words from 40 individuals. These
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recordings sum up to 26 records per individual. Half of the individuals are diagnosed with Par-

kinson’s disease and the other half represents control subjects.

Training and test sets

For all the datasets, the data was divided into 90% training and 10% test data. The proposed

approach is divided into two main phases as shown in Fig 3. Phase I creates optimal EWNNs

from cross validation folds conducted on the 90% training and validation data and the average

classification accuracy Teacc for the EWNNs was reported. The optimal EWNNs were then

used by next phase. Phase II uses genetic algorithm to prune the optimal EWNN classifiers

where the separate test set was used and a final ensemble classification accuracy ETeacc was

then reported.

In both LPD and SPD datasets, individuals had different numbers of records. Thus, if more

than half of the individual’s records are classified as Parkinson’s disease, then the individual

itself is classified as Parkinson’s disease (diseased). This approach was adopted from [45, 54] in

order to avoid over-fitting, as the frequency response of the records of the same patient are

potentially very similar.

Approach

Phase I: Generating optimized EWNNs.

1. EWNN initialization: An EWNN genome requires the initialization of the number of wave-

lons, the different parameters of each wavelon, and the wavelet function(s).

• The number of wavelons is critical as too many wavelons would likely result in over-fitting

and too few would not capture the variability of the data [56]. The three datasets have been

investigated in detail under different parameter settings and those are reported in [15].

The best configurations from that study were adopted here. The number of wavelons used

for each dataset is shown in Table 2.

• Selection of an appropriate activation function depends on the data itself, but the Mexican

hat wavelet has performed satisfactorily in many applications [56]. For the DDSM, the

present study uses a heterogeneous WNN with four possible activation functions. For the

remaining case studies, we used a homogeneous WNN that uses the Mexican hat wavelet

as activation function.

• Each wavelon is represented by matrices of inputs xn 2 [1, Feat]; switches cn 2 {0, 1} where

0/1 indicates non-connected/connected features, respectively; input weights wxnm 2 [−1,

+1]; scale parameters αnm 2 [0, 1]; translation parameters βnm 2 [−1, +1]; rotation

parameters Rnm 2 [−1, +1]; as well as categorical values representing the type of wavelet

function ψm 2 [1, numberwaveletFunctions]; wavelon weights wtm 2 [−1, +1]; and active neu-

rons otm 2 {0, 1}, where 0/1 represents an inactive/active hidden neuron, respectively. The

Table 1. Datasets’ characteristics used in this study.

Datasets (References) Abbrev. Class distribution (control,diseased) Number of Features

Digital Database for Screening Mammography [42] DDSM (100,100) 6

Little’s Parkinson’s Disease [43, 44] LPD (48,147) 22

Sakar’s Parkinson’s Disease [45] SPD (520,520) 26

https://doi.org/10.1371/journal.pone.0192192.t001
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parameters of each wavelon are initialized uniformly at random, within the corresponding

ranges of possible values.

2. Population Size: There are two basic types of evolutionary strategies: (μ, λ)-ES and (μ + λ)-

ES [57]. μ represents the parent population and λ refers to the number of offspring pro-

duced in a generation. In (μ, λ)-ES, offspring replaces the parents as the μ fittest are selected

Fig 3. Flowchart of the two phases of the approach. Phase I is the process of generating optimized EWNNs. Phase II

uses the optimized EWNNs to generate the ensemble of EWNNs.

https://doi.org/10.1371/journal.pone.0192192.g003

Table 2. Main parameter settings of the evolutionary wavelet neural networks for the different datasets.

Parameters DDSM LPD SPD

Wavelons 4 5 5

Input to wavelons 6 6 26

(μ + λ)-ES [57] (1+25) (1+25) (3+20)

https://doi.org/10.1371/journal.pone.0192192.t002
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from λ, while in (μ + λ)-ES, the μ fittest are selected from both parents and offspring for the

next generation. The value of μ and λ used for the different case studies are shown in

Table 2.

3. Fitness evaluation: All individuals in the population are evaluated and sorted based on their

accuracies and mean square error where the best individual is promoted as parent to the

next generation. The purpose of using two dimensional sorting is to promote networks

with uncorrelated evaluation metrics in generations ahead.

4. Mutation: A 1% mutation rate is used to generate new EWNNs, similar to [15]. Mutation

occurs in three different ways. For continuous parameters, such as input weights, wavelon

weights, translation, rotation, dilation parameters and the bias, values are perturbed by add-

ing a small percentage of the current value. For binary parameters, e.g. switch, the value is

inverted from 0 to 1 or 1 to 0. For the third type of mutation, a network input is randomly

changed to another input feature in the feature list, or similarly, a wavelet function is ran-

domly changed to another wavelet function in the list.

5. Termination condition: The simulations stop at 2,000 generations. We observed that this

value is sufficient for the evolutionary process to converge to a high-quality solution. The

optimal EWNNs are later used in Phase II to create the ensembles. A total of 50 indepen-

dent evolutionary runs were executed for each of the cross-validation folds.

Phase II: Genetic algorithm-based ensemble.

Given the set of optimized EWNN ensembles, the next step is to prune them. This stage uses

another genetic algorithm as follows:

1. Chromosome Chr representation: A k-bit string is used to represent an ensemble with the

optimized EWNNs. A bit value of 1 indicates that the classifier is actively used in the ensem-

ble; 0 otherwise.

2. Population size: After a number of preliminary tests, we decided for an (μ+λ)-evolutionary

strategy with μ = 3 parents and λ = 25 offspring in each generation. For ensemble pruning,

having 3 parents considerably reduced the risk of premature convergence and at the same

time kept the evolutionary process under a reasonable selective pressure.

3. Fitness evaluation: The fitness value of each chromosome is evaluated as in Eq 2. It is an

average of the individual accuracies Tracc of the active EWNNs and their ensemble training

accuracy Ens(U), where the objective is to maximize the average accuracies.

FEðChrÞ ¼ 0:5ðTracc þ EnsðUÞÞ ð2Þ

4. Mutation: After pilot tests, mutation rate was set to 1% for all simulations, and the strategy

used was bit-swap.

5. Termination condition: The limit for the number of generations was set at 1,000. Ensemble

accuracy was found not to improve after few hundred generations.

The program starts with random chromosomes that are evaluated based on the fitness func-

tion in Eq 2. The best individuals are selected as parents and thus preserved for the next gener-

ation—all other individuals are removed. Then, λ offspring are produced by mutating the

parents. Every offspring is evaluated and added to the next generation. The process continues

Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction
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until the number of generations limit is reached. The best parent’s ensemble accuracy ETeacc
on the test set is then reported.

Results and discussion

Did the ensemble of EWNNs perform better? The performance of the evolutionary ensemble

method is shown in Table 3. Classification accuracy Teacc, ensemble classification accuracy

ETeacc, sensitivity Sens, specificity Spec and Mathew correlation coefficient MCC are reported

for the three datasets. The ensemble approach improves the classification accuracy by up to

23.7 percentage points (Teacc vs. ETeacc), compared to individual EWNN classifiers. For the

DDSM dataset, the ensemble approach improved the performance of the network from 89.0%

to 95.5%. An MCC score of 91.0% also indicates a very high classification accuracy. For the

LPD dataset the accuracy increased from 92.9% to 100%, and for the SPD dataset it increased

from 66.3% to 90.0%.

What were the significant features identified by the process? Fig 4 is the averaged connected

features for all datasets, across 50 independent runs in EWNN, and the number of active classi-

fiers in the EWNN-e. In a standard WNN all features are connected to every wavelons in the

hidden layer. While in EWNNs (from Fig 4), there is some variability in how often these fea-

tures are connected. This indicates the flexibility of pruning features (during training) at the

hidden layer, as opposed to the input layer, for which many feature reduction methods already

exist. For the DDSM dataset, mass margin, patient age, mass shape and assessment were the top

four features that had an impact on performance—similarly to [48]. For the LPD dataset,

spread1 and D2 were the top two features—similarly to [53]. The trend of feature selection was

found to be same for both the EWNN and EWNN-e networks for all datasets except SPD. For

the SPD dataset, Shimmerapq3 is the top feature in the ensemble network, whereas Shimmerdda
is the top one for the individual EWNNs. This drift in frequency of feature selection indicates

possible significance of the feature in the ensemble domain.

Should every wavelon be fully connected? The connectivity or dimensionality of a wavelon

is determined by the number of active or connected inputs. Fig 5 displays the sum of the wave-

lons’ dimensions for each dataset, over 50 independent runs and, over the number of active

classifiers in the final EWNN-e, across the 10 folds. The frequency of each wavelon dimension

is lower in the ensemble network, as classifiers are pruned. The ensemble networks exhibited

different trends, depending on the dataset. Interestingly, for the DDSM dataset we observed a

reduction in the number of 6-dimensional wavelons, thus indicating that fully connected

EWNNs were not part of the ensemble network. The frequent occurrence of wavelons with

lower dimensions indicates that WNNs should be given the flexibility to adjust their input, in

contrast to a standard WNNs, where all inputs are connected [16].

How many classifiers are necessary to create an effective ensemble? The average number of

EWNNs in the ensemble networks for the datasets is shown in Table 4. The ensemble networks

combine around 1/3 (14-17) of the 50 available EWNNs, and they improved both speed and

performance, compared to the non-ensemble approach.

From Table 5, it can be concluded that the proposed method generated either competitive

or better results in comparison to existing techniques. An advantage of EWNN-e is that it does

not require pre-processing for feature pruning, which is present in some of the comparison

methods. Given the results, it can be stated that the ensemble version of EWNN classifiers is a

suitable approach for predictive analysis. Just for clarification purposes, and to put the results

into context, for the DDSM dataset, the accuracy reported for NN-e was achieved with an

ensemble of 127 classifiers [11], as opposed to the average of only 14.50 in the proposed

Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction
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method. That is, NN-e has a better performance for that dataset, but the classifier is much

more complex than the classifiers obtained by our approach.

Conclusion

Ensemble approaches aim at combining the classification power of individual classifiers ulti-

mately improving the overall performance of the system. The current study contributes to the

Table 3. Performance of the ensemble EWNN on the different case studies. Notice the increase in accuracy of the classifiers when an ensemble approach is adopted

(second column).

Datasets Teacc% ETeacc% Sens.% Spec.% MCC%

DDSM 89.0 95.5 95.0 96.0 91.0

LPD 92.9 100.0 100.0 - 100.0

SPD 66.3 90.0 93.0 97.0 87.0

https://doi.org/10.1371/journal.pone.0192192.t003

Fig 4. Identification of significant features. The figure shows the average number of connections per feature within the EWNN

(over 50 independent evolutionary runs) and its ensemble EWNN-e (over the active classifiers), for the datasets: (a) DDSM [42], (b)

LPD [44], and (c) SPD [45]. For all three datasets, and for all features, the average is higher than zero indicating that no feature

should be completely removed from analysis. For illustration purposes, consider the example of feature Age in (a). The correct way

to interpret the values is that the feature is connected to 1 wavelon on average, considering the 50 runs of EWNN. Details on the

features can be found in the referenced papers [42, 45, 44].

https://doi.org/10.1371/journal.pone.0192192.g004
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Fig 5. Should every wavelon be fully connected? Summation of wavelons’ dimensionality for individual EWNNs

(over 50 independent evolutionary runs); and for the ensemble EWNN-e (over the number of active classifiers), for the

three datasets (a) DDSM, (b) LPD and (c) SPD. Note the overall increasing trend for DDSM, with a larger number of

high-dimensionality wavelons (except for EWNN-e which shows a decrease in the number of 6-dimensional

wavelons). For LPD we see a concentration between 2- to 4-dimensional wavelons for both individual and ensemble

EWNNs. Finally, for SPD, we see a concentration at the higher dimensions. These results indicate that having the

features connected to all wavelons is not necessarily the most appropriated choice.

https://doi.org/10.1371/journal.pone.0192192.g005

Table 4. Average number of active EWNNs in the ensembles, using 10-fold cross-validation, and across the three

datasets. The average is calculated over 50 independent runs.

Datasets Average EWNNs

DDSM 14.50

LPD 16.80

SPD 16.80

https://doi.org/10.1371/journal.pone.0192192.t004
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literature of ensemble classifiers by proposing an ensemble of evolutionary wavelet neural net-

works (EWNN-e).

The performance of the EWNN-e has been validated on three biomedical datasets. The

pruned EWNN-e used less than 1/3 of the available EWNNs and resulting in better perfor-

mance. For one of the datasets, the method achieved a testing accuracy of 100%, whereas the

best approach reported in literature to date had reached 96.9% only.

Each EWNN used all features available, but features were not connected to every wavelon

in the network. In other words, the proposed method prunes features at the hidden layer level,

instead of at the input layer level.

The dimensionality of the wavelons is represented by the number of active inputs. The

trend of the average sum of wavelons’ dimensionality in the Parkinson’s disease datasets was

same for both EWNNs and EWNN-e. While for the Breast Cancer dataset (DDSM) the wave-

lons’ dimensionality of a fully connected wavelon were reduced in the EWNN-e. This indicates

that WNNs should be provided with the flexibility to adjust their network inputs, as opposed

to a conventional WNNs, where all inputs are forced to be connected.
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