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Tissue-resident memory T (Trm) cells are a subset of recently identified memory T cells

that mainly reside and serve as sentinels in non-lymphoid peripheral tissues. Unlike the

well-characterized circulating central memory T (Tcm) cells and effector memory T (Tem)

cells, Trm cells persist in the tissues, do not recirculate into blood, and offer immediate

protection against pathogens upon reinfection. In this review, we focus on CD8+ Trm

cells and briefly introduce their characteristics, development, maintenance, and function

during viral infection. We also discuss some unresolved problems, such as how CD8+

Trm cells adapt to the local tissue microenvironment, how Trm cells interact with other

immune cells during their development and maintenance, and the mechanisms by which

CD8+ Trm cells confer immune protection. We believe that a better understanding of

these problems is of great clinical and therapeutic value and may contribute to more

effective vaccination and treatments against viral infection.
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INTRODUCTION

Upon infection, the host immune system initiates immune responses against invading pathogens, a
process in which both innate and adaptive immune cells participate sequentially and synergistically.
Pathogen-specific memory T cells and B cells persist long after the infection has been cleared (1–3).
Until recently, memory T cells had been categorized into central memory T (Tcm) cells and effector
memory T (Tem) cells. Tcm cells are a small population ofmemory T cells that circulate between the
secondary lymphoid organs (SLOs) and the blood. They are long-lived and can be activated rapidly
upon reencountering their cognate antigen in SLOs. Tem cells have been proposed to migrate
through the blood, lymphoid and non-lymphoid tissues (NLT). They kill pathogens via a variety
of effector mechanisms and disappear gradually after the pathogens have been eliminated (4–8).

Resident memory T (Trm) cells, a third population of memory T cells, have been identified
recently, especially in barrier tissues and SLOs (6, 9–12). They persist permanently in these
tissues and do not recirculate into the blood. They can mount a rapid immune response upon
reencountering the same pathogen and restrict infection within the local tissue sites (11–14). In
addition, emerging data indicate that Trm cells are also involved in tumor immunosurveillance
(15). CD103 and CD69 have been considered as two common surface markers in distinguishing
Trm cells from other memory T cells (16–20). However, some studies have demonstrated that
CD69− or CD103− Trm cells also exist in non-lymphoid peripheral tissues (21–23). This indicates
that the development and maintenance of Trm cells, including their phenotypic characteristics, are
tightly regulated by local microenvironment (24, 25).
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While both CD4+ and CD8+ Trm cells have been identified,
CD8+ Trm cells are more extensively investigated in viral
infection (26). CD8+ Trm cells that arise through infections due
to a variety of pathogens have been identified and characterized
in many studies. For example, after acute herpes simplex virus
(HSV) infection, CD8+ Trm cells are generated and retained
in the skin to protect against reinfection of HSV (27). Skin
CD8+ Trm cells produce abundant interferon (IFN)-γ and tumor
necrosis factor (TNF)-α following cognate antigen stimulation
and are responsible for efficient control of vaccinia virus (VACV)
re-infection (12). Using intraglandular infection, Thom et al.
demonstrated that CD8+ Trm cells immediately defend the host
against local murine cytomegalovirus (MCMV) infection, despite
active viral immune evasion (28). Influenza virus-specific CD8+

Trm cells in the nasal epithelia prevent the transmission of
influenza virus from the upper respiratory tract to the lung (29).
These cells are also sequestered in the walls of the large airways
and are crucial for ideal cross-protection against pulmonary
influenza virus infection (30–32). Intranasal vaccination of live-
attenuated influenza virus generates virus-specific CD8+ Trm
cells as well (33). Moreover, both mouse and human respiratory
syncytial virus (RSV) specific CD8+ Trm cells are associated
with control of lung RSV infection (34, 35). Immune responses
of human immunodeficiency virus (HIV)-1-specific CD8+ Trm
cells are the strongest in patients whose immune systems
are able to naturally control HIV-1 infection, suggesting the
involvement of these cells in local anti-HIV immunity (36). In
immunosuppressed renal transplant recipients (RTRs), impaired
effector differentiation of polyomavirus BK (BKPyV) major
capsid protein (VP1)-specific CD8+ Trm cells is associated with
BKPyV-induced interstitial nephritis (BKVN), which is caused
by BKPyV reactivation after initial control of the virus (37). In
addition to non-lymphoid peripheral tissues, CD8+ Trm cells are
also embedded in thymus and mediate local immunity against
lymphocytic choriomeningitis virus (LCMV) reinfection through
degranulation and cytokine (IFN-γ and TNF-α) production (38).
Together, all these data indicate that CD8+ Trm cells play an
important role in anti-viral immunity not only in non-lymphoid
peripheral tissues but also in lymphoid tissues.

In this review, we mainly focus on CD8+ Trm cells and briefly
introduce their characteristics, development, maintenance and
functions in viral infection. We also discuss the impact of local
tissue microenvironment on determining phenotypes of CD8+

Trm cells, the mutual conversion of Trm, Tem, and Tcm cells,
the mechanisms of long-term maintenance of Trm cells, and
crucial steps in initiating CD8+ Trm cell immune responses. To
understand these fundamental questions and further illustrate
the underlying mechanisms will help find better strategies for
control of viral infection.

CHARACTERISTICS OF CD8+ RESIDENT
MEMORY T CELLS

Unlike circulating CD8+ Tcm and Tem cells, CD8+ Trm cells
locate permanently in the tissues and do not recirculate into the
blood (39). More importantly, CD8+ Trm cells are distributed

widely in non-lymphoid peripheral tissues including the skin,
lung, gastrointestinal tract, female reproductive tract (FRT),
brain, liver, kidney, salivary glands, etc (16, 18, 40–44). Recently,
some studies reported that CD8+ Trm cells also persist in
lymphoid tissues including SLOs and thymus (11, 38, 45). The
broad distribution of Trm cells indicates their importance in local
immunity.

CD8+ Trm cells in non-lymphoid tissues were initially defined
as CD103+ CD69+ (16–20). But later CD69− and CD103− Trm
cells were also identified, suggesting that CD69 and CD103 may
not be the definite markers of Trm cells (21–23). Interestingly,
to some extent these CD103 or CD69 negative CD8+ Trm cells
are different from those positive populations. For example, both
CD69+ and CD69− CD8+ Trm cells were identified in the
pancreas, salivary gland (SG) and FRT, but they have different
population sizes (21). In Yersinia pseudotuberculosis (Yptb) oral
infection model, CD103+ CD8+ Trm cells are mainly localized
in the intestinal epithelium (IEL) and lamina propria (LP)
while CD103− CD8+ Trm cells mainly reside in LP and are
close to the crypts (46). CD103+ CD8+ and CD103− CD8+

Trm cells are found preferentially in epidermis and in dermis,
respectively (18). After murine polyomavirus (MuPyV) infection,
brain CD103+ CD8+ Trm cells uniformly express programmed
cell death protein 1 (PD-1), in contrast to CD103+ CD8+ Trm
cells in the spleen, which are PD-1 negative (23). In addition,
CD8+ Trm cells within intestinal mucosa express a variety of
distinct molecules that distinguish themselves from memory T
cells in SLOs: up-regulate CD28 and CD11c and rapidly produce
IFN-γ after reactivation by antigen (47).

Like circulating Tcm and Tem cells, CD8+ Trm cells in
different tissues also have distinct transcriptional programs.
Lung, skin or gut CD8+ Trm cells have a unique core
transcriptional profile with 25–127 specific transcripts, which
are progressively engaged during differentiation (18). Liver,
known as an immune tolerance organ, retains large numbers
of CD8+ Trm cells that express low levels of sphingosine 1-
phosphate receptor-1 (S1PR1) and Krüppel-like Factor 2 (KLF2);
interestingly, most of these CD8+ Trm cells in the liver are
CXCR6 and granzyme positive, and are localized in portal fields,
central veins, and parenchymal zones in CHB patients (48).
CD8+ Trm cells isolated from the brain possess alteredmolecular
signatures including chemokines and chemokine receptors (up-
regulation of CCL3, CXCL10, and CCL4 and down-regulation of
CX3CR1 and CCL9), transcription factors (down-regulation of
eomes, Tcf-1, lef1, and T-bet and up-regulation of IFITM3, Irf4,
and Isg20) and several inhibitory receptors (CTLA-4 and PD-
1) after recombinant vesicular stomatitis virus (VSV) infection
(49). Similar to mouse CD8+ Trm cells, human CD8+ Trm cells
up-regulate ITGA1 (CD49a), ICOS, and the transcription factor
IRF4 but down-regulate eomes (43, 50).

CD8+ Trm cells can mount a rapid and robust immune
response against reinfection, which is thought to be critical for
the efficacy of vaccination. Some functional differences between
Trm populations among children, adults, and the elderly have
been observed (51). Compared to adults, fewer lung CD8+

and CD4+ Trm cells are established after influenza infection
during infancy, which may be associated with more serious or
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frequent respiratory infections and reduced vaccine responses.
The difference between adult and infant Trm cell establishment
can be attributed to increased T-bet expression in infant T cells
after activation, as is demonstrated in both murine and human
models (52).

Taken together, current studies indicate that CD8+ Trm
cells in different tissues share some common characteristics
in phenotype and functions. However, they also have distinct
properties in phenotypes, transcriptional profiling and function
as well. The differences among them may be caused by the
regulation of their unique tissuemicroenvironment, which affects
their developmental fates.

DEVELOPMENT OF CD8+ RESIDENT
MEMORY T CELLS

How memory T cells are generated is a fundamental question in
the research field of immunological memory. For classical Tcm
and Tem cell development, there are several differentiation
hypotheses including linear differentiation model and
asymmetric division model (53–55). CD127+ killer cell
lectin-like receptor G1 (KLRG1)− CD8+ T cells have been
demonstrated to be memory precursor effector cells (MPECs)
(56). Whether CD8+ Trm cells also have precursors and what
the underlying transcriptional mechanisms in CD8+ Trm cell
development are critical questions in the research field of Trm
cells.

Mackay et al. (18) recently found that KLRG1−, not KLRG1+,
activated CD8+ T cells can develop into skin epithelium-
infiltrating CD103+ CD8+ Trm cells. CD127+ KLRG1− CD8+

T cells have been demonstrated to be the intestinal CD8+ Trm
precursors in an oral Listeria monocytogenes infection model
(57). However, CD127+ KLRG1+ effector CD8+ T cells may
lose KLRG1 and differentiate into all memory T cell lineages
including CX3CR1− Trm cells (58, 59). Gerlach et al. recently
demonstrated that CX3CR1 is a critical chemokine receptor
correlated with CD8+ T cell differentiation and further suggested
that CD8+ Trm cells are derived fromCX3CR1− activated CD8+

T cells (59). It was reported that DC NK lectin group receptor-
1 (DNGR-1)+ dendritic cells (DCs) may prime naïve CD8+ T
cells to become Trm cell precursors in draining lymph nodes
(dLNs), but are not required for Trm differentiation in the skin.
Expression of interleukin (IL)-12, IL-15, and CD24 is essential
for optimal formation of Trm cells (60). To date, how DC subsets
play an important role in generating CD8+ Trm cell precursor
is still unclear. In addition, it is known that CD4+ T cell help
is required for DCs to induce a robust effector CD8+ T cell
response (61). In the absence of CD4+ T cells, fewer CD103+

CD8+ Trm cells are developed in the lungs. Reduced expression
of CD103 results from increased expression of the transcription
factor T-bet in “unhelped” lung Trm cells. Generation of CD103+

CD8+ Trm cells also requires CD4+ T cell-derived IFN-γ (62).
However, in acute VACV skin infection mouse model we did not
see a reduction of skin CD8+ Trm cells in the absence of CD4+

T cells, though the function of skin CD8+ Trm cells was found
to be partially impaired (12). Moreover, we also did not see any

significant reduction of CD8+ Trm cells in the absence of IFNγ

(our unpublished data).
Several distinct transcription factors or proteins are involved

in the development and homeostasis of CD8+ Trm cells. For
instance, CD8+ Trm cells can utilize the transcription factor
AhR to maintain residency in the epidermis and compete with
dendritic epidermal γδ T cells for space within the epidermal
niche (63). In mice, development of CD8+ Trm cells in the
skin, gut, liver, and kidney requires cooperation of transcription
factors Hobit and Blimp1 (64). Moreover, the function and
development of Trm cells can be influenced by nuclear receptor
subfamily 4 group A member 1 (NR4A1) and ATP-binding
cassette (ABC) transporters (65). Using computational and
pooled in vivo RNA interference screens, Milner et al. showed
that the transcription factor Runx3 also plays a crucial role
in the differentiation and homeostasis of CD8+ Trm cells
(66). Purinergic receptor P2RX7 has recently been found to be
involved in the generation of CD8+ Trm cells in various non-
lymphoid sites (67). In addition to local antigen presentation,
intrinsic 4-1BB signals are essential in mediating the generation
of CD8+ Trm cells in the lung during influenza infection (31, 68,
69).

Furthermore, peripheral tissuemicroenvironment is crucial in
shaping the development of CD8+ Trm cells. Hair follicle derived
cytokines such as IL-7 and IL-15 play critical roles in skin Trm
cell homeostasis (70), while transforming growth factor (TGF)-β
promotes the formation of kidney CD8+ Trm cells by enhancing
expression of E- and P-selectin and chemokine receptor CXCR3,
which mediate the extravasation of effector T cells (71). Despite
the involvement of TGF-β in Trm development, Smad4, which
is required for normal differentiation of circulating memory T
cells, is not necessary for Trm cell differentiation (72). Adhesion-
and degranulation-promoting adapter protein (ADAP) integrin
facilitates CD8+ Trm cells formation in non-lymphoid tissues
(73). Formalin-inactivated RSV combined with CpG (an agonist
of TLR9) and L685,458 (an inhibitor of Notch signaling) promote
protective CD8+ Trm cells in the lungs (74). Additionally,
brain TGF-β producing regulatory T cells (Tregs) are found to
be involved in CD8+ Trm cell accumulation and granzyme B
production after West Nile virus (WNV) and MCMV infection
(75, 76). Besides non-specific stimulation, specific stimulation
such as local antigen in skin is also required for the formation
of functional CD8+ Trm cells and amplifies their generation.
Although recruitment of activated CD8+ T cells to VACV
infected skin is antigen independent, significant increase in Trm
formation is observed when local antigen is present (77). In
skin that has been previously infected, antigen-dependent cross-
competition is involved in shaping the repertoire of polyclonal
antiviral Trm cells (78). Secondary Trm cells form from both pre-
existing Trm cells and Trm precursors recruited from the blood
in response to local antigen presence (79). Transient introduction
of antigen results in the generation of Trm in the brain via an
intracranial dendritic cell immunization regimen (80). However,
local inflammation in the skin and mucosa alone can drive
recruitment of effector populations and direct their conversion to
CD8+ Trm cells (24). Similarly, differentiation and maintenance
of CD8+ Trm cells are antigen-independent in small intestine,
kidney, pancreas, stomach, heart, and FRT of mice (81, 82).
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FIGURE 1 | CD8+ Trm cell development. Trm, Tem, and Tcm cells are derived from the same naïve T cell clone upon activation in SLOs. CD8+ Trm cell precursors

migrate into peripheral tissues as well as SLOs where they differentiate into Trm cells. Currently, at least three subtypes of CD8+ Trm cells have been identified:

CD103+ CD69+, CD103+ CD69−, and CD103− CD69+ Trm cells. Local microenvironment, including cytokines, local antigens and inflammatory mediators, is

important for development of CD8+ Trm cells. SLOs, secondary lymphoid organs; Tcm, central memory T cells; Tem, effector memory T cells; Trm, resident memory

T cells; DCs, dendritic cells; LN, lymph node; IL-7, interleukin-7; IL-12, interleukin-12; IL-15, interleukin-15; TGF-β, transforming growth factor-β; KLRG, killer cell

lectin-like receptor G.

CD8+ Trm cells have long been thought to reside exclusively
in non-lymphoid tissues. However, in SLOs such as the splenic
marginal zone, red pulp, and lymph node sinuses, CD8+ Trm
cells are also present. These Trm cells can be derived from
the skin or mucosa after restimulation (11, 45). Although
great progress has been made in characterizing CD8+ Trm
cell development, the exact mechanisms are still unclear. Both
intrinsic and extrinsic factors are involved in the development
of CD8+ Trm cells. More details need to be known before
therapeutically manipulating CD8+ Trm cell development,
which is important for the control of viral infection and vaccine
design. A developmental scheme for CD8+ Trm cells is shown in
Figure 1.

MAINTENANCE OF CD8+ RESIDENT
MEMORY T CELLS IN LOCAL
MICROENVIRONMENT

IL-7 and IL-15 are two critical cytokines required for the survival
and homeostasis of classical memory CD8+ T cells (17, 83). In
some but not all peripheral tissues, IL-15 is required for the
survival of CD8+ Trm cells (18, 84). This suggests that other
factors may also be involved in the maintenance of Trm cells.
TGF-β is not only critical for Trm formation but also required for
skin and gut Trmmaintenance (18, 25). Expression of TGF-β and
IL-15 are controlled by T-box transcription factors (TFs) Eomes
and T-bet (85). Retention of intestinal CD8+ Trm cells is partly

associated with integrins αEβ7 and α1 as well as CD69, whose
expression is induced by TGF-β (25). CD69 may retain Trm cells
in the skin by blocking sphingosine-1-phosphate (S1P)-regulated
tissue egress (86). Downregulation of S1PR1 is controlled by the
transcription factor Kruppel-like factor 2 (KLF2) (87). However,
CD69 is not required for Trm cell retention in the lung when they
have entered the Trm cell niches (88). In addition, E-cadherin
and integrin α4β1 promote CD8+ Trm cells accumulation in
salivary glands (89, 90).

Some other factors also play important roles in maintenance
of Trm cells. For example, exogenous free fatty acid (FFA) can
be used by skin CD8+ Trm cells via fatty-acid-binding proteins
(FABP4) 4 and FABP5 for their maintenance (91). Deletion of
CCR2+ IL-12-producing cells, most of which are macrophages,
reduces the size of the CD103− CD8+ Trm population during
infection, suggesting that macrophages or the mediators they
produce may be involved in Trm cell persistence (22). Although
local antigen contributes to in situ proliferation of Trm cells
(77, 78), it is not indispensable for local Trm cell persistence,
indicating a dependence on the local microenvironment for
Trm function and survival (80). Moreover, CD8+ Trm and
lymph node Tcm cell clones are generated from the same
naïve T cell precursor after skin immunization (92). Therefore,
CD8+ Tcm could be a potential reservoir for CD8+ Trm cells
upon reinfection. In addition, reactivation of Trm cells recruit
recirculating memory T cells that undergo antigen-independent
Trm cell differentiation in situ (82). In brain, B7-H1 has a
critical role in the maintenance of CD8+ Trm cells (93).
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Understanding how Trm cells maintain long-term residency
within barrier tissues will enable the manipulation of these cells
in vitro. A scheme for possible mechanisms of CD8+ Trm cell
maintenance is shown in Figure 2.

PROTECTIVE MECHANISMS OF CD8+

RESIDENT MEMORY T CELLS IN
ANTIVIRAL IMMUNITY

The importance of CD8+ Trm cells in peripheral tissue
protection has been widely recognized. Skin CD8+ Trm
cells serve as sentinels and continuously migrate through
the epidermis. They change size, length, and direction of
dendrites, which are independent of skin inflammatory state.
They quickly identify antigen-expressing cells in vivo and
initiate in situ immune responses (94). The CXCL17/CXCR8
and CXCL10/CXCR3 chemokine pathways are involved in
CD8+ Trm cell mobilization to infected barrier tissues
(95, 96). The rapid control of viral infection is related to
abundant IFN-γ and TNF-α produced by CD8+ Trm cells
following cognate antigen stimulation (12, 97–100). After LCMV
reinfection in mice, brain CD8+ Trm cells rapidly produce

IFN-γ and perforin and prevent fatal brain infection in a
manner independent of circulating CD8+ memory T cells.

Presentation of cognate antigen on major histocompatibility
complex (MHC)-I is required for brain Trm cell protective
immunity (100). Control of the female mice genital HSV-2
infection by CD8+ Trm cells requires expression of MHC-
I on CD301b+ DCs in the lamina propria (99). However,
infected epidermal cells may directly present viral antigen
to CD8+ T cells to induce cytokine production, which may
also be involved in the activation of CD8+ Trm cells (94,
101). It is well-known that activated T cells express inhibitory
molecules (102). For example, activated intrahepatic CD8+ Trm

cells express both PD-1 and CD39 after sequential IL-15 or
antigen exposure. These inhibitory molecules combined with
IL-2 and IFN-γ promote liver CD8+ Trm cell survival while
contribute to local non-cytolytic hepatic immunosurveillance
(103).

Reactivation of CD8+ Trm cells by peptide challenge can
trigger strong antiviral immunity against antigenically unrelated
pathogens. In addition to inducing a number of broadly
active antiviral and antibacterial genes, reactivated Trm cells
orchestrate both innate and adaptive immune components
including recruitment of recirculating CD4+ T cells, CD8+ T
cells and B cells, maturation of DCs, and activation of natural
killer (NK) cells to develop a “pathogen alert” state. Achievement
of these functions relies on IFN-γ, TNF-α, and IL-2Rβ-dependent
cytokines (104–106). IFN-γ secreted by activated CD8+ Trm
cells enhances expression of vascular cell adhesion molecule-
1 (VCAM-1) on vascular endothelium, which contributes to
recruitment of CD4+ T cells, CD8+ T cells, and B cells
to local tissues. In addition, TNF-α and IL-2Rβ-dependent
cytokines are essential for DC maturation and granzyme B
upregulation in both NK cells and bystander memory CD8+

T cells, respectively (105, 107). However, the crucial steps
for the initiation of CD8+ Trm cell immune responses are
still obscure. Further exploration should be focused on how
to optimize their antiviral functions. A scheme for possible
mechanisms of CD8+ Trm cells in viral protection is shown in
Figure 3.

MAJOR OPEN QUESTIONS

It is now clear that CD8+ Trm cells play an important role in
peripheral immune surveillance and protection against invading
pathogens, especially in viral infection. The diversities of CD8+

Trm cells may be caused by different tissue microenvironments.

FIGURE 2 | CD8+ Trm cell maintenance. Local factors in peripheral tissue are crucial in long-term maintaining CD8+ Trm cells. CD69, E-cadherin, and integrin

promote retention of CD8+ Trm while S1PR1 can mediate CD8+ Trm cell tissue egress. FFAs, IL-15, TGF-β, and B7-H1 are involved in CD8+ Trm cell maintenance.

Besides, macrophages may promote CD8+ Trm cell maintenance through secreting IL-12. FFAs, free fatty acids; S1PR1, sphingosine 1-phosphate receptor-1; IL-12,

interleukin-12; IL-15, interleukin-15; TGF-β, transforming growth factor-β; B7-H1, B7 homolog 1; Trm, resident memory T cells.
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FIGURE 3 | The protective function of CD8+ Trm cells in viral infection. Upon encountering the same pathogen, CD8+ Trm cells can be reactivated immediately and

secrete cytokines in which IFN-γ may help recruit immune cells from blood stream via enhancing expression of endothelial vessel addressin. These immune cells

include CD4+ T cells, CD8+ T cells, and B cells. Besides, NK cells and immature DCs in local tissue can also be recruited to the place where CD8+ Trm cells are

reactivated. CD8+ Trm cells cooperate with these immune cells to synergistically combat with viruses by secreting perforin, IFN-γ, and TNF-α. Trm, resident memory T

cells; DCs, dendritic cells; NK, natural killer; IFN-γ, interferon-γ; TNF-α, tumor necrosis factor-α; IL-2, interleukin-2; VCAM-1, vascular cell adhesion molecule-1.

The exact roles of different components involved in the process
of CD8+ Trm cell mediated immunity are still obscure. Although
great progress has been made in CD8+ Trm cell research, several
problems need to be further explored:What is the origin of CD8+

T cell precursor in dLNs?What are the tissue-specific adaptations
of CD8+ Trm cell development? What is the role of local
tissue antigen-presenting cells in CD8+ Trm cell differentiation
vs. recall reaction? How are CD8+ Trm cells regulated during
reactivation? We believe that the strategies that modulate the
functions of CD8+ Trm cells will be helpful for the control
of viral infection if more details about CD8+ Trm cells are
unraveled.
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