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Abstract

The wide functional impacts of microtubules are unleashed and controlled by a battery

of microtubule-associated proteins (MAPs). Specialists in the field appreciate the diver-

sity of known MAPs and propel the identifications of novel MAPs. By contrast, there is

neither specific database to record known MAPs, nor MAP predictor that can facilitate

the discovery of potential MAPs. We here report the establishment of a MAP-centered

online analysis tool MAPanalyzer, which consists of a MAP database and a MAP pre-

dictor. In the database, a core MAP dataset, which is fully manually curated from the lit-

erature, is further enriched by MAP information collected via automated pipeline. The

core dataset, on the other hand, enables the building of a novel MAP predictor which

combines specialized machine learning classifiers and the BLAST homology searching

tool. Benchmarks on the curated testing dataset and the Arabidopsis thaliana whole gen-

ome dataset have shown that the proposed predictor outperforms not only its own

components (i.e. the machine learning classifiers and BLAST), but also another popular

homology searching tool, PSI-BLAST. Therefore, MAPanalyzer will serve as a promising

computational resource for the investigations of MAPs.

Database URL: http://systbio.cau.edu.cn/mappred/.

Introduction

Microtubule is one of the key components of the eukary-

otic cytoskeleton system. In vivo, the microtubule is an as-

sembly of multiple protofilaments, and a/b-tubulin

heterodimers are adding to or removing from the protofila-

ments in a dynamic fashion (1–3). The microtubule ma-

chinery is not only essential for cell morphogenesis and cell

shape maintenance (4, 5), but also plays vital roles in many

biological processes, including but not limited to cell div-

ision (6), intracellular trafficking (7) and cell signaling (8).

In most situations, the collaboration with microtubule-

associated proteins (MAPs) is indispensible for microtu-

bules to exert their biological functions (9).

To date, hundreds of MAPs have been discovered, while

new types of MAPs keep emerging (10). A few MAPs have

been intensively studied, but their working mechanisms
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and functional implications, in addition to their sequence

and structural divergences, appear to be distinct from each

other and far from being fully understood. For example,

Stathmin has been reported to be able to induce severe de-

polymerization of microtubules (11). Two models have

been proposed to explain its working mechanisms. First,

Stathmin can directly sequester free tubulins from poly-

merizing into microtubules (12). Second, Stathmin binds

the growing protofilaments on microtubules with a very

strong affinity, keeps it in the bending conformation and

prevents it from further assembly (13). Another example is

PRC1 from the MAP65 protein family. The MAP65 family

is a weakly conserved protein family that bundles microtu-

bules in vivo (14, 15). Its representative members in human

and Arabidopsis thaliana share only about 25% sequence

identity. Electronic microscopy images of PRC1, a repre-

sentative family member from human, indicate that this

protein forms an antiparallel dimer through its central

rigid domain, providing an explanation for its tendency to

bridge two antiparallel microtubules with a restricted gap

in-between (16). Nevertheless, PRC1’s A. thaliana homo-

logs are likely to induce more divergent forms of microtu-

bule bundles, indicating the mechanism may be more

complicated than expected (17). The last example end

binding 1 (EB1) protein is representative of an exceptional

subset of MAPs, the plus end tracking proteins. A consider-

able fraction of plus end tracking proteins share a common

EB1-binding SxIP motif, highlights the importance of EB1

to organize protein–protein interactions (PPIs) at the

microtubule plus end (18). EB1 itself has been demon-

strated to bind plus end and promote microtubule growth

(19). However, the underlying mechanisms are under long-

standing debates. Recently, Maurer et al. (20) demonstrate

that EB1 decorates and stabilizes microtubule lattice which

is enriched for GTP-bound tubulins near the microtubule

plus end. Zhang et al. (21) further suggest that the decor-

ation of EB proteins on the specific regions of microtubule

lattice plays an important role in the microtubule dynamics

(21). Therefore, this model provides reasonable interpret-

ation for both the plus-end tracking and the microtubule

polymerization promoting activities of EB1.

In contrast to the biological importance and compli-

cated properties of MAPs, computational resources speci-

alized for MAPs (e.g. MAP databases or MAP predictors)

are still missing, hampering further experimental investiga-

tions. In this study, we attempt to establish a MAP-

centered computational analysis tool. We curate a sizable,

relatively high confident core dataset by literature reading

and construct a MAP predictor based on the representative

sequence features extracted from this core dataset. The

curated data is further enriched through an automatic an-

notation pipeline. Finally, the proposed MAP predictor

and the collected MAP-related annotations constitute our

novel MAP online analysis tool, i.e. MAPanalyzer.

Results

The manually curated core dataset

Based on literature reading, a dataset of 611 microtubule-

related proteins (MRPs) has been collected. This dataset

contains four types of MRPs: (i) MAPs, that is, the proteins

which directly bind microtubules or tubulins; (ii) Proteins

whose gene perturbations induce the alteration of microtu-

bule organization and dynamics in vivo (i.e. proteins with

microtubule phenotype); (iii) Proteins that colocalize

with microtubules and (iv) Proteins indirectly interacting

with microtubules, including proteins that interact with a

known MAP or presented in the tubulin-containing purifi-

cation compartment. The MAPs constitute the largest pro-

portion of the core dataset (310 in total; Figure 1A).

Among these 310 MAPs, 209 are capable to bind microtu-

bules, 91 bind tubulins, while the remaining 10 interact

with EB1 (the core component of microtubule plus end). In

terms of experimental evidence, the microtubule cosedi-

mentation assay ranks the top as the standard MAP identi-

fication procedure (supporting 54.5% MAPs), followed by

popular PPI assays such as coimmunoprecipitation (CoIP),

pull down and yeast two hybrid.

The core dataset also features by its species coverage and

temporal scope. On the one hand, it records MRPs from 47

species, in which proteins from the generic model organisms

unsurprisingly constitute the majority (Figure 1B). But

proteins from other organisms like Bos taurus,

Chlamydomonas reinhardtii, Dictyostelium discoideum,

Tetrahymena thermophile and Trypanosoma brucei also oc-

cupy at least 1% of the data, respectively. The presence of

the proteins from non-model organisms is partly related to

the fact that some MRPs were firstly identified before the

genomic era. Indeed, as shown in Figure 1C, among 625 ref-

erences supporting the annotations in this dataset, 93 refer-

ences were published in the last century. As a result, the core

dataset provides a more comprehensive collection of MRPs

compared with public protein/gene functional annotation

databases like UniProtKB (22) or Gene Ontology (GO) (23).

As illustrated in Figure 1D, 247 MRPs have not been anno-

tated with keywords ‘tubulin’ or ‘microtubules’ in their

function descriptions in UniProtKB (version of December,

2014), 453 MRPs have not been annotated with microtu-

bule-related terms (Supplementary Table S1) in the GO

database (version of December, 2014), and together 222

MRPs are not covered by either of them. With respect to the

MAPs, only 67 out of 310 MAPs in the core dataset have

been annotated as MAPs in either UniProtKB or GO,
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meaning that 78.4% of the MAPs are exclusively recorded

by the core dataset. Therefore, this core dataset would play

a fundamental role in constructing the MAP database as

well as the MAP predictor in MAPanalyzer.

Construction of the MAP database

To gather a more comprehensive collection of MRPs, we

extended the core dataset by searching the UniProtKB

database (22) to find close homologs (sequence iden-

tity>50%) of 310 known MAPs in the core dataset. About

2088 homologs were identified, and further classified and

annotated according to the experimental evidence

(Supplementary Table S1) provided by the GO annota-

tions. There are only six new MAPs among the identified

homologs, in line with the above observation that the core

dataset already covers many unique MAPs compared with

the GO database (Figure 1D). Besides, 37 MRPs that colo-

calize with microtubules, and 21 MRPs that have microtu-

bule phenotypes have been included, resulting in a

substantial growth of MRP entries of the corresponding

classes. Finally, most of the homologs do not have

experimental evidence for functional associations with

microtubules. Such proteins constitute the majority of the

extended dataset (Supplementary Figure S1A) and provide

a wider organism scope for the dataset (429 genomes in

total, Supplementary Figure S1B). These proteins were

annotated as the putative MAPs ‘inferred by similarity’,

and the microtubule-related electronic GO annotations (if

any) were added to our MAP database for better investiga-

tions about their potential functions.

As a result, the extended dataset contains 2698 MRP

entries supported by 675 references (Supplementary Figure

S1C and D). The MRP information can be easily queried

from our MAP database (http://systbio.cau.edu.cn/

mappred/query.php). The database prefers a UniProtKB or

RefSeq accession as the querying keyword, but also keeps

compatible with other common types of protein IDs and

protein names.

Supplementary Figure S2 shows an exemplary entry in

our MAP database, where multiple types of annotations

are exhibited, including:

1) Protein IDs and names: When assigning the primary

protein accession and protein name, those referred by the

Figure 1. Statistics of the manually curated core dataset. (A) The fraction of different classes of microtubule related proteins; (B) Statistics of source

organisms, including human (Homo sapiens), mouse (Mus musculus), fruit fly (Drosophila melanogaster), Arabidopsis (Arabidopsis thaliana), rat

(Rattus norvegicus), budding yeast (Saccharomyces cerevisiae), toad (Xenopus laevis), fission yeast (Schizosaccharomyces pombe) and others; (C)

Publication year distribution of the supporting references; (D) Overlap with the UniProtKB and Gene Ontology (GO) databases (version of December,

2014), where green bars (‘all’) present the statistics about all of the microtubule-related proteins, while the counts indicted by blue bars (‘direct’) only

take proteins that directly bind microtubules into consideration.
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authors who first identified the MAPs (or MRPs) are pre-

ferred. Therefore, the protein names may be different from

those in UniProtKB. Nevertheless, the links to the corres-

ponding accessions in the UniProtKB and RefSeq databases

are also provided. Source organism is rarely implied by the

protein name. Instead, it is explicitly shown in the

database.

2) Function on microtubules: For the MAPs, their litera-

ture-reported functions on the microtubule organization

and dynamics together with the supporting references are

provided.

3) Binding type: As described above (Supplementary

Figure S1A), MRPs have been grouped into several classes

according to their direct or indirect associations with

microtubules. The experimental evidence and supporting

references, if any, are also listed.

4) Binding domain and sites: This includes protein do-

mains or segments that influence microtubule binding.

Note that this kind of information is usually deduced by

the investigations on protein truncating mutations, and

therefore does not reach residue-level precision for the

most cases.

5) Protein basic information: This includes protein se-

quence, number of residues, molecular weight and isoelec-

tric point.

6) Domain organization (external information): The do-

main organization is illustrated according to the Pfam (24)

annotations. A summary table of the domains is firstly pro-

vided, and users can click the ‘Find it’ hyperlink inside the

table to find more MRPs containing the same domain. The

summary table is followed by a graphical representation of

the domain organization in which the domain cartoons are

linked to the corresponding Pfam database entry. We also

note the emergence of intrinsically disordered proteins in

our MRP datasets, and provide a link to the intrinsically

disordered region prediction results from the IUPRED ser-

ver (25).

7) Interaction (external information): Links to the PPI

databases BioGRID (26) and IntAct (27) are provided.

8) Reference: The references supporting our manual

curation results.

Establishment and assessment of the MAP

predictor

The core dataset also gives rise to the establishment of the

MAP predictor. In this section, we will briefly report how

the MAP predictor was established and evaluated. Firstly,

based on the core dataset, we constructed a nonredundant

dataset to train the predictor, which contains 250 positive

samples (i.e. known MAPs) and 2500 negative samples

(i.e. some randomly selected other proteins involved in the

PPIs). The proteins in the training dataset are listed in

Supplementary Table S2. We assumed that the MAPs

should share some common sequence features, e.g. the se-

quence motifs. However, few motifs could be retrieved if

we directly submitted the sequences of known MAPs to

some state-of-the-art motif discovery software tools like

MEME (28). Therefore, we devised two specialized motif

discovery approaches (see Supplementary Methods for de-

tails) and obtained a plethora of representative motifs for

MAPs (53 454 in total). We trained a regular support vec-

tor machine (SVM) classifier by using these motifs as the

input features, and benchmarked the classifier on a non-

redundant curated testing dataset including 48 positive

samples and 2400 negative samples (Supplementary Table

S3). We employed the receiver-operating characteristic

(ROC) curve, which plots the sensitivity (true-positive

rate) against one minus specificity (false-positive rate), to

assess the overall performance of a predictor. The larger

area under the ROC curve (AUC) is, the better overall per-

formance a predictor achieves. Generally, the SVM classi-

fier performs well on the curated testing dataset

(Supplementary Figure S3, AUC¼0.835). But given the

highly imbalanced nature of the curated testing dataset

(positive-to-negative ratio¼ 1:50), the false-positive rate

must be properly controlled. That is to say, more attention

should be paid to the performance when requiring the spe-

cificity �90%. With this controlled condition, the per-

formance of the above SVM classifier appears to be not

fully satisfactory (Supplementary Figure S3).

One plausible reason is that the extracted 53 454 motifs

are somewhat biased. Feature selection methods can be

employed to remove the redundant or weak motif features

and reduce the bias of the classifier. Three typical fea-

ture selection methods have been considered, namely

minimum-redundancy maximum-relevancy (mRMR) (29),

least absolute shrinkage and selection operator regression

(LASSO) (30) and support vector machine recursive feature

elimination (SVMRFE) (31). More details about these fea-

ture selection methods are available in Supplementary

Method. As shown in Supplementary Figure S3, only the

features selected by the mRMR method can stably improve

the performance when controlling the specificity�90%.

Therefore, we decide to use the mRMR-selected features

(463 in total) as our final motif feature set. In addition, to

further enhance the robustness of the classifier, the regular

SVM was further replaced by a semi-supervised SVM

framework, i.e. the Laplacian SVM (lapSVM) (32). One

major trait of the lapSVM is the introduction of unlabeled

samples, i.e. the samples belong to neither the positive

class, nor the negative class. These unlabeled samples are

assumed to settle in-between the positive samples and

the negative ones, reinforcing the classifying boundary.
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We noticed that some MRPs in our core dataset have not

been reported to bind microtubules, but do have indirect

microtubule associations (Figure 1A). These proteins

would serve as good candidates for the unlabeled samples.

We have gathered a non-redundant set of unlabeled sam-

ples from the core dataset of MRPs which colocalize with

microtubules, have microtubule phenotypes, or indirectly

interact with microtubules (Table S2). As shown in

Supplementary Figure S4A, the lapSVM marginally but ro-

bustly outperform the regular SVM within the range of

specificity�90%, therefore the lapSVM classifier is finally

approved to build our motif-based MAP classifier [i.e.

lapSVM(motif)].

In addition to the sharing of representative motifs,

MAPs are also likely to have somewhat overall sequence

similarity. Since it is difficult for short motif-based features

to describe the overall sequence similarity, we employed

another sophisticated sequence encoding, the composition

of k-spaced amino acid pair (CKSAAP) encoding to

achieve this goal. As its name implies, the CKSAAP encod-

ing is an extension of simple amino acid pair composition

encoding, and considers amino acid pairs with some spaces

in-between (e.g. KxK). The CKSAAP has been successfully

exploited to accomplish different prediction tasks, includ-

ing but not limited to the prediction of protein crystalliza-

tion ability (33), membrane protein type (34) and protein

post-translational modification sites (35, 36). Here, we

trained a lapSVM classifier based on the CKSAAP encod-

ing [i.e. lapSVM (CKSAAP)]. Similar to the

lapSVM(motif), lapSVM(CKSAAP) also exhibits good

overall performance on the curated testing dataset

(AUC¼ 0.829), indicating it would be another competitive

predictor of MAPs.

In the following paragraphs, we will validate the useful-

ness of the proposed lapSVM classifiers and describe how

these classifiers are finally incorporated into our

MAPanalyzer predictor. As mentioned previously, there is

no specific MAP predictor available yet, and researchers in

the field usually rely on classic homology searching tools

like BLAST and PSI-BLAST (37) to predict MAPs.

However, whether these generic homology searching tools

are competent for predicting novel MAPs have not been

comprehensively evaluated. From the curated testing data-

set, we exploited BLAST and PSI-BLAST to search the

(weak) homologs of the known MAPs presented in the

training dataset, and ranked them according to the best hit

E-value. The ROC curves can be plotted subsequently by

comparing the E-values of positive testing samples and

those of negative testing samples. We find that the overall

performance of BLAST is not comparable with two

lapSVM classifiers (AUC¼ 0.647 versus 0.833 and 0.829,

Supplementary Figure S4A), suggesting BLAST is a

conservative method which may not be suitable for iden-

tifying new types of MAPs. By exploiting sequence evolu-

tionary profile, the sensitivity of PSI-BLAST is

substantially enhanced, with an overall performance nearly

equivalent to the lapSVM classifiers (AUC¼ 0.823).

Though neither BLAST nor PSI-BLAST has achieved a bet-

ter overall performance, it can be found that both of them

significantly outperform two lapSVM classifiers when

applying very high stringency thresholds (Supplementary

Figure S4A). To more precisely compare the predictors, we

have applied three stringency thresholds corresponding to

the 99, 95 and 90% specificities, respectively. In line with

the intuitive observation from the ROC curves, two

lapSVM classifiers rank the best at the moderate and high

stringency thresholds, with a 4–20% better sensitivity

compared with BLAST or PSI-BLAST; but perform the

worst at the very high stringency threshold (Table 1). By

contrast, BLAST shows very impressive sensitivity at the

very high stringency threshold; but does not perform well

at the other thresholds (Table 1). These results indicate the

potential complementary relationship between BLAST and

the lapSVM classifiers. That is, BLAST is superior for find-

ing close homologs, while the lapSVM classifiers are more

sensitive to MAPs with weak or insignificant homology.

Indeed, after combined with BLAST [i.e.

‘lapSVM(motif)þlapSVM(CKSAAP)þBLAST’], the pre-

dictor’s sensitivity at the very high stringency threshold has

been considerably improved to 25.0%. Moreover, the

combined predictor is not a simple compromise between

BLAST and the lapSVM classifiers, but rather significantly

outperforms any of its three components at the high and

moderate stringency thresholds (Table 1). Finally, the com-

bined predictor also exhibits a better sensitivity than PSI-

BLAST at any of the thresholds (Table 1), indicating that

the combined predictor should be a promising method to

predict novel MAPs.

Although the above assessments have highlighted the

accuracy of the combined predictor, three doubts against

these results could be postulated. First, the curated testing

dataset is manually collected, and thus may be subjectively

biased (e.g. well-studied MAPs may be over-represented).

Second, the size of the independent dataset is also limited

and may not reflect the bona fide accuracy when predicting

MAPs from a real genome. Third, the integration with

BLAST may not be the optimal choice, since PSI-BLAST

would be a better candidate according to its fairly good

overall performance.

We addressed all of the above speculations by employ-

ing the Arabidopsis whole genome dataset. This dataset

covers nearly the whole genome of A. thaliana, and all of

its positive samples were identified from a single prote-

omics study (38). Therefore, this dataset significantly
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eliminates the subjective bias, while ensuring the whole

genome level coverage. We applied the same threshold val-

ues as what were used for the previous independent test.

Since the specificities of different predictors become no

longer aligned, we employed the Matthews correlation co-

efficient (MCC) for a comprehensive and fair comparison

(Table 2). On the Arabidopsis whole genome dataset, the

combined predictor exhibits higher overall performance

(Supplementary Figure S4B, AUC¼ 0.727) than BLAST

(AUC¼ 0.562) and PSI-BLAST (AUC¼ 0.682). When

applying certain stringency thresholds, it also significantly

outperforms PSI-BLAST and BLAST at nearly all of the

thresholds (Table 2). These results suggest the competence

of the combined predictor for the genome-wide prediction

tasks. Besides, we found the specificities of the combined

predictor are much higher than what were estimated from

the previous independent testing (Table 1), indicating that

the false-positive rate of the combined predictor might be

over-estimated, and the previously selected threshold val-

ues might be too stringent for the combined predictor. To

enable a more sensitive prediction, a low stringency thresh-

old has been added onto the combined predictor (the cor-

responding performance is also shown in Table 2). Finally,

implementation of PSI-BLAST on this dataset also clearly

explains why the integration between the lapSVM classi-

fiers and PSI-BLAST was not approved. PSI-BLAST is too

Table 1. Performance comparison on the curated testing dataset at various stringency thresholds

Method Stringency Threshold Sensitivity (%) Specificity (%)

lapSVM (motif) Very high 0.42 8.3 99.0

High 0.1 33.3 95.0

Moderate �0.187 45.8 90.0

lapSVM (CKSAAP) Very high 0.274 6.3 99.0

High 0.041 37.5 95.0

Moderate �0.06 52.0 90.0

BLAST Very high 30 22.9 99.0

High 4.22 27.1 95.0

Moderate 1.54 31.2 90.0

PSIBLAST Very high 84.4 18.8 99.0

High 23 29.1 95.0

Moderate 8.05 39.6 90.0

Combined Very high 0.121 25.0 99.0

High 0.019 41.7 95.0

Moderate �0.008 56.3 90.0

Low �0.042 75.0 80.0

The combined predictor integrates two lapSVM classifiers (based on the representative motifs and the CKSAAP encoding, respectively) with BLAST. For fair

comparisons, we have applied three stringency thresholds corresponding to the 99, 95 and 90% specificities of each predictor, respectively. A low stringency

threshold is also applied for the combined predictor to enable more sensitive predictions.

Table 2. Performance comparison on the Arabidopsis whole genome dataset at the predefined thresholds

Method Running time (h) Stringency Threshold Sensitivity (%) Specificity MCC

Combined 3 Very high 0.121 9.0 98.8 0.102

High 0.019 17.7 94.9 0.090

Moderate �0.008 28.0 92.0 0.114

Low �0.042 48.2 83.9 0.136

BLAST 1.5 Very high 30 8.9 98.5 0.091

High 4.22 16.6 92.0 0.050

Moderate 1.54 21.6 88.3 0.049

PSIBLAST 4328 Very high 84.4 9.9 98.8 0.114

High 23 16.6 92.6 0.055

Moderate 8.05 26.2 87.9 0.068

The combined predictor integrates two lapSVM classifiers (based on the representative motifs and the CKSAAP encoding, respectively) with BLAST. The

thresholds at different stringency levels are as the same as those used in Table 1. The low stringency threshold is also applied for the combined predictor to enable

more sensitive predictions. The running time is equivalent to the time consumption under the condition of Dell Power Edge R810 server using a single CPU (Intel

Xeon CPU E7-4807, 1.87 GHz).
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time-consuming (Table 2) to be applied for the predic-

tion of MAPs in our web server. In comparison, the

lapSVM classifiers and BLAST could finish the prediction

on the Arabidopsis whole genome dataset in few

hours (Table 2).

Implementation of the MAP server

Given the accuracy and time-efficiency of the combined

predictor, we have made it available in our online server

(http://systbio.cau.edu.cn/mappred/index.php). The predic-

tion webpage is shown in Figure 2. As indicated by the

navigation buttons, two prediction modes are provided

here (i.e. the single prediction mode and the batch predic-

tion mode). By using the default single prediction mode,

users can submit one protein sequence in FASTA format

and select a preferred stringency threshold. After submis-

sion, the prediction task will be immediately carried out,

unless the server load is so heavy that the prediction task

has to be temporarily appended to the queue. An exem-

plary prediction result page is shown in Supplementary

Figure S5. First, the prediction results and the output

scores from two lapSVM classifiers and BLAST are pro-

vided. Second, the MRP homologs detected by BLAST

(E< 10�4) searching against our database, if any, are also

listed, accompanying with the hyperlinks to the corres-

ponding database entries. Third, by comparing the positive

samples and negative samples from our curated training

and testing datasets, 64 Pfam domains were found to be

more frequently appeared in MAPs than randomly selected

non-MAPs (Supplementary Table S4). These domains are

likely to be associated with microtubule-related biological

functions. Therefore, any of these domains found in the

query protein are listed in the prediction result page to fa-

cilitate further investigations about the functional do-

mains. Finally, among the 53 454 gathered representative

motifs for MAPs, 366 motifs were shown to be relatively

enriched in the known microtubule binding domains or

sites (Supplementary Table S5). Considering aggregation

of these motifs may indicate the microtubule binding re-

gion, the distributions of these motifs on the query protein

sequence are also illustrated in the prediction result page

when using the single prediction mode.

Users can also switch to the batch prediction mode by

clicking the corresponding navigation button (Figure 2).

When using the batch prediction mode, users can upload a

protein sequence file and leave an E-mail address where

the prediction results will be sent to. No detailed results

other than the final prediction scores will be provided in

this mode. Finally, users can retrieve their previous predic-

tion results by inputting the job ID into the retrieval form

which is located at the bottom of the prediction page

(Figure 2).

Discussion

As demonstrated by recent interactome mapping efforts

[e.g. (39, 40)], the cellular interactome is deemed much

more complicated than a simple collection of PPIs, and

some versatile components from the interactome are high-

lighted as hub proteins (41). The broad interaction spec-

trum of a hub protein has intrigued researchers to perform

in-depth investigation on some exemplary hub proteins

like the calmodulin family proteins (42), the WD domain-

containing proteins (43) and the coiled-coil proteins (44).

Among them, microtubule (tubulin) should rank as the

case of top difficulty. On one hand, the tubulin hetero-

dimer itself is well conserved among the eukaryotic organ-

isms (45). On the other hand, the assembled microtubule is

a large protein complex which is renowned for its highly

changeable structure (1). The intrinsic dynamic instability

of microtubules not only gives rise to the divergence of

MAPs, but also sets a barrier against common high-

throughput interaction mapping techniques. As a result,

knowledge about the MAPs turns out to be scattered amid

the studies that focus on individual MAPs. In this study,

we established a MAP database by combining extensive

manually curation with the automatic annotation pipeline.

The resulting MAP database features in its relatively high

coverage of known MAP families, in comparison with gen-

eric databases like UniProtKB or GO (Figures 1D and

Supplementary Figure S2D). Therefore, the complied data-

base would serve as an enriched resource for the systematic

studies on MAPs.

What enables a MAP to bind microtubules or tubulins?

It is a long-standing question for the biologists in the field.

In this study, we assume that MAPs share some representa-

tive sequence motifs that can be distinguished from other

proteins, and build a MAP predictor based on these motifs

accordingly. Despite the accuracy of our final predictor

(Tables 1 and 2), the computational framework implies

that the determinant for microtubule binding activity

seems more complicated than simple motif matching. First,

there is no single motif universally applicable for all MAPs.

Instead, 53 454 motifs (463 motifs after further selection

by the mRMR method) can be derived from the 250 MAPs

in the training dataset. Second, a matching of representa-

tive motif does not always imply the microtubule binding

region, since only 366 out of 53 454 motifs are relatively

enriched in the known microtubule binding regions

(Supplementary Table S5). On the one hand, these 366

motifs may be related to microtubule binding. Indeed,

we note that the positively charged residues are
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over-represented among the corresponding motif list

(Supplementary Table S5), in line with the speculation that

conserved positively charged residues are indicators of

some microtubule binding regions (46–48). To facilitate

the users of MAPanalyzer, the distribution of these 366

motifs on each query sequence is illustrated

(Supplementary Figure S5). On the other hand, the vast

majority of the representative motifs do not aggregate in

Figure 2. The prediction page of MAPanalyzer. Two prediction modes (i.e. the single prediction mode and the batch prediction mode) are available,

and the input form for the former one is shown here. By applying the single prediction mode, a user can submit one protein sequence and the pre-

ferred threshold to run prediction. The previous prediction results can be retrieved by inputting the Job ID into the textbox located at the bottom of

this prediction page.
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the known microtubule binding domains (or regions), indi-

cating some auxiliary sequence motif features may be also

helpful for the recognitions of MAPs. Indeed, it is known

that for some MAPs, the domain that binds microtubules is

distinct from the domain that exerts microtubule function

or that interacts with other MAPs (49–51). The sequence

features of the latter domains are plausibly captured by the

rest of representative motifs. Third and utmost, the success

of the ‘lapSVM(motif)þlapSVM(CKSAAP)þBLAST’ com-

bination indicates although the motif information is vital

for MAP discrimination, the overall sequence similarity

also plays an irreplaceable role. That is to say, the effi-

ciency of the proposed MAP predictor depends both on its

exploitation of the motif information and its depiction

about the sequence similarity among MAPs through the

CKSAAP encoding and BLAST results. Finally, to ensure a

wider applicability of our MAP predictor, we here only

consider sequence features. Nevertheless, a more sophisti-

cated representation of MAP could be formulated by sum-

marizing the conserved properties among the structures of

known MAPs in the near future.

In conclusion, we have reported the establishment of

the first specialized computational tool for querying and

analyzing MAPs, which contains a sizable MAP database

and a novel MAP predictor. Our MAPanalyzer will facili-

tate and accelerate the related experimental and computa-

tional studies on the microtubule system: fundamental but

intriguing machinery in the eukaryotic cells.

Materials and Methods

Curation of the core dataset

We collected the core dataset of MRPs from the literature.

Given the huge amount of available MAP- or MRP-related

references (more than 30 000), we followed two compro-

mised approaches to collect MRPs. First, we searched the

candidate proteins from the NCBI protein database by

using the keyword ‘microtubule associated protein’, and

removed the redundant proteins (i.e. >50% sequence iden-

tity) by using the BLASTCLUST tool (ftp://ftp.ncbi.nih.

gov/blast/documents/blastclust.html). The non-redundant

candidate proteins were further manually examined for ex-

perimental evidence. Second, we retrieved the abstracts of

the MAP- or MRP-related references with the joint key-

words of ‘microtubule/tubulin’ and ‘bind/interact/associ-

ate’, then curated MRPs by reading the full-text of the

references in the filtered list. As described above, MAPs

that directly bind microtubules or tubulins, and three other

classes of MRPs (i.e. proteins that colocalize with microtu-

bules, indirectly interact with microtubules, and have

microtubule phenotype, respectively) were collected. We

focused on the curation of experimental evidence, microtu-

bule binding domains (if any) and microtubule functions

(if any). Our first round of curation was finished in

December, 2012, and the reported latest version of the

core dataset was compiled in November, 2014.

Database construction

The core dataset was further extended by adding the

homologs (sequence identity >50%) of known MAPs. The

homologs were extracted from the UniProtKB database

(22) and annotated according to the experimental evidence

(Supplementary Table S1) given by the GO database (ver-

sion of December, 2014) (23). The extended dataset was

loaded as a MySQL database, whose querying interface

was constructed and supported by the PHP and Apache

techniques.

Dataset preparation for the MAP predictor

In total, we have prepared one training dataset and two

testing datasets for the MAP predictor. In the training and

curated testing datasets (Supplementary Tables S2 and S3),

the positive samples were the MAPs in the core dataset,

while the negative samples were derived from known PPIs.

More specifically, in order to gather negative samples, we

collected members of the protein complexes recorded in

the PDB database (downloaded in September, 2013) (52)

and proteins from the species interactome recorded in the

BioGRID database (http://www.thebiogrid.org, version

3.2.106) (26). We only considered major source species of

the core dataset with a sizeable interactome, including

Homo sapiens, Mus musculus, Rattus norvegicus,

Xenopus laevis, Drosophila melanogaster, Caenorhabditis

elegans, Arabidopsis thaliana, Saccharomyces cerevisiae

and Schizosaccharomyces pombe. The known MRPs indi-

cated by GO annotation (Supplementary Table S1) were

excluded from the negative samples. Finally, we applied an

intraclass 25% sequence identity cutoff and an interclass

80% sequence identity cutoff to remove redundant se-

quences. Note that, the interclass 80% sequence identity

cutoff implies that a positive sample and a negative sample

are allowed to be homologous, and such a relaxed in-

terclass identity cutoff is helpful for rigorous assessment

and false-positive control.

By the above procedure, 298 nonredundant positive sam-

ples were gathered. 250 of them were randomly selected as

the training positive samples, and the rest were included in

the curated testing dataset. Subsequently, the nonredundant

negative samples were randomly added to either of the data-

sets, until the 1:10 and 1:50 positive-to-negative ratios were

reached for the training and curated testing datasets,
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respectively. Finally, other MRPs in the core dataset consti-

tuted the unlabeled samples in the training dataset, which is

only used by the lapSVM classifiers. The redundant se-

quences among the unlabeled samples were also removed

by using BLASTCLUST with an intra-class 25% sequence

identity cutoff.

We also employed the Arabidopsis whole genome data-

set as a more comprehensive testing dataset. The positive

samples in this dataset were the potential MAPs identified

by one proteomic assay (38), and other proteins from the

A. thaliana genome constituted the negative samples.

Proteins presented in the training dataset were removed

from this testing dataset. Note that for a realistic evalu-

ation of the genome-wide prediction performance, no re-

dundancy removal procedure was applied to this dataset.

Predictor establishment and assessment

For the motif-based classifiers, we extracted and selected

representative motifs as the input features of the regular

SVM and the lapSVM classifiers (detailed procedure is

available in the Supplementary Method). The representa-

tive motifs were encoded in the binary fashion, that is, if

the protein is matched by one motif, the corresponding fea-

ture value is 1, otherwise 0. The regular SVM was estab-

lished by using the LIBSVM software with the radius basis

function kernel (53), while the lapSVM training and pre-

dicting were implemented by translating the source code

provided by the original authors (32) into R scripts (be-

cause the R script is suitable for the implementation in our

online server). The parameters of these machine learning

classifiers were optimized through 5-fold cross-validations,

similar to our previous study (54). The optimized param-

eters are listed in Supplementary Table S6.

For the CKSAAP-based lapSVM classifier, we first en-

code the protein sequence according to the CKSAAP

encoding scheme. Briefly speaking, the CKSAAP encoding

describes protein sequence using the composition of k-

spaced amino acid pairs. The integer k is the number of

spaces between an amino acid pair, ranging from 0 to

kmax. In this study, kmax was optimized as 1, i.e. only

amino acid pairs with 0 or 1 space in-between were

counted. Detailed calculation procedures of the CKSAAP

encoding have been explicitly described in previous studies

(33, 34). The CKSAAP-based lapSVM classifier was

trained in the same way as the motif-based lapSVM classi-

fier. The optimized parameters for the CKSAAP-based

lapSVM are also listed in Table S6.

For BLAST and PSI-BLAST, we searched the database

of training positive samples by using the testing sequence

(or its sequence profile when running PSI-BLAST). The se-

quence profile is generated by running PSI-BLAST in priori

against the NCBI nr90 database with the common param-

eters ‘-h 0.001 -j 2’. For each query, the best hit E-value

(Ev) was extracted from the output file of the BLAST or

PSI-BLAST program, and further transformed into pEv as:

pEv ¼
200 if Ev�10�200

�log10Ev if 10�200 < Ev < 103

�3 if Ev�103 or no hit found

8>><
>>:

(1)

As described in the Results, the combination of two

lapSVM classifiers (which are based on representative

motifs and CKSAAP encoding, respectively) and BLAST

results in a more powerful predictor. The combination of

these three predictors was achieved by the weighted aver-

aging of the normalized decision score of the motif-based

lapSVM (DsMotif), the normalized decision score of the

CKSAAP-based lapSVM (DsCKSAAP) and the transformed

BLAST E-value (pEv), defined as

Scombined ¼
1

3
ðaMotif �

1� e�DsMotif

1þ e�DsMotif
þ aCKSAAP �

1� e�DsCKSAAP

1þ e�DsCKSAAP

þ aBLAST �
pEv

10
Þ

(2)

where Scombined is the final output score of the combined

predictor, and aMotif, aCKSAAP and aBLAST are the weights

for the corresponding score terms. aMotif, aCKSAAP and

aBLAST have been preliminarily optimized as 0.35, 0.5 and

0.15, respectively.

As previously mentioned, the established predictors

were benchmarked on the two independent testing data-

sets. We measured the sensitivity, specificity and MCC at

certain stringency thresholds. These performance indica-

tors could be calculated as,

Sensitivity ¼ TP

TPþ FN
(3)

Specificity ¼ TN

TNþ FP
(4)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞ � ðTPþ FNÞ � ðTNþ FPÞ � ðTNþ FNÞ

p

(5)

where TP, FP, TN, FN stand for the count of true positive,

false positive, true negative, false negative, respectively.

We also employed the ROC curve (55) to measure the

overall performance of different predictors. The ROC

curve plots sensitivity (true-positive rate) against one

minus specificity (false-positive rate), as the classification

threshold varies. The AUC is used to evaluate the overall

performance of a predictor.
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Supplementary Data

Supplementary data are available at Database Online.
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