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Abstract

Background: Previously developed classifications of glioma have provided enormous advantages for the diagnosis
and treatment of glioma. Although the role of alternative splicing (AS) in cancer, especially in glioma, has been
validated, a comprehensive analysis of AS in glioma has not yet been conducted. In this study, we aimed at
classifying glioma based on prognostic AS.

Methods: Using the TCGA glioblastoma (GBM) and low-grade glioma (LGG) datasets, we analyzed prognostic
splicing events. Consensus clustering analysis was conducted to classified glioma samples and correlation analysis
was conducted to characterize regulatory network of splicing factors and splicing events.

Results: We analyzed prognostic splicing events and proposed novel splicing classifications across pan-glioma
samples (labeled pST1–7) and across GBM samples (labeled ST1–3). Distinct splicing profiles between GBM and LGG
were observed, and the primary discriminator for the pan-glioma splicing classification was tumor grade. Subtype-
specific splicing events were identified; one example is AS of zinc finger proteins, which is involved in glioma
prognosis. Furthermore, correlation analysis of splicing factors and splicing events identified SNRPB and CELF2 as
hub splicing factors that upregulated and downregulated oncogenic AS, respectively.

Conclusion: A comprehensive analysis of AS in glioma was conducted in this study, shedding new light on glioma
heterogeneity and providing new insights into glioma diagnosis and treatment.
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Background
Glioma classification based on molecular characteristics
plays an increasingly important role in diagnosis and treat-
ment of glioma. Genetic, DNA methylation, gene expres-
sion features have been demonstrated to influence the
prognosis of glioma patients [1, 2], and related molecular
signatures, such as isocitrate dehydrogenase genes 1 and 2
(IDH1/IDH2) status, O6-methylguanine-DNA methyl-
transferase (MGMT) promotor status, codeletion of
chromosome arm 1p and 19q (1p/19q codel) and TERT
promoter status have been applied widely in prognosis
prediction [3]. Previous research on glioma classification
has assisted in the prediction of prognosis and the

guidance of treatment regimens, for example, the tran-
scriptional classification of glioma reported by The Cancer
Genome Atlas (TCGA) defined 4 subtypes, classical (CL),
mesenchymal (MES), neural (NE), and proneural (PN), ad-
vancing our knowledge for the improvement of glioma
diagnosis and therapy [1, 4–6]. However, glioma remains
a serious threat to patients, especially the most aggressive
kind, glioblastoma (GBM). Due to the lack of an effective
treatment, the median survival of GBM patients is only
14.6months after current standard therapy [7]. We fo-
cused on a novel approach, classification of glioma based
on alternative splicing (AS) event profiles, to understand
glioma more comprehensively and explore new ideas for
its diagnosis and treatment.
AS is a dynamic process that occurs after a gene is

transcribed into precursor mRNA, and leads to com-
plexity of the transcriptome. Changes in splicing pat-
terns affect protein structure and function.
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AS plays critical roles in oncogenesis. Cancer-specific
mRNA transcripts, may result in loss-of-function of
tumor suppressors or activation of oncogenes and can-
cer pathways [8]. Most recently, a study comprehensively
analyzed different tumor types from TCGA datasets to
detect tumor-specific AS in combination with proteomic
analysis; this study proposed a new method for exploring
peptides as potential antigens in tumor immunotherapy
[9]. In addition to identifying tumor-specific AS, the bio-
logical effects of AS on cancer progression, especially
prognosis-related AS, also warrant attention. Compre-
hensively analysis of non-small cell lung cancer [10],
colorectal cancer [11] and esophageal carcinoma [12] re-
vealed the prognostic significance of AS. AS of ANXA7,
MARK4, MAX, USP5, WWOX, BIN, RON, and CCND1
were reported to affect critical biological functions of gli-
oma, resulting in altered prognosis [13–15]; however, a
systematic analysis of glioma splicing profiles has not
been performed. Building on the availability of RNA-seq
data of TCGA, we performed a comprehensive analysis
of splicing events associated with prognosis in patients
with glioma. Moreover, based on prognosis-related spli-
cing events, we identified novel classification of glioma
with distinct splicing characteristics and clinical features,
shedding light on the new ideas for glioma research.

Methods
Data acquisition
RNA-seq data and corresponding clinical data for 665
glioma samples (154 GBM, 511 LGG) were acquired
from the data portal for TCGA (https://portal.gdc.can-
cer.gov/;DbGaP Study Accession:phs000178), using R/
Bioconductor package TCGAbiolinks. Percent Spliced In
(PSI) values, the percentage of splicing events in the
abovementioned samples, were downloaded by using
TCGASpliceSeq [16] (http://bioinformatics.mdanderson.
org/TCGASpliceSeq), a web-based platform that pro-
vides splicing patterns of TCGA tumors. In this plat-
form, splicing events were divided into 7 categories,
including Exon Skip (ES), Retained Intron (RI), Alternate
Promoter (AP), Alternate Terminator (AT), Alternate
Donor site (AD), Alternate Acceptor site (AA), and Mu-
tually Exclusive Exons (ME). In total, 83,776 splicing
events were detected in GBM dataset, including 47,672
ES, 3574 RI, 12425 AP, 9210 AT, 4910 AD, 5630 AA
and 355 ME. A total of 96,419 splicing events were de-
tected in the LGG dataset, including 58,503 ES, 3694 RI,
13183 AP, 9366 AT, 5260 AD, 5954 AA and 458 ME.

Survival analysis
The patients were divided into two groups by the mean
cutoff PSI for each splicing event. To conduct further
clustering analysis, which was needed to ensure that the
data were not null and exclude the splicing events affected

by outliers, splicing events that met the following condi-
tions were included: 1) the PSI value was not missing for
any samples; and 2) the sample size of each group was
higher than 5% of the total size (n ≥ 8 in GBM, n ≥ 33 in
glioma). Overall, 16,173 events across the pan-glioma
samples and 20,939 events across the GBM samples
matched. The log-rank test was used to assess the rela-
tionship between overall survival (OS) and AS events.
Splicing events with a p-value< 0.01 in the log-rank test
were regarded as prognostic. The same strategy was per-
formed in additional studies, including survival analysis
for splicing subgroups and splicing factors, as described in
our former study [17–19].

Clustering analysis
Clustering analysis of prognosis-related splicing events
was performed across all glioma (GBM + LGG) samples
and for GBM samples.
Monte Carlo Consensus Clustering (M3C), a consensus

clustering-based algorithm with a hypothesis testing
framework, was used in our clustering study. The R pack-
age of M3C was downloaded from Bioconductor (https://
www.bioconductor.org/). To evaluate the best number of
subgroups (k), we comprehensively considered the follow-
ing indexes: cumulative distribution function (CDF), em-
pirical p value, proportion of ambiguous clustering (PAC)
and relative cluster stability index (RCSI).

DNA methylation profiling
We evaluated the DNA methylation levels across spli-
cing clusters by using a strategy similar to that reported
by Michele Ceccarelli did [2].

Subtype-specific signatures
Splicing events in each subtype were regarded as signa-
tures if their mean PSI values were 30% higher than those
in any other subtype (FDR < 0.05). Statistical analysis was
performed by using the Mann-Whitney U test. The R
package Scales was used to convert the PSI values of each
splicing event to a scale from 0 to 1; subsequently, the
converted values were displayed in heatmaps.

Correlation analysis of splicing factors and splicing events
Splicing factors with recognized prognostic significance
in cancers, especially in glioma and pST1-specific spli-
cing events, were selected for the analysis. A Spearman
correlation test was used to evaluate the association be-
tween expression levels of splicing factors and PSI values
of pST1-specific splicing events. Correlations with a co-
efficient > 0.45 and p-value< 0.05 were considered to be
significant and are shown in the network diagram.
Cytoscape (version 3.5.1) was used to construct the net-
work of relationships.
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IDH-status-related splicing events
Prognostic splicing events with mean PSI values that
exceeded twice the difference between groups were
regarded as IDH status-related splicing events (FDR <
0.05). Statistical analysis was performed by using the
Mann-Whitney U test. The R package Scales was used
to convert the PSI values of each splicing event to a scale
from 0 to 1; subsequently, the converted values were dis-
played in heatmaps.

Results
Identification of prognostic alternative splicing events in
the TCGA GBM and LGG datasets
Splicing event profiles were analyzed in depth for 154 GBM
patients and 511 LGG patients from TCGA (https://portal.
gdc.cancer.gov/;DbGaP Study Accession:phs000178). Uni-
variate survival tests were conducted to assess the correl-
ation between the PSI of splicing events and OS
(Additional file 1: Table S1, Additional file 2: Table S2).
First, to search for prognostic splicing events in the pan-
glioma samples, we combined the GBM and LGG datasets
and conducted a comprehensive survival analysis; we iden-
tified 10,370 splicing events with prognostic significance, in-
cluding 2611 ES, 693 RI, 1378 AP, 4456 AT, 568 AD, 632
AA and 32 ME (Fig. 1a, Additional file 1: Table S1). Further
analysis revealed that there is a substantial difference in
splicing patterns between GBM and LGG. Survival analysis

was then performed for GBM alone. A total of 1038 spli-
cing events were subsequently detected as significantly
associated with GBM patient survival, including 344
ES, 45 RI, 164 AP, 322 AT, 85 AD, 77 AA and 1 ME
(Fig. 1b, Additional file 2: Table S2). A total of 551
splicing events were involved in both pan-glioma and
GBM prognosis (Fig. 1c). Interestingly, over 50% of
splicing events were prognostic in each splicing cat-
egory across pan-glioma samples, while less than 7%
of splicing events were prognostic in each splicing
category across GBM samples (Fig. 1d).

Consensus clustering identifies seven splicing types of
glioma
To segregate the splicing subtypes across the pan-glioma
samples, we performed M3C analysis for prognosis-
related splicing events with 665 glioma samples. The
data showed that the clustering stability was best at k = 2
or 7 (Fig. 2a, b, Additional file 7: Figure S1). Regardless
of whether k = 2 or k = 7, glioma grade was the principal
discriminator for GBM and LGG samples that were not-
ably distributed in different clusters, demonstrating that
clustering based on our criteria is consistent with the
clinical classification of gliomas and indicating that spli-
cing profiles differ between GBM and LGG (Fig. 2c). To
explore the intrinsic characteristics of LGG, we further
analyzed glioma splicing types at k = 7, labeled pST

Fig. 1 Analysis of prognostic splicing events in pan-glioma/GBM samples. a The distribution of alternative splicing categories of prognostic
splicing events in pan-glioma samples. b The distribution of alternative splicing categories of prognostic splicing events in GBM samples. c Venn
diagrams showing the distribution of prognostic splicing events in pan-glioma/GBM samples. d Percentage of prognostic alternative splicing
events in 7 splicing categories
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(pan-glioma Splicing Type) 1–7, which contained 153,
54, 173, 94, 20, 74, and 97 samples, respectively. Consist-
ent with previous data, principal component analysis
(PCA) based on signatures of pST1–7 in further analysis
also revealed marked differences between GBM and
LGG samples (Fig. 2d). As previously mentioned, pST1
was exclusively from the GBM dataset and included
nearly all GBM samples (153/154, 99.4%) (Table 1). The
other six clusters are almost all from LGG, except for
one pST3 sample from GBM (Table 1).
To identify the clinical features and molecular charac-

teristics of each cluster, we analyzed clinical data of each
sample from TCGA and identified crucial molecular in-
dicators of glioma. DNA methylation profiles were also
shown to be clinically relevant for glioma classification

[2]. To determine the relationship between DNA methy-
lation profiles and AS profiles, we performed an inte-
grated analysis of data from TCGASpliceSeq and the
TCGA methylation platform, including the Human-
Methylation450/27 platforms.
Surprisingly, pST2–7 had distinct clinical and molecular

features; among those types, the characteristics of pST2
were remarkable. Compared to pST3–7, pST2 contains a
higher proportion of grade III gliomas (49/53, 92.5%, p <
0.01) and a higher proportion of astrocytoma (35/53,
66.0%, p < 0.01) (Table 1). Clinically, pST2 resembled
pST1 or GBM, with a higher diagnosis age and an un-
favorable prognosis (Table 1 and Fig. 2e). Interestingly,
pST2 also shared characteristics similar to those of pST1
or GBM, with molecular enrichment for IDH wildtype

Fig. 2 Identification of 7 splicing types of pan-glioma samples. a Consensus clustering matrix of 665 glioma samples for k = 7. b CDF plot for k =
2 to k = 8. c Heatmap of percent spliced in (PSI) values. Columns represent 7 splicing types across 665 TCGA glioma samples, labeled pST1–7;
rows represent PSI values of splicing signatures in pST1–7. d Principal component analysis (PCA) of pST1–7. e Kaplan-Meier overall survival curves
for pST1–7
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Table 1 Clinical characteristics of pan-glioma splicing types

pST1(n =
153)

pST2(n = 54) pST3(n =
173)

pST4(n = 94) pST5(n =
20)

pST6(n = 74) pST7(n = 97) Total(n = 154)

Clinical

Age

Median 60 57 38 38 50 40 43.5 47

Survival (in months)

Median (CI) 13.5 (12.1,
15.3)

20.2 (17.9,
27.1)

94.5 (55.5,
NA)

88.7
(68.4132.6)

NA (32.1,
NA)

148.2 (74.5,
NA)

172.2 (76.1,
NA)

51.2 (44.6,
66.7)

Karnofsky score

100 12 4 30 17 2 4 17 86

90 2 12 41 23 3 13 19 113

70–80 69 11 15 10 3 12 10 130

< 70 31 3 6 3 0 1 3 47

Sex

Female 54 26 53 38 9 35 38 253

Male 99 27 85 56 7 35 46 355

Grade

G2 0 4 70 44 7 45 44 214

G3 0 49 67 50 9 25 40 240

G4 153 0 1 0 0 0 0 154

Histology

Astrocytoma 0 35 68 37 7 15 7 169

Glioblastoma 153 0 1 0 0 0 0 154

Oligoastrocytoma 0 9 39 25 3 18 19 113

Oligodendroglioma 0 9 30 32 6 37 58 172

Molecular

IDH Status

Mutant 9 5 151 88 17 59 96 425

WT 140 49 21 5 3 14 1 233

1P19Q

Codel 0 1 23 20 9 28 85 166

Non-codel 147 53 150 74 11 46 12 493

TERT Expression Status

Expressed 127 39 40 20 12 27 82 347

Not.expressed 25 15 132 73 8 46 15 314

ATRX Status

Mutant 8 6 94 53 4 21 9 195

WT 138 48 78 40 16 52 88 460

CHR7.Gain.CHR10.loss

Gain.chr7&loss.chr10
97 37 14 0 1 2 0 151

No.combined. CNA 50 17 159 93 19 70 97 505

CHR19.20.co.gain

Gain.chr19/20 19 6 3 0 0 2 0 30

No.chr19/20.gain 128 48 170 93 20 70 97 626

MGMT Promoter

Li et al. BMC Medical Genomics          (2019) 12:165 Page 5 of 16

http://chr19.20.co


(49/54, 90.7%, p < 0.01), 1p/19q non-codeletion (53/54,
98.1%, p < 0.01), MGMT promotor unmethylated (29/54,
53.7%, p < 0.01), chromosome 7 gain paired with chromo-
some 10 loss (37/54, 68.5%, p < 0.01), chromosome 19/20
gain (6/54, 11.1%, p < 0.01) (Table 1 and Fig. 3c). In
addition, compared to pST3–7, pST1–2 showed genome-
wide hypomethylation (Additional file 9: Figure S3). Over-
all, although the pST2 samples were all from the LGG
dataset, this group had a malignant phenotype similar to
that of GBM. Unlike pST2, pST7 harbored oligodendrogli-
oma (58/84, 69.0%, p < 0.01), as indicated by histological
analysis (Table 1 and Fig. 3c). Moreover, patients in pST7
had better clinical outcome, with molecular phenotypes
characteristic of a favorable prognosis. Notably, pST7 was
enriched for IDH mutation (96/97, 99.0%, p < 0.01), 1p/19q

co-deletion (85/97, 87.6%, p < 0.01), and MGMT promotor
methylation (94/97, 96.9%, p < 0.01), and it harbored no
chromosome 7 gain paired with chromosome 10 loss or
chromosome 19/20 gain (Table 1 and Fig. 3c).
Subsequently, we found our novel splicing clusters

correlated to the published classifications of glioma,
taking transcriptome subtype (CL, MES, NE, PN) for
example, most of the pST1–2 samples were CL or MES
(157/184, 85.3%), while pST6 were mainly NE (64/69,
92.8%) and pST3, 4, 5, 7 were mainly PN (p < 0.01)
(Table 1 and Fig. 3c). Meanwhile, comparing to DNA
methylation subtypes (LGm1–6), clear tendency of the
distribution was observed: 92.6% (163/176) pST1–2
samples were divided into LGm4–6; while 90.2% (413/
458) pST3–7 samples were divided into LGm1–3,

Table 1 Clinical characteristics of pan-glioma splicing types (Continued)

pST1(n =
153)

pST2(n = 54) pST3(n =
173)

pST4(n = 94) pST5(n =
20)

pST6(n = 74) pST7(n = 97) Total(n = 154)

Methylated 51 25 147 78 16 63 94 474

Unmethylated 71 29 26 16 4 11 3 160

Clusters

Transcriptome Cluster

CL 49 26 7 1 1 1 0 85

MC 66 16 8 6 1 0 0 97

NE 5 1 19 9 0 64 12 110

PN 18 3 72 61 7 4 69 234

Original Cluster

Classical 39 0 0 0 0 0 0 39

G-CIMP 7 0 1 0 0 0 0 8

IDHmut-codel 0 1 23 20 9 28 85 166

IDHmut-non-codel 0 4 127 67 8 31 11 248

IDHwt 0 49 21 6 3 14 1 94

Mesenchymal 50 0 0 0 0 0 0 50

Neural 26 0 0 0 0 0 0 26

Proneural 29 0 0 0 0 0 0 29

Pan-Glioma RNA Expression Cluster

LGr1 20 4 25 17 9 0 64 139

LGr2 3 0 0 2 0 63 21 89

LGr3 9 4 127 68 10 7 12 237

LGr4 121 46 20 6 1 3 0 197

Pan-Glioma DNA Methylation Cluster

LGm1 7 4 18 11 2 7 3 52

LGm2 1 0 120 59 7 38 27 252

LGm3 0 1 14 19 8 14 66 122

LGm4 43 14 4 0 1 3 0 65

LGm5 59 30 12 0 1 2 0 104

LGm6 12 5 5 5 1 10 1 39
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which is genome-wide hyper-methylation (p < 0.01)
(Table 1 and Fig. 3c).
Glioma classification analysis of genomics, RNA expres-

sion profiling, epigenetics or proteomics had been pub-
lished. In this study, classification based on AS was also
conducted. Actually, correlation among classifications
were common [2], indicating that clinical phenomenon
could be related to multiple molecular characteristics of
different levels. Using these classifications comprehen-
sively might be more reliable.

Consensus clustering identifies three splicing types of
GBM
Compared to LGG, GBM has a distinct genotype and
phenotype and a different splicing profile, according to
our data. In addition, GBM requires more aggressive treat-
ment due to its unfavorable outcomes and refractoriness.
Heterogeneity in GBM is considered to contribute to
treatment resistance [20, 21]. By using the single-cell
RNA-seq technique, which was developed rapidly in re-
cent years, intratumoral heterogeneity in GBM was

Fig. 3 Identification of 3 splicing types of GBM samples. a Consensus clustering matrix of 154 GBM samples for k = 3. b CDF plot for k = 2 to k =
8. c P-values for k = 2 to k = 8. d Heatmap of percent spliced in (PSI) values data. Columns represent 3 splicing types across 154 TCGA GBM
samples, labeled ST1–3; rows represent PSI values of splicing signatures in ST1–3. e Principal component analysis (PCA) of ST1–3. f Kaplan-Meier
overall survival curves of ST1–3. g Kaplan-Meier overall survival curves of patients classified by therapy regimen of ST1–3

Li et al. BMC Medical Genomics          (2019) 12:165 Page 7 of 16



identified at the single-cell level [22, 23]. To reveal the
heterogeneity in GBM and offer more targeted sugges-
tions for GBM diagnosis and treatment, classification of
GBM according to molecular phenotype has always been
the standard method [1, 2]. However, classification for
GBM based on AS has not yet been explored. Using the
same strategy used for pan-glioma classification, we per-
formed a classification study for GBM alone. Monte
Carlo Consensus Clustering of prognosis-related spli-
cing profiles for 154 GBM samples identified three
robust clusters (Fig. 3a, d), labeled ST (splicing type)
1–3, with the flattest curve in the CDF plot (Fig. 3b),
the lowest p-value (Fig. 3c), and elbows in the PAC
score curve and RCSI curve (Additional file 8: Figure
S2A, S2B) at k = 3. ST1, ST2 and ST3 contain 49, 49
and 56 samples, respectively. PCA based on signatures
of ST1–3 was also performed in further analysis to
show the differences among the 3 splicing types of
GBM samples (Fig. 3e). To identify the molecular
characteristics of each cluster, we also analyzed sev-
eral recognized molecular indicators for GBM, includ-
ing IDH status, CpG island methylator phenotype
(CIMP), and MGMT promoter status. In total, 6.8%
(10/146) IDH mutations were observed in all GBM
samples and differed among the three splicing clus-
ters. IDH mutations occurred most frequently in ST3
(7/56, 12.5%), with no IDH mutations in ST1 (0/46)
and a frequency of 6.3% (3/48) in ST2 (p < 0.05)
(Table 2). Consistent with the association between
IDH status and CIMP in glioma, ST1 was exclusively
non-G-CIMP (48/48, 100%), while G-CIMP samples
were enriched in ST2 (2/48, 4.2%) and ST3 (6/56,
10.7%) (p < 0.05) (Table 2). MGMT promoter status
also differed among the three clusters. A higher pro-
portion of MGMT promoter methylation samples was
observed in ST3 (24/45, 53.3%) than in ST1 (11/37,
29.7%) or ST2 (17/41, 41.5%) (p = 0.099) (Table 2).
To further clarify the clinical significance of this novel

classification based on survival-related splicing events, we
analyzed the clinical data of TCGA patients. The most con-
sistent clinical relation for previous GBM transcriptome
classification was age, with a markedly higher proportion of
younger patients in the proneural classification [1]. In con-
trast, our GBM splicing subtypes were not significantly re-
lated to median age at diagnosis, but the proportion of
younger patients (<=40) in ST1 (1/49, 2.0%) was smaller
than that in non-ST1 (11/105, 10.5%) (Table 2). Compared
to ST2 patients (15.1months) and ST3 patients (15.6
months), ST1 patients (9.0months) displayed markedly
shorter median survival time (Table 2 and Fig. 3f). Al-
though the difference was not statistically significant, longer
disease-free survival was observed in ST3 patients (11.0
months) than in ST1 (8.4months) and ST2 (8.5months)
patients (Table 2).

To assess the effect of standardized treatment on the 3
clusters, we examined TCGA data and compared the
survival of patients receiving standardized treatment, de-
fined as concurrent TMZ chemotherapy and radiother-
apy, and nonstandard treatment. Standard treatment
significantly improved prognosis in the ST3 cluster (p =
0.027), while it did not alter survival in the ST1 and ST2
clusters (Fig. 3g).
Moreover, we compared our classification to the previ-

ous transcriptional subtypes of GBM [1], and we found
that ST1 samples were mainly distributed in MES (38/
48, 79.2%) and rarely distributed in PN (1/48, 2.1%) (p <
0.01) (Table 2). Other comparisons of clustering by
splicing profiles and clustering by previously reported
classifications were also made to show the relationships
between these classifications (Table 2).
In summary, clustering analysis of GBM based on

prognostic AS events defined 3 subtypes: ST1 has the
worst clinical outcome and molecular features of poor
prognosis, ST3 has the best clinical outcome, treatment
sensitivity and molecular features of favorable prognosis,
and ST2 has clinical and molecular characteristics be-
tween those of the other 2 subtypes.

Identification of subtype-specific splicing events
To classify external glioma samples, subtype-specific spli-
cing signatures were investigated. The splicing events that
increased only in one subtype were identified and defined
as signatures of each subtype. A heatmap was generated
to display a total of 1175 splicing signatures (pST1–7: 265,
50, 5, 4, 370, 202, and 279) in each subtype of pan-glioma
(Fig. 2c and Additional file 3: Table S3). The representa-
tive splicing signatures in each cluster were also presented
in box plots, including AS of ZNF283 (AT), POLR2F
(AT), LSM5 (ES), ZNF771 (AT), AKT3 (AT), GLS (AT),
and LDHA (AP) (Fig. 4a). POLR2L, a subunit of RNA
polymerase II, was found to be a prognostic splicing fac-
tor, and its AS was also prognostic in lung cancer [10].
Here, we also discovered that another subunit of RNA
polymerase II, POLR2L, whose AS was an important prog-
nostic signature in pST2, might contribute to the malig-
nant phenotype of low-grade glioma. AS of another
splicing factor, LSM5 [24], was specifically upregulated in
pST3. AS of AKT3 was reported to play important roles
in cancers [25], and AKT3 expression was involved in gli-
oma progression [26, 27]. The data demonstrated that AS
of AKT3 was a splicing signature of pST5, which might
further reveal the role of AKT3 in glioma. GLS and LDHA
are metabolic enzymes that participate in biological pro-
gression of IDH-mutant glioma [28, 29]; however, the role
of AS of GLS and LDHA in glioma remains unclear. Our
data indicated that AS of GLS and LDHA were signatures
of pST6 and pST7, respectively, the clusters with the best
prognosis, suggesting that both expression and AS of
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Table 2 Clinical characteristics of GBM splicing types

ST1(n = 49) ST2(n = 49) ST3(n = 56) Total(n = 154)

Clinical

Age

Median 62.8 60.1 61.0 60.24

No. ≤ 40 years old 1 5 6 12

Survival (in months)

Median (CI) 9.0 (5.47, 12.8) 15.1 (13.5, 17.7) 15.6 (13.5–25.5) 13.8 (12.1–15.3)

Disease-free survival (in months)

Median (CI) 8.4 (6.0, NA) 8.5 (6.7 13.1) 11 (5.9, NA) 8.5 (6.7, 13)

Karnofsky score

100 2 2 7 11

90 0 2 0 2

70–80 19 25 19 63

< 70 8 6 16 30

Sex

Female 18 20 16 54

Male 31 29 40 100

Molecular

IDH Status

Mutant 0 3 7 10

WT 46 45 49 140

MGMT Promoter

Methylated 11 17 24 52

Unmethylated 26 24 21 71

G-CIMP Methylation

G-CIMP 0 2 6 8

Non-G-CIMP 48 46 50 144

TERT Promoter

Mutant 4 9 12 25

WT 45 39 41 4

TERT Expression

Expressed 38 42 47 127

Not.expressed 10 7 9 26

CHR7 Gain CHR10 loss

Gain chr7&loss chr10 31 32 34 97

No combined CNA 18 13 20 51

CHR19/20 co gain

Gain chr19/20 2 5 12 19

No chr19/20 gain 47 40 42 129

Clusters

Transcriptome Cluster

CL 49 26 7 1

MC 66 16 8 6

NE 5 1 19 9

PN 18 3 72 61
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metabolic enzymes might be involved in IDH-mutant
glioma.
We performed the same strategy to identify 81 splicing

signatures in GBM subtypes (ST1: 14, ST2: 4, ST3: 63)
and draw a heatmap (Fig. 3d and Additional file 4: Table
S4). Three representative splicing signatures were also
shown in box plots (Fig. 4b). DHRS4L2 is a member of
the dehydrogenase reductase family [30], with specific al-
ternative transcripts expressed in neuroblastoma [31]. AS
of DHRS4L2 might also participate in GBM malignant
progression because of its significant increase in ST1. In
ST2, AS of FAM13A, a key regulator of lung cancer [32],
was discovered as a splicing signature. RPL39L was re-
ported as a ribosomal protein with upregulated expression
in cancers and played a role in drug resistance [33–35].
Upregulated AS of RPL39L was observed in ST3 (Fig. 3g),
moreover, PSI value of AS of RPL39L was negatively re-
lated to mRNA expression level of RPL39L (data not
shown). These findings might indicate AS of RPL39L in-
duce downregulation of mRNA expression, leading to sen-
sitivity to concurrent treatment in GBM.

Regulatory network of splicing factors and pST1-specific
splicing events
Changes in the expression levels of splicing factors
significantly affect the development and progression

of multiple tumors by regulating AS. Increasing evi-
dence indicates that RNA processing triggered by al-
terations in splicing factors affects glioma outcomes
[36]. To elucidate prognostic AS regulatory processing
in glioma, we characterized the regulatory network of
pST1-specific splicing events, which represent un-
favorable prognostic splicing signatures in glioma.
Here, we focused on recognized prognostic splicing
factors in tumors, especially in glioma, and identified
their prognostic effect on glioma by conducting sur-
vival analysis using TCGA RNA-seq expression data.
Splicing factors including cancer promoters (CLK2
[37], ELAVL1 [38], HNRNPA2B1 [14], HNRNPH1
[39], PTBP1 [13, 15, 40], SNRPB [41], SRSF1, SRSF2,
SRSF3, SRSF7, SRSF9, SRSF10) and cancer suppres-
sors (CELF2, MBLN2, QKI, RBFOX2 [42], RBM4,
RBM5, RBM6, RBM10 [43], RBM11 [44], SRSF5) were
applied to further correlation analysis. Significant cor-
relations (p < 0.05, coefficient > 0.45 or < − 0.45) were
shown in the network diagram (Fig. 5a and Additional
file 5: Table S5), and 129 pST1-specific splicing
events represented by their gene symbols (yellow
nodes) are presented. Surprisingly, these pST1-specific
splicing events were all positively (red lines) related
to the expression of splicing factors associated with
unfavorable prognosis (red nodes) and negatively

Table 2 Clinical characteristics of GBM splicing types (Continued)

ST1(n = 49) ST2(n = 49) ST3(n = 56) Total(n = 154)

Original Cluster

Classical 39 0 0 0

G-CIMP 7 0 1 0

IDHmut-codel 0 1 23 20

IDHmut-non-codel 0 4 127 67

IDHwt 0 49 21 6

Mesenchymal 50 0 0 0

Neural 26 0 0 0

Proneural 29 0 0 0

Pan-Glioma RNA Expression Cluster

LGr1 20 4 25 17

LGr2 3 0 0 2

LGr3 9 4 127 68

LGr4 121 46 20 6

Pan-Glioma DNA Methylation Cluster

LGm1 7 4 18 11

LGm2 1 0 120 59

LGm3 0 1 14 19

LGm4 43 14 4 0

LGm5 59 30 12 0

LGm6 12 5 5 5
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(blue lines) related to the expression of splicing fac-
tors associated with favorable prognosis (blue nodes)
(Fig. 5a). Meanwhile, we also found that expression
level of above-mentioned splicing factors differed
among splicing clusters, demonstrating that splicing
factors play significant roles in splicing profiles of gli-
oma (Additional file 10: Figure S4).
Recently, research revealed that SNRPB, the key element

of spliceosome complex SmB/B′, is an important onco-
genic splicing factor in GBM, contributing to the regula-
tion of RNA processing, DNA repair, and chromatin
remodeling [45]. Consistent with this finding, the regula-
tory network of splicing factors and pST1-specific splicing
events revealed SNRPB as a hub unfavorable prognostic

splicing factor that is positively related to important
pST1-specific splicing events (Fig. 5a). CELF2, a suppres-
sor of glioma progression (Fig. 5b), was reported as an im-
portant regulator of many AS events across solid cancer
samples [46] and exhibited a strong negative correlation
with pST1-specific splicing events (Fig. 5a), indicating its
key role in glioma suppression via the regulation of nu-
merous splicing events. AS of KIF4A and AS of FKBP11
were hub events in this network (Fig. 5a) with important
splicing predictors of glioma prognosis (Fig. 5c). The
prominent correlations between expression of SNRPB and
AT of KIF4A exon32 (coefficient = 0.70) and between ex-
pression of CELF2 and AT of FKBP11 exon8 (coefficient =
− 0.72) are shown in scatter diagrams (Fig. 5d).

Fig. 4 Subtype-specific splicing events of pST1–7 and ST1–3. a Representative splicing events of pST1–7; the PSI value of the signature in each
cluster was significantly higher than that in any other cluster (p-value< 0.05). b Representative splicing events of ST1–3; the PSI value of the
signature in each cluster was significantly higher than that in any other cluster (p-value< 0.05)
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Identification of IDH-status-related splicing events
IDH status is the most significant indicator for prognosis
prediction in glioma patients and was the predominant
driver of transcriptome/methylome/fCNV glioma classi-
fication [2]. In our splicing classification of pan-glioma, in
addition to tumor grade, IDH status was also a vital dis-
criminator of splicing clustering. The pST1–2 splicing
subgroups harbored IDH-wild type samples (189/203,
93.1%), while pST3–7 harbored IDH mutations (411/455,
90.3%). To identify the IDH status-related prognostic spli-
cing events, we separated the samples into IDH-wild type/
mutant groups. Splicing events with mean PSI values that
exceeded twice the difference between groups were
chosen (FDR < 0.05), and a total of 840 splicing events
were observed (Fig. 6a and Additional file 6: Table S6).
Although proteomics research indicated that a large

number of genes have a predominant protein isoform
[47], increasing evidences suggested that protein com-
plexity derived from alternative splicing play a vital role
in cancer progression [13, 48, 49]. AS may induce the in-
sertion, deletion or substitution of functional domains in

proteins, resulting in alteration of cellular function [50].
To further predict the potential functional elements in
coding proteins that are involved in glioma patient prog-
nosis, we aligned the former data on IDH status-related
splicing events with data on canonical protein products
of genes in UniProt (www.uniprot.org), which contains
annotations of known domains.
Zinc finger proteins (ZNFs), which contain ZNF do-

mains, are an extensive family of proteins that contribute
to varied biological functions, including cancer progres-
sion [51]. Cys2His2(C2H2) was the first discovered and
best characterized type of ZNF and has various func-
tions, including sequence-specific DNA-binding and
RNA binding [52]. AS of ZNFs was observed to be re-
lated to IDH status. Moreover, the type of AS was basic-
ally AT, and the alternative exons were ZNF domains,
namely, the alteration of deletion of the ZNF domains at
the 3′ end correlated with IDH status. From the analysis
results, a higher proportion of the deletions of the zinc
finger motif in ZNFs (ZNF283, ZNF724P, ZSCAN20,
ZNF606, ZNF169, ZNF430, ZNF20, KDM2B, etc.) were

Fig. 5 Correlation of splicing factors and pST1-specific splicing events. a Regulatory network of splicing factors and pST1-specific splicing events.
Yellow nodes represent gene symbols of pST1-specific splicing events. Red nodes represent splicing factors associated with unfavorable
prognosis in glioma. Blue nodes represent splicing factors associated with favorable prognosis in glioma. Red/blue lines represent positive/
negative correlations. b Kaplan-Meier overall survival curves for the expression of SNRPB and CELF2, representative prognostic splicing factors in
glioma. c Kaplan-Meier overall survival curves for AS of KIF4A and FKBP11, representative prognostic splicing events in glioma. d Scatter diagram
of the expression of SNRPB and PSI values of AT of KIF4A exon32. Scatter diagram of the expression of CELF2 and PSI values of AT of
FKBP11 exon8
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found in samples with IDH mutations (Fig. 6b, c), with
similar results in pST2–7 samples (Fig. 4a), demonstrat-
ing that zinc fingers might contribute to malignant pro-
gression in glioma. Moreover, most of the alternative
exons in these ZNFs encode tandem C2H2-type zinc fin-
ger motifs, except for KDM2B, which harbors CXXC-
type and plant homeodomain (PHD)-type zinc finger
motifs.

Discussion
This study presents the first clustering analysis of
prognosis-related AS in glioma. In contrast to previous
glioma classification analysis of genomics, RNA expres-
sion profiling, epigenetics or proteomics [1, 2, 53], our
study focused on AS, a biological process that affects the
diversity of protein isoforms and functions.
Survival-related splicing events were identified system-

atically in pan-glioma and GBM samples from TCGA. A
remarkably higher proportion of prognostic splicing
events was observed across pan-glioma samples than in
GBM samples. In addition, our data revealed clear differ-
ences between GBM and LGG samples. We conducted a
clustering analysis of the merged GBM and LGG
datasets and identified a total of 7 groups. The strong as-
sociation between glioma grade (GBM versus LGG) and
pan-glioma splicing classification that was observed in

this study was in accordance with clustering based on
proteomics [2]. These results indicated that AS, as a co-
or posttranscriptional process that affects protein trans-
lation, might contribute to glioma prognosis through
influencing the histological phenotype and tumor grade.
As the only GBM-like cluster, pST1 had unique

splicing characteristics compared to the remaining 6
LGG-like clusters, providing new methods to distinguish
glioma grade. Furthermore, another significant finding
of this study is that we identified pST2, an LGG cluster
that harbored malignant phenotypes similar to those of
GBM, predominantly IDH-wild type, indicating a novel
method to distinguish low-grade gliomas with unfavor-
able prognoses based on iconic splicing events. The
cluster-specific study also provided a new method to
classify gliomas with different phenotypes using the de-
tection of AS. Due to the limited samples in this study,
larger cohorts are needed for verification.
Using the same strategy, the GBM cohort was separated

into 3 STs. Among these types, ST1 was identified as the
most distinctive subtype with the most unfavorable prog-
nosis and was associated with recognized malignant
phenotypic molecular characteristics. A previous GBM
molecular classification study found that the proneural
class is related to better outcomes but does not benefit
from aggressive treatment [1]. Conversely, our study

Fig. 6 Identification of IDH-status-related splicing events. a Heatmap of PSI values. Columns represent IDH-wild type/mutant samples across 658
TCGA glioma samples; rows represent the PSI values of IDH-status-related splicing events. b Box plots of 8 representative differential alternative
splicing events in zinc finger proteins. c Representative sketch of alternative splicing of zinc finger proteins; predominant mRNA isoforms of
ZNF283 in IDH-wild type/mutant samples
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suggested that ST3 had a favorable phenotype, with not
only the best prognosis but also the strongest chemoradio-
therapy sensitivity, indicating that splicing profiles may be
independent of the transcriptome and affect GBM bio-
logical behavior. Furthermore, the study suggested that
concurrent chemoradiotherapy might be particularly im-
portant for improving the prognosis of ST3 patients, but
this possibility requires further clinical data.
Clustering of glioblastoma or pan-glioma based on

splicing profiles had advantages in identifying clusters
with clinically significant prognostic phenotypes, includ-
ing malignant clusters, such as the ST1 GBM group and
the pST2 LGG-like group, and benign phenotypes, such
as the ST3 GBM group and the pST7 LGG-like group.
IDH status is considered to be the primary factor in

most clustering studies [2], while a recent study revealed a
link between IDH status and splicing events [9]. Consist-
ent with this finding, our data also demonstrated that
prognostic splicing-based clustering was correlated with
IDH status. However, the mechanism that underlies the
relationship between IDH status and AS remains unclear.
Although previous research revealed the correlation of
spliceosome mutations and IDH status in primary myelo-
fibrosis [54, 55], similar results were not observed in glio-
blastoma [56]. One family that has a remarkable
relationship with IDH status is ZNFs, which are also re-
lated to tumor grade; more deletions of ZNF domains
were detected in IDH-mutant or LGG samples. Evidence
showed that disruption of ZNF domains due to AS in
ZNFs resulted in dysfunction of transcriptional regulation
[57, 58]. Moreover, we found that most of the alteration of
deletion of the ZNF domains correlated with IDH status
was at the 3′ end, which might introduce premature stop
codon (PTC) or nonsense mediated decay (NMD) into
mRNA transcript, thereby regulate its stability [59]. We
further aligned the former AS analysis with corresponding
RNA-seq data. Interestingly, negative relation between de-
letion of ZNF domain and mRNA expression level in
some ZNFs (ZNF283, ZNF724P, ZSCAN20, ZNF606,
ZNF20, etc.) were observed (Additional file 11: Figure S5),
which might indicate this kind of AS introduced PTC or
NMD and caused decay into mRNA transcript. However,
this phenomenon was not universal in all ZNFs, demon-
strating the underlying mechanism of deletion of ZNF do-
main in glioma was complicated and needed further
investigation. Studies on the target genes of these alterna-
tive ZNF domains might provide insights into the signifi-
cance of AS of ZNFs in glioma. Further studies that block
the interaction between ZNFs and their target genes may
reveal novel strategies to overcome glioma.
Regulatory network analysis of splicing factors and prog-

nostic splicing events revealed a strong correlation be-
tween these two factors in glioma. PTBP1 and HNRNPs
[13–15, 40] are recognized as important splicing factors in

glioma progression that regulate various splicing events,
which is also reflected in our analysis. We also found
SNRPB and CELF2 as hub splicing factors of prognostic
splicing events, indicating that these splicing factors might
be potential targets for glioma treatment. Further research
on the biological functions of these splicing factors and
their downstream splicing events is needed.

Conclusion
In this study, a comprehensive analysis of AS in glioma
was conducted. Novel classification of glioma based on AS
profiles was established, which was associated with glioma
grade. Regulatory network of splicing factors and prognos-
tic splicing events were shown; suggesting hub splicing
factors including SNRPB and CELF2 were participating in
splicing regulatory in glioma. Moreover, we also identified
IDH-status-related splicing events profiles. This study
might shed new light on glioma heterogeneity and provide
new insights into glioma diagnosis and treatment.
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