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Discovery of signatures of fatal neonatal illness in vital signs
using highly comparative time-series analysis
Justin C. Niestroy1,2, J. Randall Moorman 2,3✉, Maxwell A. Levinson1,2, Sadnan Al Manir1,2, Timothy W. Clark1,2,4,
Karen D. Fairchild2,5 and Douglas E. Lake2,3,6

To seek new signatures of illness in heart rate and oxygen saturation vital signs from Neonatal Intensive Care Unit (NICU) patients,
we implemented highly comparative time-series analysis to discover features of all-cause mortality in the next 7 days. We collected
0.5 Hz heart rate and oxygen saturation vital signs of infants in the University of Virginia NICU from 2009 to 2019. We applied 4998
algorithmic operations from 11 mathematical families to random daily 10 min segments from 5957 NICU infants, 205 of whom died.
We clustered the results and selected a representative from each, and examined multivariable logistic regression models. 3555
operations were usable; 20 cluster medoids held more than 81% of the information, and a multivariable model had AUC 0.83. New
algorithms outperformed others: moving threshold, successive increases, surprise, and random walk. We computed provenance of
the computations and constructed a software library with links to the data. We conclude that highly comparative time-series
analysis revealed new vital sign measures to identify NICU patients at the highest risk of death in the next week.
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INTRODUCTION
Continuously monitored vital signs of patients in intensive care
units hold untapped information about risk for adverse events and
outcomes1. For example, the display of a score based on analysis
of abnormal heart rate characteristics was shown by our group to
reduce sepsis-associated mortality by 40% in preterm infants in
the Neonatal Intensive Care Unit (NICU)2–5. That approach was
tailored to detect specific phenomena that we observed in the
heart rate data, reduced variability and transient decelerations, in
the days prior to sepsis diagnosis2–5, and we used algorithms
optimized for the task, including sample asymmetry6 and sample
entropy7–9.
Here, we asked a more general question—what if we did not

know all the characteristics we wish the algorithms to detect?
That is, if we used a very large number of algorithms designed
for general use in time-series, would we discover some that
were more effective than our tailored design? This approach
has been described by Fulcher et al., who called it highly
comparative time-series analysis10–12. The fundamental idea is to
extract features from many time series, using many algorithms,
most operating with many sets of parameter values. We then
apply this ensemble to a dataset to determine which algorithms
perform best for predicting a specific outcome. Clustering of
algorithms can, eventually, simplify this approach for clinical
applications13,14.
As an example of our approach, the familiar sample entropy

algorithm7,8 requires two parameters in order to operate, an
embedding dimension m and a tolerance window r. A highly
comparative time-series analysis entails many operations of the
sample entropy algorithm that vary m and r. The result of each
operation is treated as a potential predictor. Since the results
are expected to be highly correlated, we can represent the
family of sample entropy results as a cluster, and choose an

operation of sample entropy with a single optimal combination
of m and r for use in multivariable statistical models.
Furthermore, rather than simply clustering methods we know to

be in the same family (“sample entropy” etc.), but with differing
parameters, we can expand clustering to include many families of
methods, and their parameters, defining the clusters using an
outcome similarity measure. The cluster that contains sample
entropy might then also contain related measures detected by
clustering, all of which can be represented by a single outcome
measure or feature. In all, this is an efficient way to screen many
time-series algorithms, to discover features that are predictive of
an outcome, without domain knowledge of prior known specific
characteristics such as reduced heart rate variability, that might be
related to that outcome.
To test these ideas, we selected death in the next 7 days for

infants in the NICU as the outcome of interest. This is a topic of
clinical interest and usefulness—identification of infants at
high risk, especially where risk appears to be rising quickly, can
alert clinicians to the possibility of imminent clinical deteriora-
tion from illnesses such as sepsis or respiratory failure. The
heart rate characteristics score noted above, which is targeted
toward a specific time-series phenotype, has modest perfor-
mance in this area15. In this work, the question is whether an
examination—and potentially a combination—of many time
series feature extraction algorithms may improve on this
targeted approach.

RESULTS
Patient population and causes of death
From January 2009 to December 2019, 6837 infants were
admitted to the UVa NICU, with median gestational age (GA)
35 weeks. Of these, 5957 infants had heart rate and oxygen
saturation data available for analysis, and 205 died and had heart
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rate and oxygen saturation data available within 7 days of death.
Table 1 gives the demographics of the patient population and
Table 2 gives the causes of death. For 152 of the 205 infants that
died, support was redirected due to critical illness and grim
prognosis. Of these, 148 died within minutes to hours after
removal from mechanical ventilation. The other 4 infants died
2–4 days after the ventilator was discontinued, during which time
comfort measures were provided. The remaining 53 infants died
while on mechanical ventilation. In all cases, full support was
provided while the infants were on mechanical ventilation.

AUC for death prediction for each of the 3555 operations
In total, there were 871 daily 10 min samples within a week of
death for 205 infants, for a sample incidence rate of 0.67%. Figure
1 shows the number of algorithms as a function of their univariate
predictive performance for death in the next week, measured as
AUC. The top performing algorithm, a symbolic logic count of
successive increases in heart rate that is discussed further below,
had an AUC of 0.799, substantially higher than that of the
traditional algorithms like standard deviation of heart rate (0.749)
and mean oxygen saturation (0.639).

Algorithmic results clustered, allowing data reduction
We sought correlations among the results. Figure 2 shows two
heat maps based on the absolute value of the correlation
coefficients for 3555 algorithmic operations on the left and 20
identified by cluster medoids on the right. These results justified
an analysis of clusters of results, which we undertook by
measuring mutual information among all the operational results.
A representative cluster is shown in Fig. 3. We sought a number of
clusters that was large enough to explain most of the predictive
performance of a multivariable statistical model for death but in
keeping with the practice of having a reasonable number of
predictors for 200 events16,17. We found that 20 clusters satisfied
these conditions, and selected the top-performing operation in
each as the representative. The findings were robust in repeated
experiments with different random sampling of one record per
patient per day as well as daily averaged data.
We examined the clusters for interpretability, and found that

clusters of algorithmic operations reported on identifiable and

Table 1. Demographics of the patient population.

Cohort ALL Survived Died

5957 (100%) 5752 (96.6%) 205 (3.4%)

Gestational age mean
weeks (SD)

34.6 (4.5) 32.4 (5.9) 34.7 (4.4)

Birth weight mean kg (SD) 2.460 (1.001) 2.475 (0.992) 2.030 (1.156)

Extremely preterm (n%
<28 weeks)

576 (10%) 515 (9%) 61 (30%)

Sex (%female) 43% 43% 42%

Race (%Black) 19% 19% 19%

Ethnicity (%Hispanic) 7% 7% 7%

Mechanical ventilation
mean days (SD)

4.9 (19.8) 4.6 (19.4) 14.1 (17.3)

Seizuresa 4% 4% 14%

Congenital cardiac
malformationb

9% 9% 18%

Genetic syndrome or
multiple anomalies

4% 4% 15%

HIE hypoxic ischemic encephalopathy.
aConfirmed by electroencephalogram.
bExcluding septal defects and patent ductus arteriosus.
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interpretable time-series characteristics. For example, one cluster
held the results of operations that report on the mean, another
cluster held operations that report on the minimum, and so on. As
expected, very near neighbors represented the results of
operations that are closely related. To reduce the dimensionality
of the data, we represented each of the 20 clusters by a single,
interpretable operation.

Multivariable statistical models using the new measures of
vital signs to predict death
To understand the association of mathematical operations to the
outcome of death, we used multivariable logistic regression. We
selected features using backwards selection and were conserva-
tive, restricting the model size to a limit of five features. Each
patient was represented on each day by 20 candidate features—
10 for each heart rate and each oxygen saturation time-series—
calculated on a 10min record chosen at random once per day. In
order to reduce the effects of possible outliers, results were
winsorized by clipping low and high values of the results at 0.1%
and 99.9% respectively.
To better understand how these models performed leading up

to the day of death, AUCs for each model were calculated daily
from 7 days to 1 day prior to death, as shown in Table 3. For
example, the AUC at 7 days was calculated excluding all data from
the 6 days prior to death and only using the model output
between 6 and 7 days. This excludes many deaths in first week of
life and others that might be have been expected.
As expected, model performance was highest one day prior to

death. The combined heart rate and oxygen saturation model with
five features was one of best performers, with AUC of 0.892 the
day before death and 0.747 a week prior to death. A model limited
to five heart rate features had an AUC of 0.809 compared to the
best heart rate univariate model, successive increases, which had
an AUC of 0.799. The oxygen saturation only model limited to 5
features had an AUC of 0.765. The combined heart rate and
oxygen saturation model limited to five features had an AUC of
0.828—this was the best-performing five-feature model. The AUC
decreased slightly to 0.821 when limited to only three features. As
a comparison, a combined heart rate and oxygen saturation
model that was selected using AIC had 13 variables had a slightly
improved AUC of 0.834.
A clinically relevant measure is accuracy of the model at a

threshold equal to the event rate of 0.67%. For this case, the
sensitivity is the same as the positive predictive value (PPV). For
rare events it is informative to look at the ratio of this value to the

event rate, or lift. The heart rate model had a sensitivity/PPV of
11.1% at this threshold for a lift of 16.5.
We tested how much discriminating capability was retained

when we used the medoids of the 20 clusters versus the top
performers in each. A combined heart rate and oxygen saturation
model with five features from the 20 medoids had an AUC of
0.821, comparable to that obtained using the top performers. We
conclude that each cluster can be reproducibly represented by a
single operation.
Model performance can be improved by including baseline

demographic information. A model consisting of birth weight, GA,
sex and 5min Apgar score had an AUC of 0.714, and 5min Apgar
score was the most predictive feature. Adding this demographic
model to the combined heart rate and oxygen saturation model
with five features increased the AUC from 0.828 to 0.853.

New measures of vital signs associated with NICU death
We found new measures of heart rate and oxygen saturation
signals associated with NICU deaths. In the heart rate time-series,
the top performing measures were fewer occurrences of successive
increases and larger surprise. In the oxygen saturation time-series,
the most predictive measure was a moving threshold calculation18

that showed fewer extreme events was informative in both the
heart rate and the oxygen saturation time-series. An algorithm
fitting a random walk model to the oxygen saturation time-series
detected declines in the oxygen saturation.
The most informative new predictor for death risk was a small

number of successive increases in the heart rate, and Fig. 4 shows
four records with increasing numbers of successive increases. The
value that would be observed in a set of 300 random numbers, 75
(300/0.52), is approached in the lower right panel. Qualitatively,
the finding is that low heart rate variability is associated with
higher risk of death. However, a more direct measure of variability,
the standard deviation of the heart rate, was less predictive (AUC
0.799 for successive increases compared with 0.749 for heart rate
STD).

DISCUSSION
Much progress has been made in the use of continuous time-
series data from the bedside continuous cardiorespiratory
monitors in the Neonatal ICU19. We tested the idea that we
might improve the current art through a systematic study of our
very large set of time series using an exhaustive number of
analytical measures. We draw from a prismatic work describing
the method of highly comparative time-series analysis, applying
many time series algorithms to many time series examples of all
kinds10. We applied the principles of highly comparative time
series analysis to our domain, continuous cardiorespiratory
monitoring in NICU patients. This work extends the study of
highly comparative time-series analysis with its focus on clinical
datasets, clinical events that are important to clinicians, and
domain-specific knowledge of the physiologic origins of the data
and how clinicians use it at the bedside.
In this example of highly comparative time-series analysis of a

large clinical dataset, we studied vital sign data from Neonatal
ICU patients and discovered algorithms not previously reported
in this domain that identified infants at higher risk of death.
These algorithms report generally on the absence of heart rate
variability and low oxygen saturation, features known to inform
on poor health. Other major findings were that only 20 clusters
of algorithms explained the great majority of the variance, in
keeping with another study of highly comparative time-series
analysis14, that downsampling of the data to single 10 min
records daily did not affect the overall results, and that the newly
revealed algorithms outperformed standard measures of vital
sign variability.

Fig. 1 AUCs of 3555 operations for predicting death in the next
7 days. Colored vertical bars from left to right indicate the AUCs of
the standard deviation of oxygen saturation, mean heart rate, mean
oxygen saturation, standard deviation of heart rate, and a novel
measure, successive increases of heart rate.
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Fig. 2 Heat maps of the absolute values of the correlation coefficients between results of operations. a Correlations between all 3555
candidate algorithmic operations. b Correlations between 20 cluster medoids. The reduced feature set explains 81% of the variance in the
full set.
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We found that a small number of clusters explained the
variance of the results. This is not entirely unexpected, because
many of the operations entail the same algorithm repeated with
different arguments and parameters. For example, the sample
entropy algorithm requires the choice of an embedding dimen-
sion m and a tolerance window r7–9. In all, we performed
12 sample entropy operations with combinations of these
variables. Thus, our clusters were to some extent explainable.
For example, one held many operations that report on the center
of the distributions, another held many reporting on the width of
distributions, another held many entropy operations, and so on.
These findings are important with regard to the interpretability of
statistical models that use the results, avoiding the problem of
black boxes20.

We found that downsampling of the data to single 10min records
daily did not affect the overall results for algorithmic operations
clustering. A downside to the massive exploration of algorithmic
operations is the computing time. To begin our investigation, we
accordingly massively reduced the dataset to a single 10min record
daily, <1% of the total. To test the fidelity of the results, we repeated
the procedure on 3 other single 10min records, and on the daily
average. The results were not significantly different in the nature of
the clusters or their constituents, suggesting that a manageable
subsample of the data can be used for exploratory purposes in the
highly comparative time-series analysis, and the results verified
afterward.
We found that newly revealed algorithms outperformed

canonical measures of vital sign variability. Importantly, they were
interpretable in the light of domain knowledge about neonatal
clinical cardiovascular pathophysiology.
Successive increases in heart rate is the result of a symbolic

dynamics analysis21, and represent small accelerations. Individual vital
sign measurements are replaced by symbols that reflect whether they
have increased, decreased, or stayed the same compared to the
preceding measurement. Our finding was that the number of
consecutive increases in every-2 s heart rate was reduced in the time
series of infants at higher risk of death, as illustrated in Fig. 4. This
finding is consonant with reduced heart rate variability, a known
marker of abnormal clinical status. It is interesting to speculate why
the absence of successive increases should improve upon ordinary
measures of variability for prediction of death.
Moving threshold18 was an approach developed in the field of

extreme events in dynamical systems. An example is the human
reaction to floods in rivers—when there are no floods, barriers are
allowed to lapse. A flood, though, leads to new, higher barriers
that could contain the recent event. The moving threshold model
examines a time series for points that exceed an initial threshold,
increases the threshold after a crossing event, and allows the
threshold to decay over time. The parameters that are measured
include the rate of events, the intervals between threshold
crossings, and statistical measures of the distribution of the
thresholds. Our finding was that the vital sign time series of infants
at higher risk of death were characterized by lower moving
threshold for heart rate (reflecting low heart rate variability) and
lower moving threshold for oxygen saturation (illustrated in Fig. 5
as a gradual decline in SpO2).
Surprise22 calculates the distribution of points of a subsection of

the time series. The surprise of the point following that subsection
is measured by how likely the new point was given the calculated
distribution, given as 1/p. The phenotype associated with mortality
here, was a low value of surprise in the heart rate, consistent with
reduced heart rate variability.

Fig. 3 Three representative clusters of operations and their
relations to each other. Each dot represents an individual
operation. The colors—green, blue, and red—represent the three
clusters; several individual operations are labeled. The green group
represents measures of the maximum of the heart rate, the blue
group reports on the mean oxygen saturation, and the red group
reports on the standard deviation of the heart rate. The black lines
indicate pairings between operations in the same cluster, whereas
the very short red line indicates the small number of pairings
between operations from different clusters. heart rate heart rate;
STD standard deviation.

Table 3. Model performances as a function of days until death.

Model name Candidate features Model size ≤7 days ≤ 1 day 3 days 7 days

HR-SpO2 - demographics 21 6 0.853 0.903 0.819 0.774

HR-SpO2 20 5 0.828 0.892 0.794 0.747

HR-SpO2 20 3 0.821 0.887 0.781 0.742

HR-SpO2: cluster centers 20 5 0.819 0.873 0.790 0.763

HR 10 5 0.809 0.864 0.770 0.750

HR: successive increases 1 1 0.799 0.858 0.755 0.746

HR-SpO2: means and SDs 4 4 0.774 0.816 0.733 0.731

SpO2 10 5 0.765 0.818 0.752 0.694

Demographics 4 4 0.714 0.710 0.683 0.697

AUC for models using a single random daily 10min segment of heart rate (HR), oxygen saturation (SpO2), or both are shown at various intervals before death.
HR heart rate, SpO2 oxygen saturation, SDs standard deviations.
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Random walk modelmeasures the fit of the time-series data to a
random walk23. The random walk starts at 0 and takes a step of
size proportional to the distance from the previous point.
The algorithm returns many statistics about the movement of
the random walk and its relation to the original time series. The
phenotype of high risk of death detected by this algorithm is a
decline in the oxygen saturation.
We can relate the new finding to prior work. In 200124, we showed

that heart rate characteristics of low variability and transient
decelerations added information to clinical findings quantified by
the SNAP (Score for Acute Neonatal Physiology)25 and NTISS
(Neonatal Therapeutic Intervention Scoring System)26 in the early
detection of sepsis. A heart rate characteristics index predicted sepsis
and all-cause mortality in preterm NICU patients2,15,24,27. We found
that the AUC for the heart rate characteristics index developed at the
University of Virginia and tested at Wake Forest University was 0.73.
Subsequently we broadened the analyses to include conventional
measures of heart rate and oxygen saturation in the first week after
birth which we showed predict mortality among preterm NICU
patients better than the validated and commonly accepted SNAPPE-II
score (Score for Neonatal Acute Physiology-Perinatal Extension)28–30.
and combined heart rate and SpO2

31. In 201032, Saria and coworkers
showed that short- and long-term variability of heart rate and oxygen
saturation in the first 3 h of life were useful in classifying premature
infants at risk for high-morbidity courses. In the current work we
showed that running an enormous number of operations on a single
daily random 10min window of heart rate and oxygen saturation
data uncovered new measures that predict mortality better than our
prior models.

How might these findings lead to future improvements in
neonatal care? We point to the increasing use of Artificial
Intelligence and Machine Learning using Big Data to provide
predictive analytics monitoring for early detection of subacute
potentially catastrophic illnesses. While the data sources remain
the same—continuous cardiorespiratory monitoring, lab tests,
and vital signs measurements—the analytical methods are
growing in number. An unresolved question has been whether
the identification of signatures of illness by domain experts can
be replaced by exhaustive computer analysis of large datasets33.
These new findings point clearly to a role for highly-comparative
time series analysis to detect previously unthought-of ways to
characterized the pathophysiological dynamics of neonatal
illness. Future work will test these new candidate algorithms
against existing ones of heart rate characteristics analysis34, cross-
correlation of heart rate and oxygen saturation35,36, heart rate
variability37, and others.
We acknowledge limitations. First, we did not analyze preterm

infants separately from term infants in this work, though we know
that heart rate and SpO2 time series characteristics depend on both
GA and post-conceptual age. For example, the variabilities of heart
rate and SpO2 rise with day of age38,39, and it is possible that highly-
comparative time series analysis of preterm infants might return
different results from term infants. As it stands, there were many more
term infants than pre-term, but the latter represented more of the
time series data. Second, external validation will be important
because our findings of patterns in vital signs measurements prior
to neonatal death might reflect care practices at our hospital. We
note, though, the similarity of vital signs measurements at our
hospital to those at two others38, a finding that is reassuring with

Fig. 4 Lack of successive increases in heart rate predict increased risk of death. Four 10min heart rate records that correspond to
increasing death risk with a decreasing number of successive increases in heart rate. The record in a had no successive increases and reflected a
20.6-fold increased risk of death. b–d Show records with 15, 30, and 60 successive increases in heart rate and reflected fold-increased risks of
death 3.5, 1.1, and 0.6, respectively.
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regard to the general nature of these results. Third, we found that
1443 of the 4998 algorithms consistently returned null results, and we
note that other datasets from other sources might fare differently.
This was expected as many of the algorithms were from different
domains and may not work on all signals. Finally, we used only
logistic regression to test the association of the algorithmic operations
with clinical outcome, and other machine learning and deep learning
methods might have had different results. We note, though, recent
works that point to a similarity of results of logistic regression
compared to other methods including recurrent neural networks40,41.
We conclude that highly comparative time-series analysis of

clinical data reduced thousands of algorithms to an interpretable
set of 20 that represent the character of neonatal vital signs
dynamics.
This framework will be useful for future work analyzing bedside

monitor data for signatures associated with various imminent or
future adverse events and outcomes. The terabytes of vital sign
data at even just single NICU such as ours, together with electronic
medical record data on clinical and laboratory variables, hold
valuable insights into actionable outcomes. Developing platforms
and systems for sharing data with other investigators so that
algorithms can be tested in large and diverse populations is
another worthy goal. Harnessing these data could lead to
preemptive strategies that improve patient outcomes.

METHODS
Study design
We collected all bedside monitor data from all patients in the Neonatal ICU
(NICU) at the UVA Hospital since 2009 using the BedMaster ExTM system

(Excel Medical, Jupiter FL). Heart rate derived from the bedside monitor
electrocardiogram signal is sampled at 0.5 Hz. oxygen saturation is
measured using Masimo SET® pulse oximetry technology (Masimo
Corporation, Irvine CA) with a sampling rate of 0.5 Hz and averaging time
of 8 s. For this analysis, we included all infants admitted from 2009 to 2019
who had heart rate and oxygen saturation data available for analysis.
Clinical data were abstracted from a NICU database (NeoData, Isoprime
Corporation, Lisle, IL). The University of Virginia Institutional Review Board
for Health Science Research approved a waiver of informed consent under
DHHS regulations because the chart review was minimal risk, did not affect
the subjects’ welfare, and was not otherwise practicable.

Software and computing environment
We prepared a library of software in Python3 consisting of our
implementations of 111 published algorithms10 described for use in
medical and non-medical domains. Table 4 shows the families of
algorithms employed, together with a description and examples of each.
We ran these routines and some additional special-purpose MATLAB

algorithms in Docker containers designed to run in a horizontally scalable
secure cluster environment under the OpenStack cloud operating system,
using the FAIRSCAPE data lake environment42. We issued persistent
identifiers for all software, datasets and analysis results using Archival
Resource Keys (ARKs)43, associated with computational provenance
metadata44 for reproducibility and reusability.

Terminology: Features, algorithms, and operations
A feature of a vital signs time series is a pattern or phenotype that can be
represented mathematically. For example, we speak of the features of
heart rate time series before neonatal sepsis as abnormal heart rate
characteristics of reduced variability and transient decelerations. Algo-
rithms are the mathematical tools we use to quantify the features. For

Fig. 5 Lower moving threshold in oxygen saturation predicts increased risk of death. Four 10 min heart rate records that correspond to
increasing death risk with a decreasing percentile value for oxygen saturation moving threshold. The record in (a) was the 0.5 percentile value
and reflected tenfold increased risk of death. b–d Show records with moving threshold percentiles 10, 50, and 75, and fold-increased risks of
death 2.3, 0.6, and 0.4, respectively.
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example, the standard deviation of the times between heartbeats
quantifies the finding of reduced heart rate variability in illness. Operations
further specify the details of algorithms. For example, the standard
deviations of the times between heartbeats over the past 5 s or 5 min or
5 h all quantify heart rate variability, but they will return different values
and, possibly, be of different utility clinically. The goal of highly-
comparative time series analysis is to seek new features by widely
exploring the spaces of algorithms and operations.

Mathematical analysis of vital signs
The raw vital signs data were stored as vectors of time stamps 2 s apart
with the corresponding measurement of heart rate or oxygen saturation.
We grouped the vital signs data into more than 18 million 10min non-
overlapping windows, each with 300 measured values. In each group,
we computed 81 time-series algorithms with varying parameters for a total
of 2499 operations. The result was a matrix of results with more than 18
million rows and 2499 columns, as illustrated in the workflow diagram in
Fig. 6.
We randomly sampled the Processed Vitals dataset taking one 10min

record per day per patient. This step resulted in 130,000 days of samples,
each containing the result of 4998 operations from the heart rate and
oxygenation data. We removed single-valued results, those with imaginary
numbers, and samples with missing values, and were left with 3555 of the

4998 viable candidate algorithmic operations. To adjust for the wide range
in scales, we used an outlier-robust sigmoid transform10,45 to convert
operation ranges to the interval [0,1].
We clustered results to reduce dimensionality. We divided the 130,000

results of individual algorithms into ten equiprobable bins and calculated
all possible distances using mutual information46,47. We organized these
results into a distance matrix and determined clusters with k-medoids
using the pam function of the R cluster package48. We represented each
cluster by a single operation, as shown in Fig. 7.

Statistical analysis and modeling
The binary outcome of death within the next 7 days was used to evaluate
algorithm performance. Since there were 205 deaths, we restricted the
number of clusters to 20, and selected the top performers in each as
candidate features for model selection. This follows recommendations to
use no fewer than 10 events for each predictor variable16. Several feature
selection strategies were used including lasso, greedy stepwise selection,
AIC, and all-subset logistic regression. For simplicity and to be extra
conservative to prevent over-fitting, we decided to concentrate on models
with no more than five features. A stepwise backwards procedure was
used that started with a full logistic regression model and sequentially
removed features with largest p value until there were five features. The

Table 4. Families of algorithms implemented in highly comparative time series analysis.

Family Description Example(s)

Distribution Moments and other descriptive statistics Mean, median, standard deviation

Correlation Similarity of data points as a function of the time
between them

Linear and nonlinear autocorrelation

Stationarity Statistical properties do not change over time Standard deviation of moments measured on different window
lengths

Symbolic transforms Convert ranges to letters and analyze their sequence Frequency of successive increases

Entropy Order and regularity Sample entropy

Trend analysis Fitting lines through data Slope and intercept

Heart Rate Variability Canonical analyses Power spectral density ratios

Time Series Modelling Fits time series model to data Surprise

Wavelet Properties of the time series wavelet spectrum Wavelet decomposition of time series

Nonlinear Analysis Nonlinear analysis methods False nearest neighbors, Information dimension

Other Extreme values Moving threshold model

Fig. 6 Data processing workflow for heart rate data. From left to right: Each row of the Raw Vitals table contains measured vital signs at 2 s
intervals. These values are transposed in the Group Vitals table so that each row has a 600 s time range and up to 300 measured values.
Algorithms operate on the Group Vitals table producing the Processed Vitals table of the same size—in the example, the first algorithm is the
mean, and the last is the range. The Averaged Processed Vitals table holds the average of each result for a day; the Sampled Processed Vitals table
holds the results for a randomly selected 600 s record.
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performance of the model was calculated as the AUC using tenfold cross-
validation.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Anonymized data that support the findings of this study, with the evidence graph for
the clustering, are openly available in the University of Virginia’s LibraData archive at
https://doi.org/10.18130/V3/VJXODP.

CODE AVAILABILITY
Python code used to process this data is archived in Zenodo at https://doi.org/
10.5281/zenodo.4321332. This version and any future versions are also available in
Github at https://github.com/fairscape/hctsa-py. Our code is licensed under terms of
the MIT license (https://opensource.org/licenses/MIT), and is a reimplementation in
Python of most of Ben Fulcher’s original MATLAB code, available here: https://github.
com/benfulcher/hctsa. Software for clustering analysis and cross-implementation
testing, together with the test data, may be found here: https://doi.org/10.5281/
zenodo.4627625.
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