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Abstract

Technical Note

Introduction

Artificial intelligence (AI) is often used to describe machines 
or computers that mimic “cognitive” functions associated with 
the human mind, such as “learning” and “problem‑solving.”[1] 
Machine learning (ML) is an AI technique that can be used 
to design and train software algorithms to learn from and act 
on data. Although AI/ML has existed for some time, recent 
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advances in algorithm architecture, software tools, hardware 
infrastructure, and regulatory frameworks have enabled 
health‑care stakeholders to harness AI/ML as a medical 
device. Such medical devices have the potential to offer 
enhanced patient care by streamlining operations, performing 
quality control, supporting diagnostics, and enabling novel 
discovery.

While AI/ML has already found utility in radiology, the 
role of AI/ML algorithms in pathology has been a matter 
of wide discussion.[2‑7] Recent technological advancements 
and market access of systems that scan glass slides to create 
digital whole slide images (WSIs) have opened the door to 
a myriad of opportunities for AI/ML applications in digital 
pathology.[8,9] While pathology is new to digitization, the 
field is expected to extend algorithms to a broad range of 
clinical decision support tasks. This technology shift is 
reminiscent of the digitization of mammography in 2000[10] 
and the first computer‑aided detection  (CADe) device in 
radiology in 1998, the R2 ImageChecker.[11] The R2 CADe 
device marked regions of interest  (ROIs) likely to contain 
microcalcifications or masses, initially evaluating digitized 
screen‑film mammograms rather than digital acquisition of 
mammography images.

Fourteen years after the R2 ImageChecker was approved by 
the US Food and Drug Administration  (FDA), regulatory 
guidance for CADe was finalized in two documents. While both 
guidance documents are specific to radiology, their principles 
are applicable to other specialties, including digital pathology. 
The first document generally delineates how to describe a 
CADe device and assess its “stand‑alone” performance.[12] 
In the pathology space, this might be referred to as analytical 
validation. The second guidance document covers clinical 
performance assessment, or clinical validation.[13] The document 
was recently updated and discusses issues such as study design, 
study population, and the reference standard. Related issues are 
also discussed in a paper summarizing a meeting jointly hosted 
by the FDA and the Medical Imaging Perception Society.[14]

Regardless of the technology providing the data or the 
algorithm architecture, Software as a Medical Device (SaMD) 
must be analytically and clinically validated to ensure safety 
and effectiveness before clinical deployment.[15] One critical 
aspect of algorithm validation is to assess accuracy. Accuracy 
compares algorithm predictions to true labels using holdout 
validation data, data that are independent from data used in 
development. Validation data include patient data  (images 
and metadata) on which the algorithm will make predictions 
as well as the corresponding reference standard (ground truth 
or label). The reference standard can be established using an 
independent “gold standard” modality, longitudinal patient 
outcomes, or when these are not available or appropriate, 
a reference standard established by human experts. What 
constitutes the “ground truth” and how to approach it is a 
topic of discussion even in more traditional diagnostic test 
paradigms, and certainly so in evolving areas such as SaMD.

In this work, we focus on the often challenging task of 
establishing a reference standard using pathologists. The 
“interpretation by a reviewing clinician” is listed as a reference 
standard in the radiology CADe guidance documents and 
acts as the reference standard  (in full or in part) in many 
precedent‑setting radiology applications.[16‑18] In pathology, 
the reference standard for evaluating performance in the 
Philips IntelliSite Pathology Solution regulatory submission, 
“was based on the original sign‑out diagnosis rendered at the 
institution, using an optical (light) microscope.”[8]

In this manuscript, we present a collaborative project to produce 
a validation dataset established by pathologist annotations. The 
project will additionally produce statistical analysis tools to 
evaluate algorithm performance. The context of this work is 
the validation of an algorithm that measures, or estimates, the 
density of tumor‑infiltrating lymphocytes (TILs), a prognostic 
biomarker in breast cancer. Resulting tools and data may be 
used to facilitate the external validation of an algorithm within 
the applied context. Given the cross‑disciplinary nature of 
the study, the volunteer effort comprises an international, 
multidisciplinary team working in the precompetitive space. 
Project participants include the FDA Center for Devices and 
Radiological Health’s Office of Science and Engineering 
Laboratories, clinician‑scientists from international health 
systems, academia, professional societies, and medical device 
manufacturers. By incorporating diverse stakeholders, we aim 
to address multiple perspectives and emphasize interoperability 
across platforms.

We are pursuing qualification of the final validation dataset 
as an FDA Medical Device Development Tool  (MDDT).[19] 
In doing so, we have an opportunity to receive feedback from 
an FDA review team while building the dataset. If the dataset 
qualifies as an MDDT, it will be a high‑value public resource 
that can be used in AI/ML algorithm submissions, and our work 
may guide others to develop their own validation datasets.

Definitions of terms in AI‑based medical device development 
and regulation are evolving. For example, there has been 
inconsistent usage of “testing” versus “validation.” To avoid 
this confusion, we are referring to building, training, tuning, 
and validating algorithms, where tuning is for hyperparameter 
optimization, and validation is for assessing or testing the 
performance of AI/ML algorithms. There is also some 
confusion between the terms “algorithm” and “model.” In this 
work, we will use the term “algorithm” to refer to the SaMD, 
the device, the software that is or will be deployed. Some may 
refer to the SaMD as the “model,” but we shall use “model” 
to refer to the description of the algorithm (the architecture, 
image normalization, transfer learning, augmentation, loss 
function, training, hyperparameter selection, etc.).

Herein, we present our efforts to source a pathologist‑driven 
reference standard and apply it to algorithm validation, with 
an eye toward generating a fit‑for‑regulatory‑purpose dataset. 
Specifically, we review the clinical association between TILs 
and patient outcomes in the context of accepted guidelines for 
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estimating TIL density in tumor‑associated stroma (stromal 
TIL  [sTIL] density). We then imagine an algorithm that 
similarly estimates sTIL density and could use a sTIL density 
annotated dataset for validation. Next, we describe the breast 
cancer tissue samples used in our pilot study, the data collection 
methods and platforms, and the pathologists we recruited and 
trained to provide sTIL density estimates in ROIs using digital 
and microscope platforms. We also present some initial data 
and outline how we plan to account for pathologist variability 
when estimating algorithm performance.

Technical Background

Tumor-infiltrating Lymphocytes
TILs are an inexpensively assessed, robust, prognostic 
biomarker that is a surrogate for antitumor, T‑cell‑mediated 
immunity. Clinical validity of TILs as a prognostic biomarker 
in early‑stage, triple‑negative breast cancer (TNBC), as well 
as in HER2+  breast cancer, has been well‑established via 
Level 1b evidence.[20‑23] Two pooled analyses of TILs, in 
the adjuvant setting for TNBC[21] and neoadjuvant setting 
across BC subtypes,[22] included studies that have evaluated 
TILs in archived tissue samples based on published 
guidelines.[24] Incorporating TILs into standard clinical practice 
for TNBC is endorsed by international clinical and pathology 
standards  (St. Gallen 2019 recommendation, WHO 2019 
recommendation, and ESMO2019 recommendation).[25‑28] 
It is expected that TILs will be assessed to monitor treatment 
response in the future.[29,30] Further, evidence is emerging 
that TIL‑assessment will be done in other tumor types as 
well, including melanoma, gastrointestinal tract carcinoma, 
non‑small cell lung carcinoma and mesothelioma, and 
endometrial and ovarian carcinoma.[31,32]

Visual and Computational Tumor-infiltrating Lymphocyte 
Assessment
Given the recent and evolving evidence of the prognostic 
value of TIL assessment, there have been several efforts to 
create algorithms to estimate TIL density in cancer tissue. 
Amgad et  al. provide an excellent summary of this space, 
including a table of algorithms from the literature, an outline 
with visual aids for TIL assessment, as well as a discussion on 
validation and training issues.[32,33] While some algorithms are 
leveraging details about the spatial distribution of individual 
TILs in different tissue compartments,[34‑36] the guidelines for 
pathologists are to calculate the sTIL density[24] defined as 
the area of sTILs divided by the area of the corresponding 
tumor‑associated stroma.

In this work, we imagine an algorithm that estimates the 
density of sTILs in pathologist‑marked ROIs in WSIs of 
hematoxylin‑  and eosin‑stained slides  (H&E) containing 
breast cancer needle core biopsies. Amgad et al. refer to these 
quantitative values as computational TIL assessments and 
visual TIL assessments, respectively.[32] Such an algorithm 
produces quantitative values[37] that are equivalent to those 
proposed in the guidelines for pathologists. This provides the 

opportunity for using pathologist evaluations as the reference 
standard for such an algorithm.

We propose the following clinical workflow: (1) patient imaging 
finds an abnormality suspected for breast cancer. Physicians 
order a needle core biopsy to assess the tissue. (2) TILs will 
be scored during histopathologic evaluation and diagnosis. 
Specifically, pathologists will score the TILs in each 
H&E‑stained breast cancer core biopsy with assistance from 
an algorithm. Or, depending on the algorithm intended use, the 
sTIL score could be created automatically, without pathologist 
input. (3) The sTIL density will then be reported in the patient’s 
pathology report.

Algorithm Validation
Before it can be marketed and applied in the clinical workflow, 
any algorithm/SaMD should be well validated. Validation of 
algorithms for clinical use comes after the building, training, 
and tuning phases of algorithm development. There are 
two main categories of algorithm validation: analytical and 
clinical. For both categories, a reference standard is needed. 
For algorithms that evaluate WSIs of H & E slides, there are 
generally three kinds of truth: patient outcomes, evaluation of 
the tissue with other diagnostic methods, and evaluation of the 
slide by pathologists. This work focuses on truth as determined 
by pathologists.

Analytical validation, or stand‑alone performance assessment, 
focuses on the precision and accuracy of the algorithm, and 
compares algorithm outputs directly against the reference 
standard  [Figure  1a]. In a clinical validation study, the 
algorithm end user, here a pathologist, evaluates cases 
without and with the algorithm outputs; Figure 1b shows an 
independent‑crossover clinical validation study design. There 
is typically a washout period between the evaluations by the 
same pathologists evaluating the same cases without and 
with the algorithm outputs, where the order in which these 
viewing modes are executed is randomized and balanced across 
pathologists and batches of cases. Figure 1c shows a putative 
sequential clinical validation study design for an algorithm 
intended to be used as a decision support tool after the clinician 
makes their conventional evaluation. We have depicted two 
populations of pathologists in our proposed clinical validation 
studies: experts for establishing the reference standard and 
end users for evaluating performance without and with the 
algorithm outputs.

The current best practice for algorithm validation is to source 
slides from multiple independent sites different from the 
algorithm development site to ensure algorithm generalizability, 
also known as external validation.[38‑41] Developers should also 
be blinded to the validation data before a validation study, 
eliminating potential bias arising from developers’ training 
to the test.[ 41‑44] These practices generally assume that the 
algorithm is locked; the architecture, parameters, weights, 
and thresholds should not be changed before the algorithm is 
released into the field. Validation of algorithms that are not 
locked – algorithms that rely on “active learning” and “online” 
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learning, or hard negative mining, where the training is done 
iteratively and continuously – is an area that is still evolving 
and not in the scope of this work.[32,45‑49]

Approach: Pilot Study

Data – Pathology Tissue and Images
We, through a partnership with the Institute Jules Bordet, 
Brussels, Belgium, sourced 77 matched core biopsies and 
surgical resections. Of these cases, 65 were classified as 
invasive ductal carcinoma and 12 were invasive lobular 
carcinoma. There was no patient information provided 
with these slides, no metadata such as age, race, cancer 
stage, or subtype  (morphologic or molecular). This study 
was approved by the Ethics Commission of the Institute 
Jules Bordet.

The  s l ides  a re  2019  recu t s  o f  fo rma l in ‑ f ixed , 
paraffin‑embedded tissue blocks from a single institution. 
Slide preparation was performed at the same institution by 
a single laboratory technician. Specifically, one 5 um‑thick 
section was mounted on a glass slide and stained with H & E. 

The slides were scanned on a Hamamatsu Nanozoomer 
2.0‑RS C10730 series at ×40 equivalent magnification (scale: 
0.23 um per pixel).

For our pilot study, we included eight batches of eight cases 
each; a case refers to the slide image pair. The remaining 
13 slides were not used for the pilot study. All 64 cases were 
biopsies of invasive ductal carcinomas; no resection specimens 
were used. Batches split data collection into manageable 
chunks for pathologists. Each batch was expected to take 
about 30 min to annotate. Batches also allowed us to make 
assignments for pathologists that help distribute evaluations 
across all cases and ROIs. We targeted five pathologist 
evaluations per ROI for the pilot study.

Data Collection = Region of Interest Annotation
Data collection, or ROI annotation, is broken into ROI 
selection and ROI evaluation in this work. ROI selection is a 
data curation step preceding ROI evaluation. The purpose of 
selecting ROIs ahead of ROI evaluation is to allow multiple 
pathologists to evaluate the same ROIs quickly. For our 
pilot study, ROI selection was performed by a collaborating 
pathologist using the digital platforms. Subsequent ROI 

Figure 1: (a) Study design for analytical validation of an algorithm (stand-alone performance assessment). Algorithm outputs are compared to the 
reference standard. (b) Independent crossover study design for clinical validation has two arms corresponding to pathologist evaluations without 
and with the algorithm. We compare the performance of these two evaluation modes. (c) Sequential study design for clinical validation has one arm 
corresponding to end user evaluations first without and then with the algorithm as an aid. A comparison is made between the performance of these 
two evaluation modes

c

b

a
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evaluation was performed by recruited pathologists using 
digital and microscope platforms. The platforms, ROI selection 
and evaluation, and the pathologists that participated in the 
pilot study are described in more detail below.

Digital Platforms
For this work, we have two digital platforms for viewing 
and annotating WSIs: PathPresenter[50] and caMicroscope.[51] 
Screenshots of the user interfaces are shown in Figure 2a and b. 
Pathologists can log in from anywhere in the world, and annotate 
images using web‑based viewers.

Both PathPresenter and caMicroscope leadership are 
collaborators in this project and supported development of 
controlled and standardized workflows to select ROIs and to 
evaluate ROIs. Both platforms can read and write annotations 
using the ImageScope XML format,[52] and we have used that 
format to share ROIs and create an identical study on both 
platforms. Both platforms also record the pixel width and 
height and the zoom setting of the WSI area being viewed. We 

have not yet imposed display requirements in the pilot study 
but that will be discussed for future phases of our project.

Using more than one platform, including the microscope 
platform described next, allows us to involve more partners 
that can provide different perspectives, build redundancy to 
mitigate against a collaborator leaving the team, and promote 
interoperability as we progress to future phases of the project. 
The validation dataset will be based on the microscope 
platform, and the digital platforms allow fast development 
and understanding of our study and also allow us to compare 
microscope mode to digital mode evaluations.

Microscope Platform
The microscope platform we use is a hardware and software 
system called Evaluation Environment for Digital and Analog 
Pathology (eeDAP).[53] The system uses a computer‑controlled 
motorized stage and digital camera mounted to a microscope. 
eeDAP software registers the location of what is seen in the 
physical tissue through the microscope to the corresponding 
location in a WSI. Registration is accomplished through an 
interactive process that links the coordinates of the motorized 
stage to the coordinates of a WSI image. Registration enables 
the evaluation of the same ROIs in both the digital and 
microscope domains.

Similar to the digital platforms, the eeDAP software includes 
a utility to read and write ImageScope XML files, and 
a graphical user interface  (GUI) implementing the ROI 
evaluation workflow  [Figure  2c].[54] A research assistant 
supports the pathologist by entering data into the eeDAP 
GUI and monitoring registration accuracy. The square ROI 
is realized with a reticle in the eyepiece. As annotations are 
collected on the slide, they are scanner agnostic and may be 
mapped to any scanned version of the slide using the eeDAP 
registration feature.

Region of Interest Selection: Study Preparation
A board‑certified collaborating pathologist marked 10 ROIs 
on each of the 64 cases using the digital platforms described 
above. The ROIs were 500 um  ×  500 um squares. The 
instructions were to target diverse morphology from various 
locations within the slide. More specific instructions were to 
target areas with and without tumor‑associated stroma, areas 
where sTIL densities should and should not be evaluated. More 
details on selecting specific ROI types can be found in Table 1. 
An algorithm is expected to perform well in all these areas, so 
it is vital that the dataset include them.

Region of Interest Evaluation
In current project protocols, we crowdsource pathologists to 
participate in ROI evaluation, separate from the pathologist 
who completed ROI selection. These pathologists will first 
label the ROI by one of the four labels given in Table 1. 
Pathologists then mark if the ROI is appropriate for evaluating 
sTIL density. This question is designed to determine if 
the area has tumor‑associated stroma or not. If there is no 
tumor‑associated stroma, annotation is complete. If there is 

Figure 2: Screenshots from graphical user interfaces of three platforms 
used in data collection. All three collect a descriptive label of the regions of 
interest [Table 1], a binary evaluation of whether the regions of interest are 
appropriate for stromal tumor-infiltrating lymphocyte density estimation, 
and an estimate of stromal tumor-infiltrating lymphocyte density via 
slider bar or keyboard entry.  (a) PathPresenter and  (b) caMicroscope 
are digital platforms. (c) Evaluation environment for digital and analog 
pathology microscope platform. In data collection, the pathologist is at 
the microscope, while a study coordinator records evaluations through 
the graphical user interface

c

b

a
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tumor‑associated stroma, the pathologist needs to estimate the 
density of TILs appearing in the tumor‑associated stroma. The 
platforms allow integers 0–100, with no binning or thresholds. 
The motivation is to allow for thresholds to be determined later 
as the role of TILs becomes more clear and patient management 
guidelines are developed.

Pathologist Participants in Region of Interest Evaluation
Pathologist participants were recruited at a meeting of the 
Alliance for Digital Pathology immediately preceding the 
February 2020 USCAP [United States and Canadian Academy 
of Pathology] annual meeting.[6] That meeting launched the 
in‑person portion of pilot phase data collection. Board‑certified 
anatomic pathologists and anatomic pathology residents 
were eligible to participate. To participate, they were asked 
to review the informed consent[55] and the training materials: 
the guidelines on sTIL evaluation[24] and a video tutorial and 
corresponding presentation about sTIL evaluation, the project, 
and using the platforms.[56] Reviewing the sTIL evaluation 
training was required before participating and took about 
30 min. Pathologists were asked to label the ROI according to 
the types given in Table 1, a true‑false decision about whether 
sTIL densities should or should not be evaluated, and if true, 
an estimate of the sTIL density.

In total, 19 pathologists made 1645 ROI evaluations during 
the February event and the 2 weeks following. The primary 
platform at the event was the eeDAP microscope system where 
7 pathologists made 440 evaluations. Most of the evaluations 
made on the digital platforms were made by pathologists 
who could not attend in person. Data collection in digital 
mode took approximately 30–40 min per batch and twice that 
long in microscope mode. The increased time for microscope 
evaluation was due to the motorized stage movements.

Reference Standard (Truth) from Pathologists
The sTIL density measurements from pathologists are subject 
to bias and variance due to differences in pathologist expertise 
and training. In this work, we collected observations from 
multiple pathologists for each ROI, and then, we averaged 
over the pathologists. While the precision of these values 
can be estimated, averaging over pathologists ultimately 
ignores pathologist variability in the subsequent algorithm 
performance metric. As such, we also let the observations 
from each pathologist stand as noisy realizations of the truth. 
This approach is used in related research on inferring truth 
from the crowd for the purpose of training an algorithm.[57] 
For our work, however, the purpose is to properly account 
for pathologist variability when estimating the uncertainty of 
algorithm performance.

Performance Metric for Stromal Tumor‑Infiltrating 
Lymphocyte Density Values
The primary endpoint of an algorithm that produces 
quantitative values needs to measure how close the values from 
the algorithm (Predictedi) are to the reference standard (Truthi). 
To evaluate “closeness,” one appropriate performance metric 
that we are focusing on is the root mean squared error (RMSE):

( )2  ,1 N

i i
i

RMSE Predicted Truth
N

= −∑ � (1)

where N is the number of ROIs. Smaller values of RMSE 
indicate that the predicted values are closer to the truth, 
and thus better algorithmic performance. Equation 1 shows 
the RMSE estimated from a finite population  (e.g., a finite 
sample of ROIs). As we consider a statistical analysis for 
our work – estimating uncertainty, confidence intervals, and 
hypothesis tests – we look to the infinite population quantity 
without the square root.[38,58‑60]

[ ]( )2 2      ,i iMSE E Predicted Actual bias variance= − = + � (2)

Here, we see that mean squared error measures accuracy 
and precision, similar to Lin’s concordance correlation 
coefficient.[61]

There are two main challenges to analyzing the differences 
between predictions and truth in our work. First, the sum in 
Equation 1 is really a sum over ROIs nested within cases. These 
values are not independent and identically distributed (iid), 
as is generally assumed for Equation 1. There should be a 
subscript for both case and ROI, and the statistical analysis 
needs to account for the correlation between values from ROIs 
within a case. In Figure 3, we show that sTIL densities are not 
iid across cases. The data are from one pathologist evaluating 
three cases that have different levels of sTIL infiltration. We 
see the sTIL densities are correlated within a case, and the 
variance is increasing with the mean. The distribution of sTIL 
densities is not the same for every case.

The second challenge in our work is to account for the 
variability from pathologist to pathologist. This variability 

Table 1: Region of interest types
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is shown in Figure 4, which is a scatter plot showing the 
paired sTIL densities from two pathologists. Our strategy 
for addressing pathologist variability is to replace the single 
reference score in Equation 1 with pathologist‑specific 
values.

To address these two challenges, we rewrite Equation 2 as

2 ),   ([ ]kl jklMSE E Y X= − � (3)

Where Xjkl denotes the sTIL density from pathologist j 
evaluating the ROI l in case k and Ykl denotes the sTIL density 
from the algorithm evaluating the ROI l in case k. Furthermore, 
the expected value averages over pathologists, cases, and 
ROIs. It is this quantity that we wish to estimate, and we are 
developing such methods to account for the correlation of 
ROIs within a case and pathologist variability. The estimate 
may take the form of a summation over readers, cases, and 
ROIs, or it may be the result of a model that needs to be solved 
by more sophisticated methods that do not permit an explicit 
closed‑form expression. The methods build on previous work 
on so‑called multi‑reader multi‑case methods[62‑65] and methods 
to evaluate intra‑ and inter‑reader agreement.[66]

Discussion

The “high‑throughput truthing” (HTT) moniker for this project 
reflects the data collection methods as well as the spirit of the 
effort. The project was inspired by perception studies that have 
been run at annual meetings of the Radiological Society of 
North America.[67] Society meetings provide an opportunity to 
reach a high volume of pathologists away from the workload of 
their day job. A similar opportunity is available at organizations 
with many pathologists. We have explored both of these kinds 
of data collection opportunities via an event at the American 
Society of Clinical Pathology Annual Meeting 2018,[68,69] and 
an event at the Memorial Sloan Kettering Cancer Center.[70,71]

In addition to live events where we can use the eeDAP 
microscope system, our workflows on web‑based 
platforms (PathPresenter and caMicroscope) can crowdsource 
pathologists from anywhere in the world. We have found 
these events to be low‑cost, efficient opportunities to recruit 
pathologists and collect data. We plan to continue the project 

by scaling our efforts to a pivotal phase and disseminating our 
final validation dataset.

Food and Drug Administration Medical Device Development 
Tool Program
A key aim of this project is to pursue the qualification of this 
dataset as a tool through the FDA MDDT program.[19] Pursuing 
qualification offers an opportunity to receive feedback from 
an FDA review team about building the dataset to be fit for a 
regulatory purpose. As we disseminate our work, we believe 
that this feedback will be valuable for the project and more 
generally, for other public health stakeholders interested in 
the collection of validation datasets  (industry, academia, 
health providers, patient advocates, professional societies, and 
government). A qualified tool has the potential to streamline 
the submission and review of validation data and allows 
the FDA to compare algorithms on the same prequalified 
data. In this way, the project may benefit the agency and 
medical device manufacturers, as well as the larger scientific 
community.

Figure  4: Scatter plot of stromal tumor-infiltrating lymphocyte 
densities from two pathologists on eight slides  (one batch) that 
led to 56 paired observations. The plot is scaled by a log-base-10 
transformation (with zero stromal tumor-infiltrating lymphocyte values 
changed to ones). The size of the circles is proportional to the number 
of observations at that point

Figure 3: The distribution of stromal tumor-infiltrating lymphocyte densities in three slides with different levels of infiltration: (a) Low, (b) Medium, (c) 
High. The stromal tumor-infiltrating lymphocyte densities were from one pathologist. As not all region of interest labels are appropriate for stromal 
tumor-infiltrating lymphocyte density evaluation, not every case will contain tumor-infiltrating lymphocyte evaluations for all 10 regions of interests

cba
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The MDDT program was created by the FDA as a mechanism 
by which any public health stakeholder may develop and submit 
a tool to the agency for formal review. Tools are not medical 
devices. Rather, tools facilitate and increase predictability 
in medical device development and evaluation. Each tool is 
qualified for a specific context of use and may be used in a 
manufacturer’s submission without needing to reconfirm its 
suitability and utility.[19] Qualified tools are expected to be made 
publicly available, which can include a licensing arrangement. 
In this way, qualified tools reduce burden to both the agency 
and the manufacturer and ultimately increase product quality 
and better patient outcomes. The proposed context of use for 
this work is given in Table 2.

The exact platform and mechanisms for sharing the dataset have 
yet to be determined. However, the dataset will be shared broadly 
at no cost with any entity, subject to applicable terms required 
by either the FDA or the MDDT program. Possible terms would 
protect against data being used to “train to the test” using strategies 
such as data access via containers or data governance by written 
agreements. We can look to public challenges[72‑75] to inform our 
data sharing plans and educational dissemination opportunities.

An MDDT dataset has the potential to significantly reduce 
the burden of manufacturers, especially small companies. 
Validation in the commercial space tends to be siloed, with 
each developer using distinct, licensed, and proprietary data. 
Our proposed MDDT may allow manufacturers and the FDA 
to avoid the time‑  and resource‑consuming back‑and‑forth 
discussions to formulate a study design and protocol. 
Manufacturers may also be able to skip burdensome steps such 
as obtaining Investigational Review Board approvals, slide 
sourcing, reader recruitment, and collecting the data. Instead of 
planning statistical analyses from scratch, manufacturers may 
use the analyses developed from this project as an example to 
guide their work. These bypassed steps are represented in the 
column headings of Figure 1.

Data Representativeness/Generalizability
A random set of breast cancer biopsies are naturally expected 
to include the different immunophenotypic subtypes of 
TILs  (CD4+, CD8+  T‑cells, and natural killer cells) and 
a variety of shapes, locations, colors, and clustering of 
TILs.[76‑79] Our current strategy of selecting ROIs gathers 
areas for sTIL evaluation with and without tumor‑associated 
stroma, areas where sTIL densities should and should not be 

evaluated [Table 1]. Despite efforts to assemble a balanced 
and stratified sample of ROI types, our pilot study data yielded 
an abundant number of cases with nominal sTIL infiltration. 
While this may be the true clinical distribution, for our MDDT, 
we want to balance and stratify the sTIL density values across 
the expected range. For this, we intend to realize some data 
curation before ROI evaluation in our future pivotal study.

The MDDT dataset should also adequately represent the 
variability arising from preanalytic differences (slide preparation) 
and the intended population (clinical subgroups). As such, for 
our pivotal study, we intend to source slides from at least three 
sites and stratify the cases across important clinical subgroups. 
If possible, we will also create some cases that systematically 
explore the H & E staining protocol (incubation time, washing 
time, and stain strength).

There are several clinical subgroups that are appropriate 
to sample, such as patient age, breast cancer subtypes 
and stages,[28,80‑82] and treatment at various time intervals. 
Sampling from all possible subgroups is challenging if not 
impossible. While our inclusion and exclusion criteria limit 
the use of our MDDT to a selective population, we do not 
expect to sample all the subgroups that might be required 
in an algorithm submission, and we do not expect to have 
the same metadata for all cases. It is important to note that 
while TILs are known to have the most prognostic value 
in certain molecular  (genomic) subtypes  (e.g., TNBC and 
HER2+), a TIL algorithm is most likely to be confounded by 
histologic subtype and characteristics. While there is some 
correspondence between genomic and histologic classifications 
of breast tumors, the histological presentation (morphology) 
of, say, a ductal carcinoma does not necessarily correlate well 
with its genomic composition. Any data that is not part of 
the MDDT but is required for a regulatory submission of an 
algorithm will ultimately be the responsibility of the algorithm 
manufacturer. We do not intend to sample treatment methods 
or longitudinal data.

Pathologists and Pathologist Variability
In this work, our initial data shows notable variability in 
independent sTIL density estimates from multiple pathologists 
on each ROI [Figure 4], which is consistent with previous work 
in this area.[32] These findings further reinforce the need to collect 
data from multiple pathologists and the need to better understand 
this variability. We intend to explore the difference between 

Table 2: Proposed context of use for a stromal tumor-infiltrating lymphocyte density annotated dataset
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averaging over pathologists and keeping them distinct when 
evaluating algorithm performance. In either case, we believe that 
a statistical analysis method should account for reader variability 
in addition to case variability. A final statistical analysis plan for 
our pivotal study, including sizing the number of pathologists 
and cases, will be developed based on the pilot data, simulation 
studies, and feedback from the FDA’s MDDT review team.

As we are crowdsourcing pathologists, we have received 
questions regarding the expertise of the participating pathologists. 
Initially, we accepted any board‑certified pathologist or anatomic 
pathology resident, but the reader variability observed in the pilot 
data has caused us to reconsider. As such, this is a limitation in 
the reliability of the pilot study data. Improving the expertise of 
annotating pathologists will reduce pathologist variability and 
allow us to reduce the number of pathologists. Therefore, for our 
pivotal study, we are expanding our current training materials to 
include testing with immediate feedback, providing the reference 
standard for each ROI. We are also creating a proficiency test. 
These training materials may be built from the pilot study 
dataset. A robust training program could additionally serve the 
community beyond our specific project need.

As relates to the RMSE performance metric, which 
summarizes the bias as well as the variance of an algorithm, 
it is not clear whether the bias comes from the algorithm 
or the pathologist. Amgad et al.[83] found their algorithm to 
be biased low compared to the pathologists. They also found 
that the Spearman rank‑based correlation was stronger for the 
algorithm‑to‑pathologist‑consensus comparison compared to 
the pathologist‑to‑pathologist comparison (R = 0.73 vs. R = 0.66). 
The authors believe these results are related to pathologist 
bias and variability, and not the algorithm. While this may be 
true, it is difficult to know as only two pathologists provided 
sTIL density values. Furthermore, the comparison does not 
account for pathologist variability in either correlation result 
and is not an apple‑to‑apple comparison due to the consensus 
process. Still, we expect that our expanded pathologist training 
will improve pathologist correlation, and we will compare the 
correlation of our pivotal study data to that of Amgad et al. and 
to our pilot study results. In preparation for this comparison, 
we will explore Spearman’s rank correlation and Kendall’s tau 
on the pilot study data. These metrics treat pathologist sTIL 
density estimates as ordinal data rather than quantitative and 
calibrated data.[66,84‑86]

Relaunch and Future Pivotal Study
While the live event portion of pilot phase data collection was a 
burdensome process, we totaled 1645 evaluations in 10 h. The 
live event was set up with four evaluation stations: 2 digital 
platforms and 2 microscope platforms. We created training 
materials and hosted an online training seminar before the event. 
We assembled recruitment materials and sent invitations to 
pathologists. We trained study administrators to operate eeDAP 
and assist pathologists with data collection at the microscope. All 
equipment was shipped and assembled on site. Data aggregation 
was completed via APIs. Not surprisingly, the data are stored 

quite differently on the two digital platforms, so we created 
scripts to clean and harmonize the raw data into common data 
frames. We began building a software package to analyze the 
clean data. In sum, the process took a lot of time and effort, but 
offered experiences to inform the next phase of our project.

To help pathologists improve their sTIL density estimates 
and collect more detailed data, we thought about what an 
algorithm generally would do: identify and segment the tumor, 
tumor‑associated stroma, and sTILs. We thought that it would 
be worthwhile to parallel these steps. We were already asking 
pathologists to label ROIs by tumor, margin, and the presence 
of tumor‑associated stroma. We decided that in our pivotal 
study, we would ask the pathologist to estimate the percent of 
the ROI area that contains tumor‑associated stroma.

Data collection on the microscope system was put on hold 
because of the COVID‑19 pandemic, but we relaunched data 
collection on the digital platforms in September 2020 to fill 
out observations across all batches of the pilot study. We invite 
board‑certified pathologists to spend approximately 30 min 
on training and 30 min per batch on data collection.[87] With 
newly established agreements for sharing materials, we are in 
the process of securing more slides and images to sample the 
patient subgroups mentioned from multiple sites in our future 
pivotal study, bolstering our single‑site pilot data. We welcome 
parties that are able and willing to share such materials to 
contact us through the corresponding author. Similarly, 
we are looking for opportunities to set up HTT events or find 
collaborating sites interested in hosting data collection events 
on their own. There are opportunities to set up their own eeDAP 
microscope system or borrow an existing system from us. We 
are willing to supervise and assist remotely.

Conclusion

On the volunteer efforts of many and a nominal budget, we 
have created a team and a protocol, administrative materials, 
and infrastructure for our HTT project. We have sourced 
breast‑cancer slides and crowdsourced pathologists in a pilot 
study, and we are actively planning a pivotal study with more 
data and better pathologist training. Our goal is to create a 
sTIL‑density annotated dataset that is fit for a regulatory 
purpose. We hope that this project can be a roadmap and 
inspiration for other stakeholders (industry, academia, health 
providers, patient advocates, professional societies, and 
government) to work together in the precompetitive space to 
create similar high‑value, fit‑for‑purpose, broadly accessible 
datasets to support the field in bringing algorithms to market 
and to monitor algorithms on the market.
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