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Abstract: Eosinophils are increasingly recognized as adaptable immune cells that ex-
hibit diverse phenotypes and effector functions across different tissues and disease states.
While they can induce pathology through degranulation and cytotoxic mediator release,
eosinophils also fulfill regulatory and tissue repair roles. Advances in single-cell and spatial
technologies have begun to reveal how microenvironmental cues (including cytokines,
chemokines, and cell–cell interactions) shape eosinophil behavior in health and disease.
These insights are critical for understanding why certain patients respond variably to
therapies targeting eosinophils and related type 2 pathways. By dissecting eosinophil
heterogeneity in real human tissues, researchers may identify new biomarkers, refine
endotyping approaches, and develop more precise therapeutic strategies. This review sum-
marizes emerging concepts of eosinophil biology in inflammatory conditions, highlights
the impact of spatial context on eosinophil functions, and discusses the future of advanced
phenotyping in guiding personalized treatments.
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1. Introduction
Eosinophils are granulocytic leukocytes traditionally associated with helminth infec-

tions and atopic disease states, notably in allergic asthma, atopic dermatitis (AD), and
eosinophilic esophagitis (EoE) [1–3]. In healthy individuals, eosinophils reside primarily
in the gastrointestinal tract and to some extent in other tissues, where they are thought to
fulfill homeostatic roles, including tissue remodeling and repair [4,5]. However, in a range
of inflammatory diseases, eosinophil levels in blood and diseased tissue compartments
may increase dramatically. It is generally believed that such an accumulation is pathogenic
and associated with the activation of type 2 inflammatory pathways [6–8].

While the classical narrative portrays eosinophils as potent effector cells causing
tissue damage and inflammation via release of cytotoxic granule proteins, emerging data
suggest a far more nuanced picture. Recent studies indicate that eosinophils possess
sophisticated immunomodulatory functions, can promote tissue repair, and adopt distinct
phenotypes depending on spatial microenvironmental contexts [4,9]. The concept of
eosinophil heterogeneity, whereby distinct subsets or states co-exist and serve different
pathological or homeostatic functions, has gained traction in recent years [3,10–13]. Further,
microenvironments with eosinophilic inflammation may occur alongside spatially distinct
regions with a non-eosinophilic type of inflammation [14]. Understanding this complexity
in real human tissues is crucial for improved understanding and treatment of eosinophil-
associated diseases. Such knowledge may also explain why biologic treatments targeting
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eosinophils have different efficacy across patients or diseases with similar degrees of
eosinophilia.

This review focuses on the emerging picture of eosinophil heterogeneity and effector
functions in diseased human tissues. It also discusses the evolving understanding of how
eosinophils contribute to both immunopathology and homeostasis, the still enigmatic role
of type 2 inflammation and IL-5–independent pathways, and the impact of anatomical
localization. Also considered is how advanced phenotyping and novel spatially resolved
single-cell technologies will help researchers to decode disease-relevant eosinophil activities
within patient tissues. Finally, we will highlight the implications of these insights for the
pharmacological targeting of eosinophils and improving clinical outcomes.

2. Factors Governing Eosinophil Maturation, Tissue Recruitment,
and Activation

Eosinophil development and recruitment are orchestrated by a finely tuned network
of cytokines and chemokines. Interleukin 5 (IL-5) is the central driver of eosinophilopoiesis
and maturation in the bone marrow [15,16]. In eosinophil conditions, increased IL-5
signaling leads to the expansion of the eosinophil progenitor pool and the subsequent
release of mature eosinophils into the bloodstream. Chemokines, particularly the eotaxin
family (CCL11, CCL24, and CCL26), guide eosinophils from circulation into tissues, where
local signals further shape their activation state [2,3].

Tissue eosinophilia is thought to be intimately linked with type 2 (T2) inflammation,
a response characterized by the production of IL-4, IL-5, and IL-13 [8,17,18]. The type 2
cytokine response may in turn be caused by underlying sensitization and early allergen-
evoked immune responses, or by upstream acute immune responses effectuated by release
of alarmins such as IL-33 and TSLP [19] (Figure 1).

Classical type 2 inflammation has been viewed as the underlying immunological
driver in eosinophilic conditions like allergic asthma, allergic rhinitis, atopic dermatitis,
and EoE [8,17,20–23]. However, recent findings suggest type 2 inflammation in most
eosinophilic conditions to be surprisingly multifaceted and complex, with many context-
dependent variants in terms of induction and execution modes [19,24,25]. The heterogeneity
concerns both the proportions and cellular sources of type 2 cytokines. Indeed, not only
classical CD4 Th2 cells and ILC2s, which are normally forwarded as orchestrators and
producers of the type 2 cytokines, but other cell types including type 2-biased CD8+ T cells,
basophils, and mast cells, may also contribute [26–29]. Importantly, although many cells
in tissue areas with eosinophilia are T2-capable, only a limited subfraction are actively
secreting effector cytokines. Which of the cell types that execute functional type 2 responses
is currently under intense investigation across several eosinophilic diseases.

Whereas IL-5 is critical for eosinophilopoiesis in the bone marrow, it is increasingly rec-
ognized that the maintenance of an established tissue eosinophilia may occur independently
of IL-5-driven local tissue type 2 signals [18,30,31]. This phenomenon may help explain
why some patients respond poorly to anti-IL-5/IL-5Ra therapies despite having elevated
eosinophil counts. Better understanding of pathways promoting the activation and survival
of tissue eosinophils is critical, as they may influence the success of eosinophil-targeted
biologics. In any case, the heterogeneity in clinical response across patients with tissue
eosinophilia challenges the simplistic view that all eosinophil-rich diseases are uniformly
type 2-driven and underscores the need for more nuanced endotyping.
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Figure 1. A schematic overview of eosinophil maturation, tissue homing, effector function modes,
and fates of airway mucosal eosinophils (white boxes). Shown are also routes for the active egression
of tissue eosinophils into the airway lumen or to lung-draining lymph nodes, as well as common
fates of luminal eosinophils. To the left are also factors promoting longevity and survival of tissue
eosinophils. Whereas the eosinophilopoiesis in the bone marrow and establishment of a circulating
eosinophil pool is highly IL-5 dependent, the relative proportion of IL-5 versus IL-5-independent
factors for maintaining the tissue eosinophila is dynamic and highly context-dependent. * Type 2
inflammation, as depicted here, is a simplified representation; its execution in actual patient tissues
remains largely unknown. Abbreviations: ECL = eosinophil cytolysis; FEG = free eosinophil granules;
EoSVs = eosinophil sombrero vesicles; Th2 = T helper type 2 cells (GATA3+ CD4 cells); ILC2 = type 2
innate lymphoid cells; BP = basophil; DC = dendritic cell.

3. Eosinophil Effector Functions in Diseased Tissues: Beyond Granule
Protein Release

Traditionally, eosinophils are best known for their cytotoxic armamentarium, anchored
by the release of highly basic and cationic proteins contained within secondary granules.
The four major eosinophil granule proteins, major basic protein (MBP), eosinophil cationic
protein (ECP), eosinophil peroxidase (EPX), and eosinophil-derived neurotoxin (EDN), have
historically defined eosinophil effector function [3,9,32]. These proteins can cause epithelial
damage, neuronal dysfunctions, bronchoconstriction, and mucus hypersecretion [2,32–35],
and their presence in tissues and biofluids is associated with disease severity in eosinophilic
disorders. Elevated levels of MBP and ECP, for example, can be detected in the bronchoalve-
olar lavage (BAL) fluid, sputum, and blood of patients with severe eosinophilic asthma,
correlating with airflow obstruction and exacerbation frequency [32,35,36].

Eosinophils employ distinct modes of degranulation. Piecemeal degranulation (PMD)
is a selective and controlled mechanism where granule contents are slowly mobilized and re-
leased, enabling fine-tuned effects [9,37,38]. During classical or compound exocytosis, entire
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granule packages are released from living cells via plasma membrane fusion [39]. In con-
trast, eosinophil cytolysis (ECL) involves the release of intact granules via a programmed
non-apoptotic cell death [34,37]. Evidence for eosinophil degranulation and ECL in human
disease has been derived from ultrastructural analyses of tissue biopsies, immunostaining
for extracellular granule proteins, and the detection of soluble granule proteins in various
clinical samples [37,40,41]. Whereas in patients, PMD and ECL together constitute the
bulk of granule protein release, ECL evokes inflammatory signals also through chroma-
tolysis and the formation of extracellular dsDNA traps and pro-inflammatory galactin-10
containing Charcot–Leyden crystals [35,41–45].

Despite the broad pathogenic potential of ECL and PMD, their molecular triggers and
regulation remain relatively unknown. However, recent data suggest that each degranu-
lation type has distinct receptor molecular triggers [38]. Also, the mechanistic execution
is different with intricate mechanisms for the selective and controlled release of granule
content [41,46]. For example, the extracellular membrane-bound granules liberated by
ECL act like independent immune responders and have surface cytokine and leukotriene
receptors controlling the subsequent content release [41,46]. New data have also revealed
that during both PMD and ECL granules release eosinophil sombrero vesicles (EoSVs) for
selective protein release and, potentially, direct communication to neighboring immune
cells [41,44,47].

However, bulk mediator release through degranulation is not the whole story.
Eosinophils can also perform a fine-tuned release of an array of cytokines (e.g., IL-4,
IL-13, TGF-β), chemokines (e.g., CCL11/eotaxin), lipid mediators (e.g., leukotrienes and
prostaglandins), and growth factors (e.g., vascular endothelial growth factor) [11,12,48,49].
These mediators enable eosinophils to influence neighboring immune cells, shaping T
helper 2 (Th2) responses, interacting with group 2 innate lymphoid cells (ILC2s), and mod-
ulating dendritic cell function [4,13,50–54]. There is also significant evidence of eosinophils
acting as antigen-presenting cells (see section on anatomical compartment below). Apart
from degranulation and immunomodulation, eosinophils can also participate in tissue re-
modeling and repair processes, stimulating fibroblasts, epithelial cells, and smooth muscle
cells to produce extracellular matrix components [13,18,48]. Thus, eosinophils can adopt
both tissue-damaging and tissue-protective roles, and it is likely that in many clinical
conditions, both pathogenic pro-inflammatory and tissue-protecting mechanisms occur in
parallel. Naturally, this double-edged feature of eosinophils is important to consider when
evaluating the role of eosinophils in specific clinical settings.

4. Heterogeneity and Fates of Eosinophils in Human Disease
Early studies distinguished “normodense” from “hyperdense” eosinophils based on

gradient density separation, suggesting the existence of distinct eosinophil subpopula-
tions [55]. More recent conceptual frameworks propose that eosinophils can be categorized
broadly into “homeostatic” and “inflammatory” subsets [10,56]. Homeostatic eosinophils
are proposed to reside in in tissues under steady-state conditions, supporting tissue main-
tenance and integrity, whereas inflammatory (or “inducible”) eosinophils are rapidly
recruited during disease flares, are highly activated, and produce more pro-inflammatory
mediators [10,55,56]. While being conceptually attractive, this binary classification is
however an oversimplification. For instance, single-cell RNA sequencing (scRNA-seq)
and mass cytometry have begun to uncover other eosinophil subpopulations with other
“distinct” transcriptomic and surface marker profiles [4,48,57]. These approaches have
revealed that eosinophil phenotypes vary depending on disease severity, anatomical lo-
cation, and exposure to local tissue cytokines and chemokines. Although many of these
high-dimensional data sets have been generated from animal models or from in vitro-
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differentiated eosinophils, emerging human data suggest considerable eosinophil diversity
also in diseases such as asthma, chronic rhinosinusitis, and EoE [58–60].

In summary, though the characterization of eosinophil “subsets” remains in its in-
fancy, it seems clear that their identities and roles in human disease are highly plastic and
context-dependent. This is supported by the typical patchy spatial distribution patterns
of eosinophils and varying microenvironmental composition of eosinophil-modulating
factors (IL-33, TSLP, PAF, IL-5, eotaxins, etc.) across tissue microenvironments [52,61–63].
Thus, whereas it seems too simplistic to categorize eosinophils into fixed stereotypic sub-
types, eosinophils are a vastly heterogeneous population in inflamed tissues with some
phenotypes or effector functions driving pathology and others exerting protective or regu-
latory effects. Unraveling this complexity in human disease settings is a key challenge for
future research.

The presence and tissue distribution of eosinophils is in most eosinophilic conditions
spatially multifaceted and more complex than a mere presence in the main target organ
(exemplified in Figure 2). Where eosinophils localize within tissues may be as important
as how many are present. In asthma, for example, some patients harbor a more “distal”
type 2 inflammation, with eosinophils and Th2 cells accumulating in the small airways or
even in the alveolar parenchyma [63–67]. Inhaled corticosteroids may be less effective in
such patients, as drug deposition in the peripheral lung is suboptimal [65]. Similarly, the
distribution of eosinophils within the airway wall—e.g., within smooth muscle bundles,
close to nerves, or in perivascular regions—may influence airway hyperresponsiveness
(AHR) and treatment responses [33].

In addition to their presence at the lumen–tissue interface, eosinophils can also migrate
to draining lymph nodes [68–70] (Figures 1 and 2), where they may shape adaptive immune
responses via, e.g., antigen presentation. Indeed, eosinophils have been reported to express
key molecules characteristic to professional antigen-presenting cells like HLA-DR/MHC-
II, CD80, CD86, and CCRR7 [68,69,71,72]. Moreover, inside lymph nodes, eosinophils
may regulate T cell proliferation and influence class switching in B cells. Although the
importance of lymph node-resident eosinophils in human disease remains underexplored, it
represents a fertile area of investigation. Lymph nodes as an anatomical arena for eosinophil
immunopathological activities constitutes a challenge from a drug delivery perspective,
especially in respiratory diseases since inhalation therapy does not reach the lung-draining
lymph nodes. For eosinophils in hollow organs, another anatomical re-localization mode
is active egression into the lumen. At least in respiratory eosinophilic conditions, this
represents a bulk fate of tissue eosinophils that can function both as a first line defense
and a physiological clearance of eosinophils (Figure 1) [73–75]. Naturally, the dramatical
alteration of the physical and molecular milieu in the lumen will affect the eosinophil
phenotype [74], a fact important to consider when evaluating BAL or sputum eosinophils.

In addition to the programmed process of eosinophil cytolysis (ECL), eosinophils
can also undergo primary and secondary necrosis. Primary necrosis involves the loss
of plasma membrane integrity due to “accidental” cell injury, causing the release of pro-
inflammatory intracellular content. Secondary necrosis occurs when apoptotic eosinophils
are not promptly removed by macrophage phagocytosis or mucociliary clearance, even-
tually leading to membrane rupture but resulting in reduced inflammatory consequences
compared to primary necrosis. One pathogenic implication of tethered luminal plugs,
which trap cells and prevent their physiological clearance by the mucociliary escalator,
could be to increase the necrosis rate of eosinophils.
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Figure 2. A schematic overview of the spatial distribution levels of eosinophils in asthma and COPD
patients classified as “type 2 patients” based on elevated blood (or luminal) eosinophils. Apart
from the expected eosinophil infiltration in the lung, eosinophils may variably also be present in
the nasal mucosa (especially in atopic asthmatics with CRSwNP), lymph nodes [70], or adipose
tissue [76]. In common to healthy individuals, asthma and COPD patients also have a gastrointestinal
(GI) population of resident eosinophils. Not only in COPD, but also in asthma the lung eosinophil
tissue infiltration may variably also involve the small airways (bronchioles), or even the alveolar
parenchyma [65,77]. The tissue eosinophilia is typically patchy [61], both at an anatomical (middle
panel) and microenvironmental level (right panel). Importantly, both at an anatomical and microen-
vironmental level, spatially distinct “hot spots” with aggravated eosinophilia may occur alongside
tissue areas subjected to a non-eosinophilic inflammation, creating a mixed-inflammatory phenotype
that complicate the anti-inflammatory treatment [14]. EoP = eosinophil progenitor: LA = lymphoid
aggregate. CRSwNP = chronic rhinosinusitis with nasal polyps.

5. Pharmacological Targeting of Eosinophils
Therapeutic strategies for eosinophilic disorders historically relied on glucocorticoids

to suppress eosinophilia and broadly dampen inflammation [23,78,79]. Systemic and
inhaled corticosteroids remain mainstays of treatment for eosinophilic diseases, with a
main proposed mechanism of action being T2 suppression and reduction in eosinophil-
promoting IL-5 and eotaxin production. However, steroids have significant side effects and
may be insufficient to control severe disease.

The development of biologic therapies directly targeting eosinophils or the pathways
governing their survival and recruitment represents a major therapeutic advance. Mono-
clonal antibodies targeting IL-5 (e.g., mepolizumab, reslizumab) or the IL-5 receptor alpha
chain (benralizumab) effectively reduce eosinophil counts in blood and tissues, improving
outcomes in many patients with severe eosinophilic asthma [3,80–82].

Another anti-eosinophil target is Siglec-8, an inhibitory receptor expressed on
eosinophils and mast cells. The investigational drug and siglec-8–agonist antibody lirente-
limab induced eosinophil apoptosis [83] and thereby robustly reduces both blood and
tissue eosinophil numbers [83]. However, after clinical trials in EGIDs, AD, and urticaria,
the clinical efficacy has so far been disappointing. It is of note that the lack of clinical
improvement in eosinophilic duodenitis (EoD) was observed despite a successful reduction
in tissue eosinophils, highlighting the general difficulties to judge the relative importance
of eosinophils to the overall pathogenesis in eosinophilic diseases.

Identifying the right patients for eosinophil-targeted therapies has largely relied on
measuring blood eosinophil counts [84,85]. Yet, these approaches have limitations. Ele-
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vated blood eosinophils do not always predict tissue eosinophil levels, activity, or response
to therapy [40,86,87]. Further, tissue eosinophilia per se may not even predict response to
eosinophil-targeted treatments, as illustrated in EoE where eosinophil targeting by ben-
ralizumab (anti-IL5Ra) or Siglec-8 activation has shown limited clinical efficacy despite
clear proven tissue eosinophilia prior to biologic treatment and successful eosinophil reduc-
tion [88,89]. Similarly, while anti-IL-5/IL-5Ra therapies are effective in a large proportion
of eosinophilic severe asthmatics, some patients respond poorly despite displaying an
eosinophil signature [90–92]. Several factors could explain this discrepancy, including the
presence of parallel non-type 2 inflammatory pathways [14], genetic type 2 variants [93],
alternative eosinophil survival signals in the tissue [31,94], or treatment-resistant eosinophil
subsets at distinct anatomical sites [48,63]. In this regard, it is important to not only view
eosinophil numbers per se as a predictor of clinical response but also degranulation sta-
tus. Indeed, eosinophil conditions with similar degrees of tissue eosinophils may display
markedly different levels of degranulation [40]. The rational for assessing activity rather
that cell density is further underscored by sputum studies [95], and even using ECL-evoked
free granules in sputum to guide response to biologic treatment [96]. In further support of
this theme, eosinophil peroxidase was recently forwarded as a more reliable biomarker of
active eosinophil inflammation than mere cell numbers [97].

Like there are different reasons for lack of clinical efficacy with eosinophil-targeting
therapies despite elevated eosinophil counts, the mechanism of action among patients that
do respond could also be multifaceted. Although the IL-5/IL-5Ra biologics are commonly
forwarded as anti-eosinophil therapies, cells other than eosinophils may express IL-5Ra.
Apart from basophils, B cells/plasmablasts as well as the airway epithelium and fibrob-
lasts may variably express IL-5Ra [98–101]. Similarly, the effects of Siglec-8 activation by
lirentimab may not be unique to eosinophils since mast cells and, to a lesser degree, ba-
sophils also express Siglec-8 [102,103]. Also, to what extent direct effects on IL5Ra-positive
non-eosinophil cell types contribute to clinical efficacy in responders to benralizumab,
reslizumab, and mepolizumab remains to be explored.

To complement the directly eosinophil-targeting biologics, there are several ther-
apeutic approaches that indirectly modulate eosinophilic inflammation by altering T2
inflammation or its upstream alarmin pathways. Among these are dupilumab that targets
IL-4Rα (dupilumab), thereby blocking IL-4 and IL-13 signaling, or the anti-TSLP MoAb,
tezepelumab [23,104]. In late clinical development are also several biologics that block the
eosinophil-promoting alarmin IL-33 or its receptor ST2 [105–108]. Apart from the biologics,
dexpramipexole is an oral investigational drug that in recent clinical studies has been
shown to robustly reduced both blood and tissue eosinophils, even though the mechanism
of action remains to be identified [109].

Common to all eosinophil modifying drugs is uncertainties regarding what patient
will respond. As a result, there is growing interest in discovering new biomarkers that more
reliably predict response to eosinophil-targeted treatments. Potential avenues include tran-
scriptomic and proteomic signatures of eosinophils isolated from blood or disease tissues,
imaging-based methods to assess spatial distribution patterns, or integrative approaches
that combine clinical, radiographic, and molecular data. Ultimately, a better understanding
of eosinophil heterogeneity should enable more personalized treatment strategies and
improve clinical outcomes.

6. Outstanding Questions on Eosinophil Effector Functions in
Clinical Conditions

Despite the significant progress in eosinophil research and treatment of eosinophil-
associated diseases, fundamental questions remain about the true scope of eosinophil
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functions in human disease. How do distinct eosinophil subsets modulate local immune
responses in different disease phenotypes, or across anatomical compartments and patchy
microenvironments within patients? Apart from type 2 inflammation, how do environmen-
tal factors such as microbiota [110], pollutants, or viral triggers shape eosinophil pheno-
types? To what extent do human tissue eosinophils recapitulate the functions predicted by
animal or in vitro studies?

Another key question relates to therapy response. Why do some patients with robust
tissue eosinophilia fail to benefit from eosinophil-targeted treatments, while others expe-
rience dramatic improvements? Answers may reside in the heterogeneity of eosinophil
states, differing microenvironmental cues, or the presence of concurrent inflammatory
pathways. Indeed, the phenomenon of mixed type 2 and non-type phenotypes within
individual patients has been observed in, for example, asthma and eosinophil-high COPD
patients [14,61,111,112]. This phenomenon—a “mixed inflammatory phenotype”—which
is likely present to a varying degree in most patients presenting with tissue eosinophilia,
underscores the need to identify the local microenvironmental factors shaping eosinophil
heterogeneity in real-life clinical settings.

Addressing the questions above will require carefully designed human studies, includ-
ing tissue biopsies, advanced phenotyping techniques, and integrative analyses linking
clinical data with cellular and molecular phenotypes. Examples of such initiatives are the
3TR, U-BIOPRED, and SARP consortia [113,114] in the asthma field and CEGIR in the field
of eosinophilic gastrointestinal disorders (EGIDs) [115].

7. Novel Approaches to Decode Eosinophil Phenotypes in Diseased
Human Tissues

The complexity of eosinophil biology demands high-resolution tools for context-based
phenotyping. Single-cell techniques including scRNA-seq and high-end FACS approaches
are powerful tools. However, eosinophils pose unique technical challenges. They are
notoriously fragile and easily activated during purification [116], making in vitro functional
assays and single-cell sequencing experiments prone to artifacts. Further, their high RNase
content can degrade RNA, complicating transcriptomic analyses [117,118]. Techniques that
avoid extensive cell manipulation, such as direct ex vivo isolation or immediate single-cell
encapsulation [119], help to minimize activation artifacts.

An attractive approach, which avoids the eosinophil isolation issue and assesses cells
directly in their microenvironmental tissue context, is histology-based spatial transcriptomic
approaches. To this end, leading platforms like Visium and Xenium (10X Genomics,
Pleasanton, CA, USA) and GeoMx® (Nanostring, Seattle, WA, USA) allow customized or
whole-genome transcriptomic data on tissue sections at a cellular resolution [120,121]. In
practice, there are however challenges with robust cell delineation and analyzing spatially
resolved large datasets. Nonetheless, rapid developments in spatial statistics, transcript-
to-cell assignment strategies, and data interpretation [120–122] are driving significant
progress in this field. Combining these methods with multiplexed immunohistochemistry
histology-based mass spec techniques like MALDI variants and ICP-MS has the potential
to further expose the true nature of eosinophil phenotypes across tissue niches and holistic
cell patterns in real patient tissues.

As these technologies improve and become more accessible, the field will gain un-
precedented insights into the real-time roles of eosinophils in human diseases. The goal is
to not only catalog eosinophil subsets but also to understand how their functions evolve
during disease progression, remission, and relapse, and how they contribute to or mit-
igate ongoing inflammation. Such knowledge could revolutionize the development of
personalized therapies that modulate eosinophil activity in a context-dependent manner.
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8. Summary and Future Perspectives
Eosinophils are surprisingly versatile immune cells whose behavior is shaped by local

tissue signals, disease context, and interaction with other cell types. Rather than functioning
solely as destructive granulocytes, they can also drive or regulate inflammation, promote
repair, and actively coordinate immune responses. This complexity helps explain the highly
varied clinical manifestations of eosinophilic disorders and the inconsistent responses to
current therapies. Emerging single-cell and spatial phenotyping technologies, applied
directly to patient tissues, offer the opportunity to resolve these spatiotemporal eosinophil
states with greater precision. Such efforts could improve disease endotyping, guide targeted
interventions, and potentially reveal new treatment strategies for eosinophil-associated
diseases. Ultimately, harnessing eosinophils’ diverse roles—and tailoring therapies to
specific eosinophil phenotypes—represents a promising frontier for personalized medicine.
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