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Abstract

Phthiocerol dimycocerosates (PDIMs) are a class of mycobacterial lipids that promote viru-

lence in Mycobacterium tuberculosis and Mycobacterium marinum. It has recently been

shown that PDIMs work in concert with the M. tuberculosis Type VII secretion system ESX-

1 to permeabilize the phagosomal membranes of infected macrophages. As the zebrafish-

M. marinum model of infection has revealed the critical role of PDIM at the host-pathogen

interface, we set to determine if PDIMs contributed to phagosomal permeabilization in M.

marinum. Using an ΔmmpL7 mutant defective in PDIM transport, we find the PDIM-ESX-1

interaction to be conserved in an M. marinum macrophage infection model. However, we

find PDIM and ESX-1 mutants differ in their degree of defect, with the PDIM mutant retaining

more membrane damaging activity. Using an in vitro hemolysis assay—a common surro-

gate for cytolytic activity, we find that PDIM and ESX-1 differ in their contributions: the ESX-

1 mutant loses hemolytic activity while PDIM retains it. Our observations confirm the involve-

ment of PDIMs in phagosomal permeabilization in M. marinum infection and suggest that

PDIM enhances the membrane disrupting activity of pathogenic mycobacteria and indicates

that the role they play in damaging phagosomal and red blood cell membranes may differ.

Introduction

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is an obligate human path-

ogen; its ability to survive and spread is dependent upon its ability to survive within its human

host. During the early stages of infection, this requires manipulation of the innate immune sys-

tem, allowing for survival of the pathogen within the microbicidal environment of host macro-

phages [1]. M. tuberculosis and the pathogenic M. marinum use their lipid coats and Type VII

secretion systems to evade and co-opt ordinarily lethal host defenses within these monocytes.

The virulence lipid phthiocerol dimycocerosate (PDIM) is an outer membrane virulence

lipid in both M. marinum and M. tuberculosis. PDIM-deficient mutants in M. marinum and
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M. tuberculosis are attenuated in animal models of infection [2–4] and membrane permeability

[5, 6]. Contact between mycobacteria and host environment results in the transfer of surface

PDIM into host membranes, suppressing toll-like receptor signaling (TLR) and preventing the

recruitment of microbicidal monocytes during infection [4, 7, 8]. Consequently, PDIM

mutants are rapidly phagocytosed and killed by microbicidal monocytes [4].

The ESX-1 Type VII secretion system was identified as essential for virulence when its loss

was determined to be the primary cause of attenuation for the live BCG vaccine strain [9–12].

ESX-1 is crucial for survival within the macrophage during early infection, mediating evasion

of bacterial killing and induction of growth-permissive responses. ESX-1 enhances recruit-

ment of macrophages during infection, promoting granuloma formation [13–15]. Within the

macrophage, ESX-1 mediates permeabilization of the mycobacterial phagosome [16, 17]. Per-

meabilization induces the cGAS/STING and AIM2/NLRP3 cytosolic signaling pathways,

which promote production of cytokines that may enhance bacterial survival [18–22].

Incorporation of PDIM into host membranes has been proposed to rigidify them, enhanc-

ing lysis by ESX-1 [8]. Supporting this hypothesis, multiple groups have observed that loss of

PDIM reduces phagosomal permeabilization in M. tuberculosis [23–26]. As the study of M.

marinum has provided new insights into PDIM’s role in pathogenesis [4, 7], we set out to

determine if this PDIM-ESX-1 interaction was conserved in M. marinum. In this paper, we

confirm that as in M. tuberculosis, proper PDIM localization is required for M. marinum to

effectively permeabilize macrophage phagosomes.

Results & discussion

ESX-1 is required for M. marinum and M. tuberculosis to permeabilize macrophage phago-

somes during infection [16, 17, 27]. Recent work has shown that ESX-1 and PDIM are both

required for permeabilization in M. tuberculosis [23–26]. We set out to determine if phagoso-

mal permeabilization requires PDIM in M. marinum by using an attenuated ΔmmpL7 M. mar-
inum mutant defective in PDIM localization to the mycomembrane [4]. To measure

phagosomal permeabilization, we used the fluorescence resonance energy transfer (FRET)-

based dye CCF4-AM as we have done previously [28]. Briefly, the lipophilic dye CCF4-AM is

absorbed into the cytosol and is cleaved by cytosolic esterases. The resulting dye is retained in

the cytosol and produces a green fluorescent signal (525 nm) upon excitation with a violet

laser (405 nm) [17, 29]. When phagosomal permeabilization occurs, the dye becomes accessi-

ble to M. marinum. M. marinum is capable of cleaving the dye with its endogenous mycobacte-

rial β-lactamase BlaC, which causes a loss of FRET and an increase in blue fluorescence (450

nm). We used this dye to determine the relative ability of wildtype, ΔESX-1, and ΔmmpL7 M.

marinum to permeabilize their phagosomes (Fig 1A–1C). We found that both strains permea-

bilized their phagosomes less than wildtype M. marinum (Fig 1D). These results show that

PDIM is required for M. marinum phagosomal permeabilization, as it is for M. tuberculosis.
ESX-1-mediated phagosomal permeabilization is associated with membrane damage in

both M. tuberculosis and M. marinum [16, 17, 27, 28, 30–32]. M. tuberculosis strains deficient

in ESX-1 or PDIM synthesis show reduced galectin-3 or galectin-8 recruitment to intracellular

sites of infection [23, 24, 33, 34]. If the endosomal membrane is damaged, cytosolic galectins

bind to lumenal β-galactoside-containing glycans that become exposed on damaged vesicles,

and can be visualized by immunofluorescence microscopy [23, 24, 33–36]. Differing from the

role of ESX-1 in phagosomal permeabilization during M. tuberculosis and M. marinum infec-

tion, the involvement of M. marinum PDIM in this process has not been demonstrated.

We next asked if M. marinum PDIM is similarly associated with phagosomal membrane

damage. As expected, galectin-8 was readily observed at sites of infection with wildtype M.
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Fig 1. PDIM transport to the outer mycomembrane is required for optimal phagosomal permeabilization by M. marinum. Representative dot plots of (A)

wildtype, (B) ΔESX-1, and (C) ΔmmpL7 infected THP-1 macrophages 24 hours post infection with overlays of uninfected (blue) and infected (red) cells within

each sample. Gating outlined in black, % permeabilization is as labeled. Plots are representative of two independent experiments. (D) Quantification of

permeabilization events. Each point represents an independent experiment, symbols indicate matched experiments.

https://doi.org/10.1371/journal.pone.0233252.g001
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marinum and was greatly reduced with ΔESX-1 M. marinum (98% lower in ΔESX-1) (Fig 2).

ΔmmpL7 M. marinum infection revealed an intriguing result: galectin-8 staining was reduced

as compared to wildtype (84% lower in ΔmmpL7), but higher than ΔESX-1. Highlighting its

Fig 2. PDIM transport deficiency reduces M. marinum-induced phagosomal membrane damage. (A) Maximum intensity

projections of confocal micrographs showing galectin-8 labeling of PMA-differentiated THP-1 cells infected with tdTomato-expressing

wildtype or mutant M. marinum strains 22 hours post infection. Arrows indicate co-localization of Galectin-8 (green) and M. marinum
(magenta) fluorescence. Bottom panels show close-up views of the corresponding boxed regions in the top panels. Scale bars, 50μm. (B)

Percent of infected cells that have mycobacterial foci labeled with galectin-8. Symbols represent individual imaging fields. Horizontal

lines depict mean values. The respective means and 95% confidence intervals for wildtype, ΔESX-1 and ΔmmpL7 infections are 28.9

(22.0–35.8), 0.7 (0.2–1.2), and 4.7 (3.1–6.3). Statistical significance was determined using a Kruskal-Wallis nonparametric test with

Dunn’s post-hoc test to control for multiple comparisons, ���� p< 0.0001, � p< 0.05. Data are representative of two experiments.

https://doi.org/10.1371/journal.pone.0233252.g002
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intermediate level of staining, galectin-8 staining was seven times greater in ΔmmpL7 than in

ΔESX-1 infection, (Fig 2). These results suggest that like in M. tuberculosis, M. marinum PDIM

cooperates with ESX-1 to induce maximum damage to host membranes, with PDIM surface

localization as a requirement.

M. tuberculosis and M. marinum both show ESX-1 dependent hemolytic activity [37–39].

Furthermore, loss of hemolytic activity in an M. marinum ΔESX-1 mutant can be rescued by

complementing with the M. tuberculosis ESX-1 locus [28]. Historically, hemolysis in M. mari-
num has been regarded as a correlate of ESX-1 mediated virulence, although recent work sug-

gests that hemolysis can be lost with minimal effects on intramacrophage growth or virulence

[28, 38, 40–43]. As phagosomal permeabilization and hemolysis both require host membrane

lysis, we set out to determine if the permeabilization-deficient M. marinum ΔmmpL7 were

defective in hemolysis as well. As expected, ΔESX-1 had reduced hemolytic activity as com-

pared to wildtype. We saw that ΔmmpL7 had significantly more hemolytic activity than ΔESX-
1 (Fig 3). Thus, PDIM does not contribute to hemolysis as much as ESX-1, mirroring its lesser

contribution to phagosomal membrane damage as evidenced by galectin-8 staining. The dif-

ference between wildtype and ΔmmpL7 hemolysis was not statistically significant (Fig 3).

However, the variation in ΔmmpL7 hemolysis across the four experiments precluded determi-

nation of whether the mutant had full wildtype levels of hemolytic activity.

In summary, we find that proper PDIM localization enhances ESX-1 dependent phagoso-

mal permeabilization in M. marinum. This matches observations that M. tuberculosis mutants

in PDIM localization or synthesis are deficient in phagosomal permeabilization [23–26].

While we have not been able to directly determine the effect of PDIM loss on M. marinum
ESX-1 secretion, the finding that M. tuberculosis ΔmmpL7 retains its ESX-1 secretory activity

[25] gives confidence that this is the case in M. marinum as well. Our finding that PDIM and

ESX-1 contribute to the same extent to phagosomal membrane permeabilization when judged

Fig 3. PDIM-deficient M. marinum retain hemolytic activity. (A) 2-hour hemolysis of sheep red blood cells following incubation with wildtype, ΔESX-1 and

ΔmmpL7 M. marinum relative to a Triton X-100 control. Statistical significance was determined by one-way ANOVA with Tukey’s post-test. �p< 0.05, ��

p< 0.01, otherwise, p> 0.05. Symbols represent matching experimental replicates. Pink circles, green squares, dark purple triangles and light purple diamonds

are the first, second, third, and fourth replicates, respectively. (B) ΔESX-1 and ΔmmpL7 M. marinum hemolysis from (A) normalized to wildtype for each of

four experiments. p-values, one-sample t-test against a hypothetical mean of 100% Error bars, mean +/- S.E.M.

https://doi.org/10.1371/journal.pone.0233252.g003
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by the CCF4-AM assay, but differ in the galectin-8 phagosomal damage assay, suggests that the

latter may be a more sensitive assay.

Finally, the finding that ΔmmpL7 is much more hemolytic than ΔESX-1 indicates that

PDIMs contribute differently to M. marinum hemolysis and macrophage membrane damage

than ESX-1, or potentially, that hemolysis and macrophage membrane damage have separable

requirements. Supporting this hypothesis is the recent observation that the M. marinum ESX-

1 substrate MMAR_2894 is required for hemolysis but not ESX-1 mediated cytotoxicity [43],

which is associated with phagosomal damage in M. tuberculosis [16, 17]. Ultimately, additional

study is required determine the exact contribution of PDIM versus ESX-1 for M. marinum
hemolysis, and the degree to which in vitro hemolytic activity shares machinery with phagoso-

mal damage.

Materials & methods

Bacterial strains

Strains are described in Table 1. All strains were derived from wildtype M. marinum purchased

from American Type Culture Collection (ATCC) (strain M, ATCC no. BAA-535). M. mari-
num ΔESX-1 and ΔmmpL7 were generated as described previously [4, 14]. tdTomato fluores-

cent strains were generated by transformation with pTEC27 (Addgene plasmid #30182).

Infections, galectin-8 immunofluorescence, and microscopy

2.5 x 105 THP-1 cells were seeded on 24-well optical bottom tissue culture plates (Perkin

Elmer, 1450–606), treated with 100nM phorbol 12-myrystate-13-acetate (PMA) (SIGMA,

P1585) for two days. PMA-containing media was then removed and replaced with fresh

media. Two days later, adherent cells were washed twice with PBS and infected with antibi-

otic-free media containing single-cell suspensions of tdTomato-expressing M. marinum at a

multiplicity of infection of ~1.5 for 4 hours and maintained at 33˚C, 5%CO2. 22 hours later,

cells were fixed in 4% (wt/vol) paraformaldehyde in PBS at room temperature for at least 30

minutes.

Galectin-8 staining was based on the method described by Boyle and Randow [44]. Fixed

cells were washed twice with PBS and then incubated in permeabilization/block (PB) solution

(0.1% Triton-X 100, 1% bovine serum albumin in PBS) for 30 minutes at room temperature,

and then stained with goat anti-human galectin-8 antibody (R&D Systems, AF1305) diluted in

PB solution overnight at 4˚C. Cells were then washed three times with PBS and stained with

AlexaFluor488-conjugated donkey anti-goat IgG (ThermoFisher, A-11055) diluted in PB solu-

tion for one hour at room temperature. Cells were then washed three times and kept in PBS

for imaging.

A Nikon A1R laser scanning confocal microscope fitted with a 20x Plan Apo 0.75 NA objec-

tive was used to generate 2048 x 2048 pixel 8μm z-stacks consisting of 1μm optical sections.

Image acquisition was carried out using a galvano scanner, 488nm and 561nm lasers, and a

Table 1. List of strains used in this study.

Strain Description Source

Wildtype M. marinum M strain. ATCC BAA-

535

ΔESX-1 M strain with a deletion syntenic to M. tuberculosis RD1(from MMAR_5446 to

MMAR_5455).

[14]

ΔmmpL7 M strain with an unmarked mmpL7 deletion. [4]

https://doi.org/10.1371/journal.pone.0233252.t001
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GaAsP multi-detector unit. Maximum intensity projections were generated in NIS Elements

(Nikon) and used to calculate the percentage of THP-1 cells containing mycobacterial foci

labeled with galectin-8 per imaging field.

CCF-4 assay & flow cytometry

CCF-4 assay was conducted as previously described [28], with minor modifications. Briefly, 1

x 106 THP-1 cells were seeded on 12-well tissue culture plates and treated with 33 nM PMA

for three days. Cells were then washed with media and then infected with single-cell suspen-

sions of tdTomato-expressing wildtype, ΔESX-1, or ΔmmpL7 M. marinum at a MOI of 1 for 4

h at 33˚C in EM medium. 24 hours post infection cells were stained with Fixable Viability Dye

eFluor660 (eBioscience). Cells were then harvested and stained for 1h at room temperature

with 8 μM CCF4-AM (Invitrogen) in EM medium supplemented with 2.5 μM probenecid.

Finally, cells were fixed overnight at 4˚C in 4% (wt/vol) paraformaldehyde. Cells were analyzed

in an LSRFortessa II cytometer, using FACSDiva software (BD Biosciences). At least 40,000

events per sample were collected. Data were analyzed using FlowJo (Treestar). Permeabiliza-

tion percentage among infected monocytes was calculated using a region defined by an

increased 450 nm signal (indicating CCF4 dye cleavage and, therefore phagosomal permeabili-

zation) relative to uninfected cells in the same sample. Events in this region were designated

“permeabilized”. Percent permeabilization was then calculated as a ratio of events in the per-

meabilized field over total live and infected cells.

Hemolysis assay

Hemolysis assays were conducted as previously described [28]. Briefly, defibrinated sheep red

blood cells (RBCs) (Fisher Scientific) were washed twice and diluted to 1% (vol/vol) in PBS.

Mycobacteria were grown in complete 7H9 media at 33˚C to OD600 ~1.5, washed twice with

PBS, and resuspended to ~30 OD units/mL. 100 μL M. marinum were mixed with 100 μL 1%

RBC in a micro-centrifuge tube, centrifuged at 5000 x g for 5 minutes, then incubated at 33˚C

for 2 hours. Pellets were then resuspended, centrifuged at 5000 x g for 5 minutes and the A405

measured of 100 μL supernatant. PBS treatment was used as a negative control (background

lysis) and 0.1% Triton X-100 (Sigma) as a positive control (complete lysis). Hemolysis was cal-

culated as percentage of detergent lysis after subtracting background lysis.
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