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Abstract: Although insulin-induced cardiac hypertrophy is reported, very little information is avail-
able on the hypertrophic effect of insulin on ventricular cardiomyocytes and the regulation of sodium
and calcium homeostasis. Taurine is a non-essential amino acid synthesized by cardiomyocytes and
the brain and is present in low quantities in many foods, particularly seafood. The purpose of this
study was to investigate whether chronic exposure to insulin induces hypertrophy of ventricular
cardiomyocytes that are associated with changes in Na+ and Ca2+ homeostasis and whether taurine
pre-treatment prevents these effects. Our results showed that chronic treatment with insulin leads
to cardiomyocyte hypertrophy that is associated with an increase in basal intracellular Na+ and
Ca2+ levels. Furthermore, long-term taurine treatment prevents morphological and ionic remodeling
induced by insulin. In addition, blocking the Na+-taurine co-transporter prevented the taurine
antihypertrophic effect. Finally, the insulin-induced remodeling of cardiomyocytes was associated
with a decrease in the ratio of phospho-CREB (pCREB) to total cAMP response element binding
protein (CREB); taurine prevented this effect. In conclusion, our results show that insulin induces
ventricular cardiomyocyte hypertrophy via downregulation of the pCREB/tCREB level and that
chronic taurine treatment prevents this effect.

Keywords: taurine; insulin; cardiomyocytes; hypertrophy; sodium; calcium; cAMP response element
binding protein; CREB; β-alanine; Na+/Ca2+ exchanger; NCX; Na+/H+ exchanger; NHE1

1. Introduction

Two major types of cardiac hypertrophy exist: physiological (observed in the heart of
athletes) [1,2] and pathological. The latter is induced by mechanical or chemical factors
such as high insulin levels [3]. The effect of insulin on intracellular sodium homeostasis
is currently not known. However, similar to the activation of the G protein-coupled
receptors (GPCRs), insulin can stimulate calcium influx through the R-type calcium channel,
increasing intracellular calcium and inducing intracellular overload of this ion [4,5].

In addition, very few endogenous and exogenous antihypertrophic factors such as tau-
rine were reported to prevent GPCR activation-induced hypertrophy such as angiotensin
II [6,7]. Whether this non-essential amino acid also prevents hypertrophy induced by a
hypertrophic factor coupled to tyrosine kinase (TKR) receptors such as insulin awaits to
be discovered.

The sodium–taurine co-transporter allows taurine to be co-transported with two Na+

ions into the cell, which in the short term, leads to sodium overload followed by a calcium
overload via the stimulation of the sodium–calcium exchanger (NCX) [8–12]. A specific
antagonist of this transporter is β-alanine [11,13,14].

Cyclic adenosine monophosphate (cAMP)-response element-binding protein 1 (CREB)
is important for the maintenance of normal physiological cardiac function [15–17]. The
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decrease of this transcriptional factor promotes the development of dilated cardiomyopa-
thy [17]. CREB is considered to be the guardian of the cardiac phenotype [18,19]. Although
insulin is known to be a TKR-coupled receptor, it regulates the expression of G-protein
alpha-Gi-2 [20,21] and alpha-Gi-3 [20]. The activation of these Gi-proteins will decrease
intracellular cAMP, which in turn decreases the activity of CREB. The relation between
insulin and CREB needs to be clarified. In addition, whether the antihypertrophic actions
of taurine could be mediated via modulation of CREB need to be elucidated.

We, therefore, studied the effect of insulin on ventricular cardiomyocytes remodeling
and whether taurine prevents this remodeling by preventing the effect of insulin on CREB.

2. Materials and Methods
2.1. Culture Cells

The method used for the isolation and culture of cardiomyocytes from young adult
male rats was previously described [22]. This work was done according to the university’s
ethical committee (protocol number 059-16). In summary, the hearts were isolated under
aseptic conditions, and the blood was washed out in sterile Ca2+- free suspension of mini-
mal essential medium (SMEM) (Sigma, Markham, ON, Canada) solution, which contained
1% penicillin–streptomycin (Thermo Fisher Scientific, Mississauga, ON, Canada). After-
ward, the hearts were minced, and the cells were separated by successive trypsinizations
and stirring in SMEM (near 22 ◦C), which contained 0.05% trypsin. Harvested cells were
washed by mild centrifugation (200× g for 5–10 min). After discarding the supernatant,
the cells were resuspended in a fresh culture medium 199 (Thermo Fisher Scientific, Mis-
sissauga, ON, Canada) supplemented with 5% fetal bovine serum (FBS). Cell pellets were
then diluted with culture medium, plated on a glass coverslip (25 mm) in a petri dish, and
placed in an incubator at 37 ◦C and 5% CO2.

For long-term treatment, after two days in culture the cardiomyocytes were treated for
48 h in the absence and presence of different drugs: control, + insulin (80 µU/mL), + insulin
(80 µU/mL), and taurine (20 mM), + insulin (80 µU/mL) + taurine (20 mmol), and β-
alanine (500 µM) [4,10,23]. The concentrations of the drugs were previously used by our
group [4,10,23]. In addition, the concentration of 80 µU/mL was selected as it is similar to
the insulin levels observed in hyperglycemia, which is usually between 80–100 µU/mL
and were used after testing several concentrations of insulin [4,24]. The concentrations of
20 mM of taurine and 500 µM of β-alanine were selected as they represented the standard
concentrations used across the literature and were already published after we tested several
concentrations [9,25].

2.2. Quantitative 3D Confocal Microscopy

In this study, quantitative three-dimension (3D) confocal microscopy was used [23].
Fluorescent images were obtained using the confocal system MRC1024 (Bio-Rad, Mis-
sissauga, ON, Canada) equipped with a Krypton/Argon laser, a UV laser, and a micro-
scope with an inverted epifluorescence (Nikon Eclipse TE2000, Bio-Rad, Mississauga, ON,
Canada). Throughout this study, the parameters and conditions of the confocal system
were defined as described by Bkaily and his collaborators [26,27]. Once the images were
scanned, they were transferred to an O2 Silicon Graphics analysis station equipped with
Molecular Dynamics Image Space 3.2 analysis and quantitative reconstruction software
(Bio-Rad, Mississauga, ON, Canada). Furthermore, the mean volume values for each
compartment (cytosol and nucleus) were measured by isolating the nucleus from the
surrounding cytosolic region labeled with Syto-11, which provided 3D information [27].

The Fluo-4/AM probe (Molecular Probes, Eugene, OR, USA) was used as a calcium
ion indicator and was diluted in Tyrode-BSA from a frozen 1-mM stock in DMSO to a final
concentration of 13 µM [26,28]. The same procedure described above was used to load the
cells with the sodium-sensitive probe CoroNa green AM and sodium green tetraacetate
(molecular probe, Eugene, OR, USA) [26,28]. At the end of each experiment, the nucleus
was labeled with the nucleic acid marker Syto-11 (molecular probe) [26,29].
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2.3. DNA, RNA and Protein Extraction

Using the AllPrep DNA/RNA/Proteins Mini Kit (Qiagen, Montreal, QC, Canada),
the cells were first lysed and homogenized in RLT buffer. The lysate was then passed
through the first AllPrep column. The column was washed, and the DNA was then eluted.
Ethanol was added to the liquid that passes through the first AllPrep column, and the
liquid was then passed through the second AllPrep “RNeasy” column. The high-quality
RNA was then eluted in RNase-free water. APP buffer was added to the liquid that passed
through the second “RNeasy” column, and the precipitated proteins were collected by
centrifugation. The total intact proteins were dissolved in ALO buffer. The RNA was
then eluted with RNase-free water by centrifugation, assayed using a SmartSpecTMPlus
spectrometer (Biorad, Mississauga, ON, Canada), and stored at −80 ◦C for future use. The
DNA was then assayed by a Pierce BCA protein assay kit (Thermo Scientific, Waltham,
MA, USA) and stored at −20 ◦C.

2.4. Reverse Transcription PCR Analysis

One µg of RNA was diluted in 10 µL of DEPC water, heated at 75 ◦C for 5 min, then
put on ice for another 5 min. Afterward, 10 µL of a retro-transcription solution containing
4 µL of 5 X AMV RT buffer (Roche Applied Science, Indianapolis, IN, USA), 2 µL of 10 mM
dNTPs (Invitrogen, Carlsbad, CA, USA), 2.4 µL of Oligo dT (IDT, San Jose, CA, USA),
0.6 µL of RNase inhibitor (Roche Applied Science, Indianapolis, IN, USA), and 1.5 µL of
RT AMV (Roche Applied Science, Indianapolis, IN, USA) was added to the RNA dilution
for each sample and incubated for 1 h at 42 ◦C. To stop the reaction, the enzyme was
inactivated at 95 ◦C for 5 min.

The primer sequence used for the PNA was sense 5′-GCT GGA CCA TTT GGA AGA
AA-3′ and anti-sense 5′-TTG CTT TTT AGG GCA GA-3′. The endogenous gene we used
as a control was RPLPO (large ribosomal protein P0). The primers were: sense 5′-GCA
ATG TTG CCA GTG TCT G-3′ and antisense 5′-GCC TTG ACC TTT TCA GCA A-3′. To
perform a PCR, first, a master reaction was concocted with 15.45 µL of sterile water, 2.0 µL
of NEB buffer (New England Biolabs, Pickering, ON, Canada), 0.45 µL of 10 mM dNTP(s)
(Invitrogen, Carlsbad, CA, USA), 0.45 µL of each primer (IDT, San Jose, CA, USA), and
0.2 µL of TAQ (New England Biolabs, Pickering, ON, Canada) times the sample number.
Next, the master solution was dispensed by 19 µL into each of the PCR tubes, then 1.0 µL
of each sample cDNA was added in duplicate. The tubes were then tightly closed, and
the final reaction was vortexed. The tubes were placed in the MyCycler PCR (Biorad,
Mississauga, ON, Canada) according to the following standard protocol for PNA (1 cycle
of 3:00 to 95 ◦C, 34 cycles of (0:45 to 94 ◦C, 0:45 to 60 ◦C, 1:30 to 72 ◦C), and one cycle of
5:00 to 72 ◦C) and following that for RPLPO (1 cycle of 3:00 to 95 ◦C, 30 cycles of (0:45 to
94 ◦C, 0:45 to 60 ◦C, 1:30 to 72 ◦C), and one cycle of 5:00 to 72 ◦C). At the end of the PCR,
the tubes were stored at 4 ◦C until migration on DNA gel.

The DNA gel consisted of 1% agarose (USB corporation, Cleveland, OH, USA), TAE
1X (TAE 50X: 242 g Tris (Sigma-Aldrich, St. Louis, MO, USA), 100 mL Na2EDTA pH = 8.0
0.5 M (Sigma-Aldrich, St. Louis, MO, USA), 57.1 mL of glacial acetic acid (Laboratoire MAT,
Montreal, QC, Canada), and 2.5 µL of ethidium bromide (EMD Chemicals, Gibbstown, NJ,
USA). The PCR products (5 µL) were diluted in sterile water (4 µL) and then in 1X loading
buffer (1 µL) (New England Biolabs, Pickering, ON, Canada). They were then loaded into
the gel. Migration was performed for approximately 20–30 min at 150 V and 100 mA. The
bands obtained from the DNA gel were analyzed by densitometry with the MCID program
(InterFocus Imaging Ltd., Linton, Cambridge, UK).

2.5. Western Blot

The method used was similar to that previously reported [30–32]. Briefly, equiva-
lent amounts of proteins (50 µg) were separated by polyacrylamide gel electrophoresis
(10%) and transferred onto a nitrocellulose membrane (Amersham Life Science, Piscataway,
NJ, USA). The proteins were then stained with a Ponceau red solution to ensure transfer
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efficiency. The membranes were incubated for 2 h at room temperature in a blocking
solution composed of phosphate buffer solution (PBS) 1X (NaCl 137 mM, 2.7 mM KCl,
10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.4), 5% non-fat dry milk (Carnation; Smucker
Foods Canada Inc., Markham, ON, Canada), and 0.05% Tween-20 (Bio-Rad Laboratories,
Mississauga, ON, Canada). The membranes were then incubated overnight at 4 ◦C on a
shaker with one of the following primary rabbit-derived antibodies: monoclonal recombi-
nant anti-CREB (phospho S133) antibody [E113] (ab32096; Abcam, Toronto, ON, Canada)
or monoclonal recombinant anti-CREB antibody [E306] (ab32515; Abcam, Toronto, ON,
Canada). Equal loading of the proteins was confirmed, and the blots were also probed with
a mouse monoclonal antibody against β-actin (Abcam, Toronto, ON, Canada). The mem-
branes were then washed three times and incubated with one of the following secondary
antibodies: peroxidase-conjugated anti-rabbit IgG monoclonal antibody (Cedarlane, Cy-
tiva, UK). Additionally, negative controls were carried out in the presence of the blocking
peptide for each antibody. After three washes, the immune complexes were detected by
chemiluminescence (Western Lightning Plus-ECL; Perkin-Elmer, Waltham, MA, USA) and
visualized by autoradiography on BIOMAX type film (Kodak, Rochester, NY, USA).

2.6. Densitometry

The films were digitized using an Imaging Research Inc. system equipped with an
MTI CCD72 camera. The densities of the bands were obtained using the MCID Basic-M5
software (Imaging Research Inc., Catharines, ON, Canada). The density value obtained for
each band represents its density multiplied by its surface area, followed by subtracting the
background. Then, the ratio of the phosphorated CREB (pCREB) and total CREB (tCREB)
band densities to the β-actin band density were calculated. The ratio of pCREB/tCREB
was used to compare the density ratio in different experimental conditions.

The Western blot of cardiomyocytes from well plates of different animals was washed
with phosphate-buffered saline (PBS), scraped with 150 µL Laemmli buffer containing
2-mercaptoethanol (βME), sonicated, and heated at 56 ◦C for 10 min. Proteins were
separated in a 12% or 15% SDS-PAGE. After transfer, PVDF membranes were probed
with anti-tubulin (1/10,000), anti-NPTII (1/4000), anti-flag (1/1000), and anti-HA (1/5000,
mouse) antibodies overnight at 4 ◦C. After three washes, membranes were incubated for 1
h at room temperature with goat anti-rabbit IgG-HRP (1/10,000) or anti-mouse IgG-HRP
(1/10,000) antibodies. Proteins were detected with the Western Lightning ECL reagent
(#NEL103001EA, Perkin Elmer, Guelph, ON, Canada) according to the manufacturer’s
instructions and the ImageQuant LAS 4000 system (# 28955811, GE Healthcare, Mississauga,
ON, Canada).

The fluorescence intensity measurements of calcium and sodium are presented as
mean intracellular fluorescence intensity values [26,29]. All the values are expressed as
standard error of the mean (SEM), where “N” is the number of the adult rats, and “n”
is the number of cells [26,29]. Statistical significance was determined using the ANOVA
test of repeated measurements for matched values, followed by the Bonferroni multiple
comparison tests, where a p-value < 0.05 was considered significant [26,29].

3. Results
3.1. Modulation of the Whole Cell and Nuclear Volumes by a 48-h Treatment with Insulin
(80 µU/mL), Taurine (20 mM), and β-alanine (500 µM) of Ventricular Cardiomyocytes

In the first series of experiments, using quantitative 3D confocal microscopy, we
studied the effect of a 48-h treatment with insulin (80 µU/mL) on the whole-cell, cytoplasm,
and nuclear volume levels

Figure 1 shows examples, and Figure 2 summarizes the results. As seen in Figure 1A,B,
there was an apparent increase in the whole-cell, cytosol, and nuclear volumes after 48 h
of treatment with insulin (80 µU/mL) (Figure 1B) when compared to the non-treated
cardiomyocytes (Figure 1A). As seen in Figure 2, this increase was highly significant in
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the whole-cell (Figure 2A p < 0.0001), the cytosol (Figure 2B p < 0.0001), and the nuclear
volumes (Figure 2C p < 0.0001) when compared to the non-treated cardiomyocytes.
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Figure 1. Effect of a 48-h treatment with insulin (80 µU/mL), insulin (80 µU/mL) with taurine
(20 mM), and insulin (80 µU/mL) with taurine (20 mM) and β-alanine (500 µM) on the volume of adult
rat ventricular cardiomyocytes. Examples of quantitative 3-D images (top view) of isolated ventricular
cardiomyocytes in absence of treatment (A), in presence of insulin (80 µU/mL) (B), in presence of
insulin (80 µU/mL) + taurine (20 mM) (C), and in presence of insulin (80 µU/mL) + taurine (20 mM)
+ β-alanine (500 µM) (D). The white bar scale is in µm. (A–D) are different cells.

In the second series of experiments, we treated the cells with insulin (80 µU) in the
presence of taurine (20 mM) for 48 h to verify whether this non-essential amino acid can
prevent ventricular cardiomyocytes hypertrophy (Figures 1 and 2) induced by chronic
insulin treatment. Figure 1A–C shows examples, and Figure 2 summarizes the results. As
shown in Figure 1, taurine prevents the increase in ventricular cardiomyocytes hypertrophy
(Figure 1C) induced by insulin (Figure 1B). In addition, there was no significant increase of
the whole-cell (Figure 2A), cytosol (Figure 2B), and nuclear volumes (Figure 2C) induced
by insulin in the presence of taurine when compared to the non-treated cells (Figure 2).

In the third series of experiments, we used the potent and specific blocker of the
sodium–taurine co-transporter, β-alanine (500 µM) [10,23]. Figure 1 shows examples, and
Figure 2 summarizes the results. As seen in Figure 1D, pre-treatment with β-alanine
(500 µM) prevented taurine from blocking the cardiomyocyte hypertrophy induced by
insulin (Figure 1D). Furthermore, as seen in Figure 2, the presence of β-alanine (500 µM)
significantly prevented the antihypertrophic effect of taurine in the whole-cell (Figure 2A
p < 0.001), the cytosol (Figure 2B p < 0.0001), and the nuclear volumes (Figure 2C p < 0.05)
when compared to the non-treated cardiomyocytes.
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Figure 2. Histograms showing the effect of a 48-h treatment with insulin (80 µU/mL), insulin
(80 µU/mL) with taurine (20 mM), and insulin (80 µU/mL) with taurine (20 mM) and β-alanine
(500 µM) on the volume of adult rat ventricular cardiomyocytes. The results show the volume of the
whole cell (A), the cytosol (B), and the nucleus (C) in the absence of treatment and in the presence of a
48-h treatment of insulin (80 µU/mL), insulin (80 µU/mL) + taurine (20 mM), and insulin (80 µU/mL)
+ taurine (20 mM) + β-alanine (500 µM). The values are represented as mean ± standard error of
the mean. N represents the number of animals, and n represents the number of cells. **** p < 0.0001,
*** p < 0.001, ** p < 0.01, and * p < 0.05 were considered significant. NS = non-signifiant. N was
42 (control), 42 (insulin), 7 (insulin + taurine), and 4 (insulin + taurine + β-alanine) for the different
experiments. n was 226 (control), 158 (insulin), 33 (insulin + taurine), and 57 (insulin + taurine +
β-alanine) for the different cells. Cont = control; ins = insulin; tau = taurine; and B = β-alanine. The
volume of the cell is in µm3.

In the last series of experiments, using RT-PCR, we verified whether the increase in
the cell and nuclear volumes was accompanied by the marker of hypertrophy ANP [33,34].
Figure 3 shows examples (A) and summarizes (B) the results. As seen in this figure,
insulin significantly increased the ratio of ANP/RPLPO (p < 0.001), and taurine completely
prevented this effect.
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(A): Autoradiography showing the levels of ANP of ventricular cardiomyocytes in the absence of
treatment, treated with insulin (80 µU/mL) and treated with insulin (80 µU/mL) + taurine (20 mM).
(B): The statistical comparison of the relative ANP/RPLPO ratio was calculated using the densitomet-
ric measurements of the corresponding bands. The values are represented as mean ± standard error
of the mean. n represents the number of wells. * p < 0.05 and ** p < 0.01. ANP = atrial natriuretic
peptide; RPLPO = large ribosomal protein P0; NS = non-significant.

3.2. Modulation of Cytosolic and Nuclear Sodium Levels by Insulin, Insulin + Taurine, and Insulin
+ Taurine + β-alanine in Ventricular Cardiomyocytes

The purpose of this series of experiments was to verify whether the increase in cell
volume by chronic treatment with insulin modulates the resting levels of intracellular
sodium and whether the preventive effect of taurine on this hypertrophy was modulated
via preventing intracellular sodium overload.

In the first series of experiments, after 48 h of treatment with insulin (80 µU/mL),
the cells were loaded with sodium fluorescence probes, CoroNa green, and sodium green.
Figure 4A,B shows examples, and Figure 5 summarizes the results. As shown in these
two figures, there was a significant increase in the whole cell (p < 0.0001), as well as in
the cytosol (p < 0.05) and nucleus (p < 0.01) sodium levels that were associated with an
apparent increase in the whole cell (Figure 4B) and nuclear volumes (Figure 4F) when
compared to non-treated cardiomyocytes (Figure 4A,E). In addition, the nucleus of each
cell was labeled with Syto-11 (Figure 4E,F) to locate its position with respect to the whole
cell (Figure 4A,B).
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Figure 4. Examples of quantitative 3-D confocal images (top view) showing the distribution and
fluorescence intensity of intracellular sodium in cardiomyocytes in the absence of treatment (A), in
the presence of insulin (80 µU/mL) (B), in the presence of insulin (80 µU/mL) + taurine (20 mM) (C),
and in the presence of insulin (80 µU/mL) + taurine (20 mM) + β-alanine (500 µM) (D). Panels (E–H)
represent the Syto-11 labeled nuclei of the cells in panels (A–D). The pseudo-color bar represents Na+

fluorescence intensity ranging from 0 (absence of fluorescence) to 255 (maximum fluorescence). The
white scale bar is in µM.
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Figure 5. Histograms showing the effect of 48-h treatment with insulin (80 µU/mL), insulin
(80 µU/mL) with taurine (20 mM), or insulin (80 µU/mL) with taurine (20 mM) and β-alanine
(500 µM) on whole-cell (A), cytosolic (B), and nuclear (C) sodium levels of cardiomyocytes. The
values are represented as mean ± standard error of the mean. N represents the number of animals,
and n represents the number of cells. * p < 0.05, ** p < 0.01, and **** p < 0.0001. Cont = control;
ins = insulin; tau = taurine, and B = β-alanine. Sodium relative concentration is expressed in µm3.

Using the same protocol, the cells were treated for 48 h with insulin (80 µU/mL)
+ taurine (20 mM) in another series of experiments. Figure 4C,G show examples, and
Figure 5 summarizes the results. As shown in Figure 4A–C, the prevention of insulin-
induced hypertrophy by taurine was accompanied by the prevention of insulin-induced
increase in cytosolic and nuclear sodium levels (Figures 4C and 5) compared to the non-
treated cells (Figures 4A and 5). However, as shown in Figure 5, there was no significant
increase in the intracellular sodium levels in the whole-cell (Figure 5A), cytosol (Figure 5B),
and nucleus volumes (Figure 5C).

In the last series of experiments, using the same protocol, the cells were treated for
48 h with insulin (80 µU/mL) + taurine (20 mM) + β-alanine (500 µM). Figure 4 shows
examples, and Figure 5 summarizes the results. As seen in Figure 4, β-alanine’s presence
prevented the effect of taurine on the insulin-induced increase in intracellular sodium
(Figure 4D) compared to non-treated cells (Figure 4A). In addition, Figure 5 shows the
presence of β-alanine significantly prevented taurine from decreasing an insulin-induced
increase in whole-cell (Figure 5A), cytosol (Figure 5B), and nucleus (Figure 5C) volumes
when compared to non-treated cells.

3.3. Modulation of Cytosolic and Nuclear Calcium Levels by Insulin and Taurine in Adult Rat
Ventricular Cardiomyocytes

The purpose of this series of experiments was to verify whether the increase in cell
volume by chronic treatment with insulin modulates the resting levels of intracellular
calcium and whether the preventive effect of taurine on this hypertrophy is modulated via
preventing intracellular calcium overload.

In this first series of experiments, we tested the effect of 48 h of treatment with insulin
on cytosolic and nuclear calcium. Figure 6 shows examples, and Figure 7 summarizes
the results. As seen in Figure 6A,B and Figure 7, there was an apparent increase in the
whole-cell and nuclear volumes that was associated with a significant increase in cytosolic
(p < 0.0001) and nuclear (p < 0.0001) free calcium.
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Figure 6. Examples of quantitative 3-D confocal images (top view) showing the distribution and
fluorescence intensity of intracellular calcium levels in cardiomyocytes in the absence of treatment
(A), in the presence of insulin (80 µU/mL) (B), in the presence of insulin (80 µU/mL) + taurine
(20 mM) (C), and in the presence of insulin (80 µU/mL) + taurine (20 mM) + β-alanine (500 µM) (D).
(E–H) represent the Syto-11-labeled nuclei of the cells in (A–D). The pseudo-color bar represents Ca2+

fluorescence intensity ranging from 0 (absence of fluorescence) to 255 (maximum fluorescence). The
white scale bar is in µM.

In another series of experiments, using the same protocol, the cells were treated for
48 h with insulin (80 µU/mL) in the presence of taurine (20 mM) to verify whether this
non-essential amino acid can prevent intracellular calcium overload induced by chronic
insulin treatment. Figure 6 shows examples, and Figure 7 summarizes the results. As seen
in Figures 6A–C and 7, taurine completely prevented increased cell volume and cytosolic
and nuclear-free calcium induced by insulin (Figures 6C and 7).

In the third series of experiments, we verified whether the preventive effect of taurine
is mediated via its transport through the β-alanine-sensitive sodium–taurine co-transporter.
Figure 6 shows examples, and Figure 7 summarizes the results. As seen in these two figures,
pre-treatment with β-alanine (500 µM) prevents taurine from inducing a decrease in cytoso-
lic and nuclear calcium caused by long-term treatment with insulin (Figures 6D and 7).
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(500 µM) on the whole-cell (A), cytosolic (B), and nuclear (C) calcium levels of adult rat ventricular
cardiomyocytes. The values are represented as mean ± standard error of the mean. N represents
the number of animals, and n represents the number of cells., *** p < 0.001, and **** p < 0.0001.
Cont = control; ins = insulin; tau = taurine’ and B = β-alanine. Calcium’s relative concentration is
expressed in µm3.

3.4. Effect of Long-Term Treatment with Insulin and Insulin + Taurine on the Ratio of
pCREB/tCREB

Using Western blot, we verified whether insulin-induced morphological remodeling
of cardiomyocytes was due to a decrease in the guardian of cell phenotype CREB. As seen
in Figure 8, treatment for 48 h with insulin significantly (p < 0.05) decreased the ratio of
pCREB/tCREB. However, simultaneous treatment with insulin + taurine prevented insulin
from inducing a decrease in the ratio of pCREB/tCREB.
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ratio level of pCREB/tCREB (B) of ventricular cardiomyocytes in absence and presence of treatments,
with insulin (80 µU/mL) and with insulin (80 µU/mL) + taurine (20 mM). The band corresponding
to the tCREB and pCREB (A) were situated approximately at 43 kDA. The band corresponding to the
β-actin (A) was situated approximately at 42 kDA. The red arrow indicates where the membrane was
cut. The values are expressed as mean ± SEM. n is the number of wells. * p < 0.05 and ** p < 0.01.

4. Discussion

It is accepted that sustained elevation of insulin secretion, such as in hyperglycemia,
induces cardiac hypertrophy [35–37]. However, this has never been demonstrated in vitro
using ventricular cardiomyocytes. Our results showed that 48 h of treatment with in-
sulin did increase cardiomyocytes’ volume. Furthermore, this increase in cell volume
was associated with an increase in hypertrophic markers, such as an increase in nuclear
volume [33,38] and atrial natriuretic peptide (ANP) levels [33,34]. Thus, our results demon-
strated for the first time at the level of ventricular cardiomyocytes that long-term treatment
with a relatively high concentration of insulin (80 µU/mL, when compared to fasting
concentration, 15–45 µU/mL) induced ventricular cardiomyocytes hypertrophy, which
explains its reported hypertrophic effect in in vivo conditions [35–37].

The increase in cell volume by chronic insulin treatment was accompanied by increased
nuclear volume [39,40]. The nuclear volume and the levels of ANP are important markers
that permit the distinction between hypertrophy and hyperplasia [39–42]. Our results
showed that the long-term insulin-induced morphological remodeling is associated with
a decrease in the ratio of pCREB/tCREB. This decrease is similar to that reported in
vascular disease [19], including diabetes [19,43], and may explain at least in part the
insulin remodeling of cardiomyocytes morphology found in our experiments. Thus, our
results highly suggest that, as in vascular disease [19,43], an insulin-induced decrease in
cardiomyocytes CREB levels could be responsible, at least in part, for the development
of cardiac hypertrophy in diabetic patients. It is also possible that the decrease in CREB
levels by insulin in our experiment could be due to a decrease in protein kinase A (PKA)
signaling in cardiomyocytes [44], which decreases the activation of CREB.

Our results also showed that chronic insulin-induced cardiomyocytes hypertrophy
was associated with both increases in cytosolic and nuclear-free sodium and calcium. The
elevated calcium levels could be due, at least in part, to an increase in calcium influx through
the R-type Ca2+ channel [45] and/or calcium release from the sarcoplasmic reticulum (SR).
It is also possible that the insulin-induced elevation of intracellular sodium would promote
calcium influx through the NCX. The increase in intracellular sodium by long-term insulin
treatment could be partly due to insulin-induced H+ outflux [46], which promotes entry
of sodium through the sodium–hydrogen exchanger. The accumulation of intracellular
sodium will, in turn, promote calcium influx through the sodium–calcium exchanger. This
latter may partly explain the increase in both intracellular sodium and calcium by long-term
treatment with insulin.

Our results showed that treatment with the competitive antagonist of the Na+–taurine
co-transporter, β-alanine, prevented the antihypertrophic effect of taurine increasing intra-
cellular sodium and calcium levels. These results suggest that the antihypertrophic effect
of taurine is due to its influx via its symporter. Furthermore, since the competitive antag-
onist of the Na+–taurine co-transporter prevented the antihypertrophic effect of taurine
regarding insulin-induced intracellular sodium overload, this demonstrates that the effect
of long-term taurine is due to its modulation of intracellular sodium homeostasis [23].

It is reported in the literature that taurine prevents cardiac hypertrophy induced by
the protein-coupled receptor agonists [6]. Our results showed for the first time that taurine,
similarly to GPCR, is also a pathological agonist of TKR receptors, such as the insulin
receptor. These results suggest that the long-term effect of insulin-induced cardiomy-
ocyte hypertrophy may activate the same signaling pathways as those activated by GPCR
agonists, such as angiotensin II [47,48]. This should be verified in the future.
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It is also possible that taurine’s antioxidant effect may reduce the level of reactive
oxygen species (ROS), which permits better intracellular calcium handling by the mito-
chondria [49]. This should be verified in the future.

Furthermore, the fact that the increase in intracellular Na+ took place in the presence
of the sodium–taurine co-transporter blocker, β-alanine, suggests that the Na+–Ca2+ ex-
changer as well as the Na+/K+ pump both contribute to the evacuation of Na+ overload in
adult rat cardiomyocytes. This should be verified in the future.

5. Conclusions

In conclusion, our results demonstrated the hypertrophic effect of insulin in ventricu-
lar cardiomyocytes. Hence, when a sustained elevation of insulin secretion occurs, such
as in the case of hyperglycemia, chronic insulin levels will induce cardiomyocytes hyper-
trophy, which will promote cardiac hypertrophy [35–37]. This will most likely induce an
intracellular sodium overload via increasing Na+ influx through NHE1 (sodium-hydrogen
exchanger isoform-1). This is followed by an increase in intracellular calcium via an ele-
vation of Ca2+ influx through the NCX [50]. Studying the contribution of PKA to CREB
activation will not only affect the activation of CREB since the catalytic subunit of PKA
will phosphorylate many proteins that could be implicated in the development of car-
diac hypertrophy. Among these proteins, all the calcium-dependent signaling, such as
phosphorylation of the L-type calcium channel, increases its probability of opening and
increases calcium influx through this type of channel [51–53]. Furthermore, the catalytic
subunit of PKA will also regulate the activity of the potassium channels [54] and other
mechanisms [55]. Increased intracellular calcium will activate several signaling and tran-
scriptional factors and genes implicated in cardiomyocyte hypertrophy [11]. In addition,
blocking the cAMP pathway is not the only pathway mechanism that activates CREB since
they are also cAMP-independent CREB [56].

Finally our results showed that taurine could be used as a cardiac antihypertrophic
agent in diabetic and obese patients.
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