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Recombinant adeno-associated viral (rAAV) vectors promote long-term gene transfer in
many animal species. Significant effort has focused on the evaluation of rAAV delivery
and the immune response in both murine and canine models of neuromuscular disease.
However, canines provided for research purposes are routinely vaccinated against canine
parvovirus (CPV). rAAV and CPV possess significant homology and are both parvoviruses.
Thus, any immune response generated to CPV vaccination has the potential to cross-react
with rAAV vectors. In this study, we investigated the immune response to rAAV6 delivery
in a cohort of CPV-vaccinated canines and evaluated multiple vaccination regimens in a
mouse model of CPV-vaccination. We show that CPV-vaccination stimulates production
of neutralizing antibodies with minimal cross-reactivity to rAAV6. In addition, no signifi-
cant differences were observed in the magnitude of the rAAV6-directed immune response
between CPV-vaccinated animals and controls. Moreover, CPV-vaccination did not inhibit
rAAV6-mediated transduction. We also evaluated the immune response to early rAAV6-
vaccination in neonatal mice.The influence of maternal hormones and cytokines leads to a
relatively permissive state in the neonate. We hypothesized that immaturity of the immune
system would permit induction of tolerance to rAAV6 when delivered during the neonatal
period. Mice were vaccinated with rAAV6 at 1 or 5 days of age, and subsequently challenged
with rAAV6 exposure during adulthood via two sequential IM injections, 1 month apart.
All vaccinated animals generated a significant neutralizing antibody response to rAAV6-
vaccination that was enhanced following IM injection in adulthood. Taken together, these
data demonstrate that the immune response raised against rAAV6 is distinct from that
which is elicited by the standard parvoviral vaccines and is sufficient to prevent stable
tolerization in neonatal mice.
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INTRODUCTION
Adeno-associated virus (AAV) is a non-enveloped, single-stranded
DNA virus that is a member of the Parvovirus family. The AAV
genome is approximately 5 kb in size and is packaged within an
icosahedral capsid that facilitates viral entry into susceptible cells
(Schultz and Chamberlain, 2008). AAV-mediated gene transfer has
been successfully demonstrated in numerous large and small ani-
mal models of human disease (Arnett et al., 2009; Wang et al.,
2009), and recombinant AAV (rAAV) vectors are thus considered
a prime candidate for use in the development of gene replacement
strategies. rAAV vectors are limited by their small carrying capac-
ity, but possess several attractive features that are advantageous for
use as therapeutic reagents, including a broad range of tissue tro-
pism and lack of pathogenicity (Schultz and Chamberlain, 2008).
Over 12 serotypes and numerous variants of AAV have been iden-
tified. Each serotype has demonstrated a unique profile of tissue

tropism that can be utilized to develop targeted therapies with
enhanced tissue specificity (Zincarelli et al., 2008; Vandenberghe
et al., 2009). For example, rAAV2 exhibits a high tropism for liver
and has been used to treat hemophilia B via expression of Factor
IX (Manno et al., 2006). rAAV6 has been shown to achieve a high
level of transduction in both lung (Halbert et al., 2001, 2007) and
striated muscle (Blankinship et al., 2004; Gregorevic et al., 2004,
2006), and is thus being studied to develop treatments for diseases
such as cystic fibrosis (Flotte et al., 2007; Halbert et al., 2007),
α1-antitrypsin deficiency (Halbert et al., 2010), and the muscular
dystrophies (Arnett et al., 2009; Wang et al., 2009).

Stable transgene expression in transduced cells can be
harnessed to treat diseases resulting from genetic deficien-
cies. However, a significant obstacle to the use of viral vec-
tors is the development of host immune responses to both
the transgene and the vector (Zaiss and Muruve, 2005, 2008;
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Nayak and Herzog, 2010). The rAAV genome is one of the simplest
of viral gene therapy vectors, containing only the transgene expres-
sion cassette flanked by non-coding viral inverted terminal repeats
that facilitate packaging and capsid assembly (Samulski et al.,
1982). No viral genes are encoded within the engineered genome,
which significantly reduces the risk of viral protein synthesis
within the host and limits the potential immunogenicity of rAAV
vectors. Initial studies regarding rAAV delivery have demonstrated
the relative lack of a cell-mediated immune response to rAAV
infection in naïve animals (Athanasopoulos et al., 2004; Warring-
ton and Herzog, 2006). In contrast to adenovirus, rAAV does not
efficiently trigger a strong, acute inflammatory response, resulting
in inefficient activation of dendritic cells and other antigen pre-
senting cells that influence a cytotoxic immune response (Zaiss
and Muruve, 2005). These and other factors are thought to con-
tribute to sustained transgene expression in targeted tissues. How-
ever, despite promising results in animal studies, clinical trials of
rAAV gene delivery in humans have failed to demonstrate the
same level of success. Results from multiple studies indicate that
capsid-specific humoral and cell-mediated immunity limit tissue
transduction and lead to gradual clearance of transduced cells
(Manno et al., 2006; Mingozzi and High, 2007; Mingozzi et al.,
2009). Thus, renewed effort is being made to understand and
modulate factors governing the immune response to rAAV across
multiple routes of delivery.

Evaluation of therapeutic constructs and delivery strategies in
large animal models is a necessary step in the assessment of poten-
tial gene replacement therapies destined for clinical trials. In this
regard, dogs can suitably model the physics and challenges of vec-
tor delivery to large volumes of tissue and model potential adverse
reactions of an evolved mammalian immune system (Wang et al.,
2009). The immune response to rAAV in canines has been inves-
tigated in several studies (Mount et al., 2002; Wang et al., 2007a,
2010; Yuasa et al., 2007; Ohshima et al., 2009; Halbert et al., 2010;
Haurigot et al., 2010). We and others have previously evaluated
rAAV delivery to striated muscle (Yuasa et al., 2007; Gregorevic
et al., 2009; Ohshima et al., 2009) and have observed significant
humoral and cell-mediated immunity utilizing a variety of rAAV
serotypes (Wang et al., 2007a, 2010; Yuasa et al., 2007; Ohshima
et al., 2009). However, canines used for research purposes are rou-
tinely vaccinated against several potential pathogens, one of which
is canine parvovirus (CPV). CPV infection is associated with high
mortality in young puppies and is very contagious (Patel and
Heldens, 2009). High risk of CPV infection necessitates early vac-
cination in the majority of kennels. Like AAV, CPV is a member
of the Parvovirus family and shares significant sequence identity
with AAV and other family members. As follows, any immune
response generated against CPV vaccination has the potential to
cross-react with other members of the Parvovirus family, includ-
ing AAV. Thus, it is important to consider the influence of CPV
vaccine-related immunity on the rAAV-directed immune response
in canines, as well as the influence of early exposure to virus and
vaccine constituents in the maturing mammalian immune system.
In this study, we investigate the immune response to rAAV6 deliv-
ery in CPV-vaccinated canines and evaluate multiple vaccination
regimens in a mouse model of CPV-vaccination. In addition, we
explore the influence of early rAAV6-vaccination on the immune
response to repeat rAAV6-infection in adulthood.

RESULTS
CPV VACCINATION AND ANTI-AAV ACTIVITY IN DOGS
Canine parvovirus-vaccination has the potential to stimulate pro-
duction of antibodies that cross-react with rAAV, and may con-
tribute to the rAAV-directed immune response that has been
previously observed in canines (Wang et al., 2007a, 2010; Yuasa
et al., 2007; Ohshima et al., 2009). To address this concern, we
tested serum from a cohort of wild-type (wt ) beagles that had
been vaccinated following a standard vaccination regimen that
included three separate intramuscular CPV-vaccinations between
the ages of 3 and 7 weeks. Serum was collected at 8 weeks of
age and evaluated for rAAV6 cross-reactive neutralizing antibod-
ies (Figure 1). Assay results demonstrate that the neutralization
efficiency of serum from CPV-vaccinated animals is minimal.
At the strongest serum dilution tested (1:50), less than 10%
inhibition was observed. Following the initial serum collection,
the dogs were treated with rAAV6 via intravascular injection
(5 × 1012 vector genomes/kg), and serum was again sampled for
analysis 5 weeks later. As expected, exposure to rAAV6 capsids
elicited a strong neutralizing antibody response (Figure 1), but
prior CPV-vaccination did not prevent transduction of skele-
tal muscle (published in Gregorevic et al., 2009; Wang et al.,
2010).

We also performed a series of Westerns to further analyze
whether or not CPV vaccination generated antibodies that cross
react with AAV capsids. Serum samples were collected from two
groups of dogs (Figure 2). For Group 1, sera were collected from
five CPV-vaccinated dogs between the ages of 8–12 months old as
post-CPV but pre-rAAV samples, and then collected once more
at 4 weeks after intramuscular (IM) injection of rAAV6 vectors.
For Group 2, sera were collected from 5-week-old pups (n = 3)
prior to CPV vaccination, followed by collection at 3 months
after CPV-vaccination, and then 4 weeks after IM injection of
rAAV6. Figure 2 shows representative data generated from the
two groups, and essentially identical results were seen with all dogs.
Pre-CPV serum isolated from the three dogs in Group 2 showed
no obvious reactivity to rAAV2, rAAV6, or parvoviral capsids by

FIGURE 1 | rAAV6 neutralization activity in CPV-vaccinated canines,

pre- and post-rAAV6 injection. Beagle pups (n = 3) were vaccinated
against CPV prior to 7 weeks of age. Serum neutralization activity was
minimal prior to rAAV6 injection.
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western analysis. While parvovirus capsids were detected when
post-parvo but pre-rAAV serum was used, the serum was not
able to detect rAAV6 or rAAV2 above background (BSA was used
as negative control). As expected, serum collected after rAAV6
treatment showed strong reactivity to both rAAV2 and 6, whereas
the parvoviral signal remained similar in strength to what was
observed prior rAAV injection. Together, these data suggested
that CPV vaccination did not generate antibodies with detectable
cross-reactivity to rAAV.

CPV-VACCINATION AND rAAV6 TRANSDUCTION IN MICE
CPV-vaccines have been developed and marketed by multiple
agencies. Thus, both vaccination reagents and the timing of
administration can vary from kennel to kennel. It is important to
recognize that variation in vaccination regimens could influence
the nature of the immune response, and it may not be appropriate
to generalize results obtained from a single vaccination regimen
in a relatively small cohort of animals. The above results from
vaccinated beagles provide some insight regarding the immune
response to CPV-vaccination and cross-reactivity to rAAV6. How-
ever, the study is limited by issues inherent to large animal models.
Both ethical considerations and high cost necessitate the use of
a small number of animals, and thus it is impractical to effec-
tively assess multiple vaccination regimens in a canine model.
In consideration of these factors, we continued the remainder of
our vaccination studies in the mouse, which is more amenable
to larger sample sizes. In addition, their smaller mass facilitates
administration of a higher dose (per kilogram) of rAAV6 that can
achieve body-wide transduction of skeletal muscle (Blankinship
et al., 2004) and is more relevant to therapeutic dosing levels. While
significant differences exist between canine and murine immune
systems, the mouse has been utilized extensively as a model sys-
tem for the study of vaccination responses, autoimmunity, and
other aspects of mammalian immunology. Thus, commonali-
ties between the immune systems of both animal models predict

FIGURE 2 | Western analysis of CPV vaccination and serum anti-AAV

activity in canines. Serum isolated from CPV-vaccinated animals does not
exhibit enhanced anti-rAAV6 activity in comparison to unvaccinated
controls. Serum from dogs before CPV vaccination (pre-parvo), after CPV
vaccination but before rAAV6 administration (post-parvo/pre-AAV), or after
rAAV6 administration (post-AAV) were used as probes. kDa, kilodalton
molecular marker; BSA, bovine serum albumin, used as negative control.

that the results regarding CPV-vaccination and generation of any
potential rAAV6-directed immune response in the mouse may also
be applicable to the canine model.

Mice were vaccinated following two different regimens that
represent those commonly employed in kennels (Figure 3A).
Regimen 1 utilized reagents that were equivalent to the vac-
cines administered to the above cohort of beagles. It consisted
of a dose of Galaxy® PV, a modified live CPV vaccine, cou-
pled with Intra trac® 3, an upper respiratory vaccine that is
directed against adenovirus type-2, parainfluenza, and Borde-
tella bronchiseptica. Regimen 2 consisted of a combination of
two commercial vaccines, Vanguard® Plus and Duramune® Max,
both of which contain attenuated CPV, parainfluenza, adenovirus
type-2, canine coronavirus, and canine distemper. The two vac-
cines are given together for the initial dose, followed by a single,
additional dose of Vanguard® Plus 1 week later. Eight weeks post-
vaccination, serum was collected from both cohorts and analyzed
for cross-reactivity with rAAV6 capsids. Vaccinated animals exhib-
ited a slightly elevated neutralizing antibody response compared
to unvaccinated mice (Figure 3B). However, this difference was
statistically significant only at the highest serum concentration.

These three cohorts of mice were then injected with rAAV6 car-
rying the human placental alkaline phosphatase (hPlAP) reporter
gene. Vector was administered via IV injection (2 × 1012 vg) and
IM injection (1 × 1010 vg). Dual injection methods were employed
to ensure maximum presentation of rAAV6 capsids to monitoring
immune cells in both interstitial and intravascular compartments.
One month post-rAAV injection, serum samples, and striated
muscle tissues were collected for analysis (Figure 4). Transgene

FIGURE 3 | AAV6 neutralization activity and CPV vaccination in mice.

(A) Schematic representing the timeline of CPV vaccination and rAAV6
injection. Serum was collected 4 weeks prior to rAAV6 injection and
neutralization activity was quantified (B). Both vaccination schedules
elicited a slight neutralizing antibody response that was detectable at 1:50
serum dilution (* indicates statistical significance compared to
unvaccinated control, p < 0.05).
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FIGURE 4 | rAAV6 transduction is not impaired in CPV-vaccinated

mice. Vaccinated animals (n = 6) received IM and IV injections of
rAAV-hPlAP. Serum and tissues were collected 1 month post-injection.
Histochemical staining of muscle cross-sections demonstrates robust
hPlAP expression (A) and no significant inflammatory infiltrate (B).
Quantification of hPlAP expression (C) and vector genome number (D) in
muscle lysates revealed no significant difference between vaccinated and
unvaccinated animals. CPV-vaccination did not significantly influence the
neutralizing antibody response to rAAV6 injection (E). Scale bar 50 μm.

expression and vector genomes were quantified across differ-
ent groups, but no significant difference in hPlAP enzymatic
activity or genome copy number was found between either of
the two vaccination regimens or the unvaccinated control mice
(Figures 4C,D). In addition, no significant cellular inflamma-
tory response was observed in transduced muscle isolated from
vaccinated or unvaccinated mice (Figure 4B), suggesting that
CPV-vaccination does not contribute to chronic inflammatory
infiltration in rAAV-transduced muscle. As expected, neutraliz-
ing antibodies were generated following rAAV6 injection, but the
response in CPV-vaccinated mice was not significantly different
compared to control animals.

rAAV6 VACCINATION IN NEONATAL MICE
The immune system in young mammals is immature, and neona-
tal exposure to antigen does not always elicit the same type of
immune response as in the adult (reviewed in Jaspan et al., 2006).
A diminished cytotoxic T cell response and the presence of cir-
culating maternal antibodies can result in impaired induction of
memory cells and persistent infection in newborns (Adkins et al.,
2001). In addition, a tolerogenic response to antigens can be ini-
tiated in neonates (Morein et al., 2007; Verhasselt, 2010a), which
could theoretically be harnessed to facilitate repeat administration
of therapeutic vectors. Thus, it is possible that very early vaccina-
tion with rAAV6 could modulate the immune response to rAAV
infection in a permissive manner. To investigate this prospect, we

vaccinated mice with rAAV6 at either 1 or 5 days of age. Vector
was delivered intraperitoneally at a dose of 1 × 1011 vg per mouse
(Figure 5A). Serum was collected 4 weeks post-vaccination and
rAAV6 neutralization activity was quantified prior to IM injection
of rAAV6-hPlAP (1 × 1010 vg) in the left tibialis anterior (TA).
Both cohorts of mice generated a significant neutralizing antibody
response to neonatal rAAV6 vaccination (Figure 5B). However,
neutralization activity in the Day 1 vaccination cohort was signif-
icantly lower compared to the Day 5 cohort. In addition, animals
in the Day 1 cohort demonstrated a greater degree of individual
variability in neutralization activity, which may be related to dif-
ferences in immune system maturity and development between
newborn and 5-day old mice. Interestingly, transduction of skele-
tal muscle was not significantly impacted by early vaccination in
either cohort, despite the presence of circulating anti-rAAV6 anti-
bodies (Figure 5C). These results suggest that the rAAV6-directed
immune response initiated in vaccinated, neonatal mice may rep-
resent either a weak, ineffective primary immune response against
re-infection or may instead be indicative of a tolerant response
with the potential to remain permissive to viral infection upon
rAAV6 re-exposure during adulthood.

PERMISSIVE IMMUNITY DOES NOT PERSIST IN rAAV6-VACCINATED
MICE
It has been previously shown that IM injection of rAAV stim-
ulates a robust humoral immune response that is sufficient to
prevent skeletal muscle transduction upon subsequent exposure
to the same vector serotype (Burger et al., 2004; Riviere et al.,
2006; Sabatino et al., 2007). As shown above, rAAV6-vaccinated
mice responded positively to the first IM injection of rAAV6, but
it was important to determine whether this permissive state would
persist through repeated exposure to rAAV6 during adulthood. To
evaluate whether mice had developed a functional tolerance for
rAAV6, both Day 1 and Day 5 cohorts were given an additional IM
injection of 1 × 1010 vg into the contralateral TA muscle. Serum
was collected immediately prior to injection, and neutralization
activity was quantified (Figure 6A). Both cohorts showed a strong
neutralizing antibody response that was significantly enhanced
when compared to the response obtained from the first bleed
(Figure 5B). No significant difference in neutralization activity
was observed between vaccinated animals and un-vaccinated con-
trols. In addition, neutralization activity remained high even at
more dilute serum concentrations, suggesting that the 4 week IM
injection enhanced the rAAV6-directed immune response. Con-
sistent with these observations, transduction in the contralateral
TA was dramatically reduced and was limited to a small num-
ber of sparsely distributed muscle fibers (Figure 6B). These data
indicate that rAAV6-vaccinated mice did not remain permissive
to repeat infection and suggest that the success of the initial IM
injection may be related to a weak primary immune response to
rAAV6-vaccination, rather than induction of tolerance.

DISCUSSION
The immune response to rAAV vectors has emerged as a promi-
nent issue in the development of gene replacement strategies.
Initial studies suggested a relative lack of immunogenicity of
rAAV vectors, but the success achieved in animal models has not
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FIGURE 5 | rAAV6 vaccination and neutralizing antibody

response in neonatal mice. (A) rAAV6 injection and serum
collection timeline. Mice were vaccinated (IP) at P1 or P5, and
received two sequential injections (IM) of rAAV6 at 4 and 8 weeks.
(B) Quantification of neutralizing antibody response from the first
bleed, 4 weeks post-vaccination. Animals vaccinated on Day 1

generated a weaker response than those injected Day 5 (* indicates
significant difference compared to P5 cohort, p < 0.05). (C) Cross-sections of
tibialis anterior injected with rAAV6-hPlAP (Inj #2) at 4 weeks post-vaccination.
Neutralizing antibody response did not prevent rAAV6 transduction in either
cohort. hPLAP staining (top) and hematoxylin and eosin staining (bottom).
Scale bar 2 mm.

been mirrored in human trials. Significant immune responses
to the vector have been observed following intravascular deliv-
ery of rAAV to liver and direct injection into skeletal muscle.
Exposure to wild-type AAV is common within the human pop-
ulation, and the frequency of sero-positivity for AAV-directed
neutralizing antibodies approaches nearly 30% for AAV2 (Min-
gozzi and High, 2007). Pre-existing neutralizing antibodies to AAV
have been shown to significantly inhibit transduction of hepato-
cytes in a clinical trial evaluating delivery of rAAV2 to hemophilia
patients (Manno et al., 2006). A similar humoral response has
been observed in cystic fibrosis gene therapy trials involving repeat
administration of rAAV2 (Flotte et al., 2007). Disappointingly,
the majority of clinical trials have resulted in the gradual loss of
transgene expression. rAAV2-mediated delivery of human Fac-
tor IX (hFIX) to either skeletal muscle (Kay et al., 2000) or liver
(Manno et al., 2006) resulted in therapeutic levels of hFIX in a
subset of patients, but hFIX expression was eventually eliminated
or reduced to non-therapeutic levels in all participants. In another
clinical trial, rAAV1 was used to deliver lipoprotein lipase (LPL)
via IM injection to patients with LPL-deficiency (Mingozzi et al.,
2009). Once again, transgene expression rose to effective levels for
a relatively short period before gradually dropping below thera-
peutic threshold. In a clinical trial of rAAV1-mediated delivery
of α-sarcoglycan, two out of three patients responded well to the
treatment, whereas the third patient failed to demonstrate suc-
cessful gene transfer (Mendell et al., 2010). Extensive analysis of
data generated from these clinical trials has indicated that both
humoral and cell-mediated anti-capsid immune responses likely

play a significant role in the elimination of transduced tissues
(Manno et al., 2006; Mingozzi et al., 2009; Mendell et al., 2010).

A significant immune response has been observed in several
studies of rAAV delivery in canines. Aspects of the canine immune
response have mirrored findings in human clinical trials, includ-
ing detection of a capsid-directed T cell response and gradual
loss of transgene expression in non-immunosuppressed animals.
Ohshima et al. (2009) observed a strong inflammatory response
and T cell infiltration following delivery of rAAV2 or rAAV8
to skeletal muscle, though the magnitude of the inflammatory
response was reduced in rAAV8-injected muscles. In addition,
we have previously shown that injection of rAAV6 or rAAV1 in
immunocompetent animals results in a similar sequence of events.
An anti-capsid immune response led to local inflammation and
clearance of the majority, but not all, transduced cells over a period
of several weeks (Wang et al., 2007a, 2010). Loss of transgene
expression was prevented by a short course of immunosuppres-
sion (Wang et al., 2007b). An rAAV-directed immune response
has also limited transgene expression in a canine model of α1-
antitrypsin deficiency (Halbert et al., 2010). These studies raise
concerns regarding the immunogenicity of rAAV vectors and
emphasize the need for careful evaluation of the potential immune
response to rAAV delivery, especially in disorders that may require
very high vector doses for systemic delivery, such as the muscular
dystrophies.

Further study of the canine immune response to rAAV
may provide insight toward addressing immunogenicity in
clinical trials, but it is important to rule out the influence of
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FIGURE 6 | Permissive immunity does not persist in rAAV6-vaccinated

mice. Animals received a third injection of rAAV6-hPlAP at 8 weeks
post-vaccination. Serum collected immediately prior to injection (Inj #3)
demonstrated high neutralization activity (A). rAAV6 transduction was
dramatically reduced (B). hPLAP staining (top) and hematoxylin and eosin
staining (bottom). Scale bar 2 mm.

CPV-vaccination regarding the generation of an rAAV-directed
immune response. Antibody cross-reactivity has been demon-
strated with closely related variants of AAV and between other
related members of the Parvovirus family (Patel and Heldens,
2009). In addition, it has been shown that T cell receptors are
reactive to epitopes that are conserved between different serotypes
(Mingozzi and High, 2007; Mingozzi et al., 2009; Wang et al., 2010),
suggesting that a cell-mediated response may be more broadly
reactive across a related group of viral vectors. Here, we observed a
low level of neutralization activity in both mouse and canine mod-
els of CPV-vaccination at serum dilutions of 1:50 (Figures 1 and
3). This activity was not measurable at more dilute serum concen-
trations, and Western analysis of serum from parvo-vaccinated
and unvaccinated canines did not exhibit enhanced binding to
rAAV particles (Figure 2). These results may indicate the presence
of anti-CPV antibodies that possess low, cross-reactive affinity for
rAAV6. Cross-reactive antibodies with weak affinity for rAAV6

would require a higher concentration of neutralizing antibodies
to achieve significant neutralization. At more dilute serum con-
centrations, inefficient binding of cross-reactive antibodies would
significantly limit neutralization activity. Further characteriza-
tion of the antibody response would be necessary to quantify
affinity strength and identify common epitope targets before cross-
reactivity can be confirmed. However, it is important to emphasize
that CPV-vaccination did not correlate with any significant inhibi-
tion of rAAV6 transduction (Figure 4), suggesting that a low level
of neutralization activity may not play a role in generating a func-
tionally significant rAAV6-directed immune response. In addition,
we did not detect any significant inflammatory infiltration, nor
did we observe any changes in muscle architecture that would be
indicative of a cell-mediated, cytotoxic response (Figures 4A,B).

The CPV vaccination regimen utilized in these studies was cho-
sen to reflect the vaccination regimens routinely employed in large
kennels within the United States (Bioresources, 2006). A variety
of CPV vaccines are available from different manufacturers, and
availability in different regions is dependent on local laws, inter-
national licensing, and market preferences (Patel and Heldens,
2009). The regimens evaluated in this study are representative of
the majority of vaccine components that are used by major man-
ufacturers, and thus, our results are likely applicable to a wide
selection of vaccines. However, it is possible that subtle differ-
ences in vaccines and vaccination schedules could influence the
immune response. Additional studies evaluating vaccines from a
larger number of manufacturers would be necessary to rule out
this possibility.

In addition to CPV-vaccination, we explored the response to
rAAV6 vaccination in neonatal mice. The immune system in new-
born mammals is under-developed, and significant differences
exist in the pattern of T and B cell activation between newborns
and adults. Newborns exhibit a generalized deficiency in adaptive
cellular responses, with a bias toward prolonged Th2-type immu-
nity (Adkins et al., 2001). This observation has been attributed to
the influence of maternal cytokines and hormones that promote
maternal tolerance to fetal antigens. These cytokines persist in the
fetal circulation and influence the neonatal immune response for
a significant period after birth, leading to a relatively tolerogenic,
and vulnerable state in the neonate (Morein et al., 2002). In this
regard, the newborn period represents a time when the immune
system is learning to balance induction of tolerance to self antigens
with appropriate reactive immunity to foreign pathogens. Thus,
viral vectors delivered during this developmental window have the
potential to initiate a tolerant immune response.

The ability to achieve successful transduction following repeat
administration of viral vectors would be advantageous, both in the
clinic and in the realm of basic research. Unfortunately, repetitive
administration of identical serotypes has been ineffective in the
majority of cases due to the development of a significant humoral
immune response to rAAV vectors (Burger et al., 2004; Riviere
et al., 2006; Sabatino et al., 2007; Petry et al., 2008). It has been
speculated that early vaccination with rAAV could stimulate a tol-
erant response to vector in the immature immune system and
thus permit re-administration in adulthood. In this regard, previ-
ous studies have investigated the response to in utero adenoviral
(Lipshutz et al., 2000; Bouchard et al., 2003) or AAV (Jerebtsova
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et al., 2002; Bouchard et al., 2003; Sabatino et al., 2007) vaccina-
tion in mice. These studies were limited to IM injection of rAAV
serotypes 1, 2, and 5, and did not evaluate rAAV6. Considering
that serotype-specific transduction profiles, dosage, and the route
of administration can significantly influence the immune response
to viral vectors (Mingozzi and High, 2007; Petry et al., 2008; Zaiss
and Muruve, 2008), it is important to empirically determine the
immune response rAAV6 vaccination.

Unfortunately, we were unable to induce persistent tolerance to
rAAV6 utilizing neonatal vaccination. The neutralizing antibody
response to the initial IP vaccination did not inhibit transduction
during the first IM injection at 4 weeks of age. However, animals
did not remain permissive to rAAV6 transduction. On the con-
trary, neutralization activity was significantly enhanced following
the first IM injection, resulting in near-complete inhibition of
transduction during the second IM injection. These results sug-
gest that the initial vaccination triggered a weak primary immune
response, which led to an enhanced secondary reaction to the
first IM injection. However, without a more detailed characteriza-
tion of the antibody response, we cannot rule out the existence of
partial tolerance to specific viral epitopes. These findings are con-
sistent with those previously observed following in utero delivery
of rAAV1 and rAAV2 (Jerebtsova et al., 2002; Sabatino et al., 2007)
and indicate that neonatal IP injection of rAAV6 does not facil-
itate repetitive administration of vector beyond a single, repeat
injection.

In summary, we have evaluated the effects of CPV and rAAV
vaccination on rAAV6-mediated transduction. The neutralizing
antibody response to CPV-vaccinated animals is minimal and does
not appear to significantly enhance either the humoral or cellular
response to rAAV6 transduction. These data suggest that CPV-
immunity is not a significant component of the rAAV6-directed
immune response in canines, and support the use of canines as a
valid model for further characterization of the immune response
to rAAV6. In contrast, vaccination with rAAV6 in neonatal mice
leads to a significant immune response that prevents repetitive
administration of rAAV6. However, additional methods of tol-
erance induction may warrant further consideration, including
oral delivery (Verhasselt, 2010b) and thymic expression of viral
proteins (Chu et al., 2010).

MATERIALS AND METHODS
AAV PRODUCTION AND CHARACTERIZATION
rAAV6 vector was generated as previously described (Grimm et al.,
2003). Cells were co-transfected with an rAAV6 packaging plasmid
pDGM6 and plasmid containing the expression cassette flanked
by viral ITRs. Cellular pellets and supernatants were collected and
processed through a 110S microfluidizer (Microfluidics, Newton,
MA, USA), followed by clarification of the homogenate by filtra-
tion through a 0.22-μm filter. Additionally, an Amersham AKTA10
HPLC machine (Amersham, Piscataway, NJ, USA) was used for
affinity purification on a HiTrap heparin column (Amersham).
The column was then washed and vector was eluted and dialyzed
against physiological Ringer’s solution. Vector was titered using
HT-1080 cells as transduction targets, and Southern analysis was
utilized to determine the number of genome-containing particles
in the vector preparation.

ANIMAL EXPERIMENTS
Animal studies were performed in accordance with the guidelines
set forth by the institutional Review office of University of Wash-
ington. C57BL/6 mice were bred in our animal facility. Mice were
given vaccines or AAV injections according to the indicated sched-
ule (see Results). Vaccinations were administered using either Intra
Trac® 3 and Galaxy PV® (both supplied by Intervet/Schering-
Plough Animal Health, Millsboro, DE, USA), Vanguard® Plus
(Pfizer Animal Health, Exton, PA, USA) and Duramune® Max
(Boehringer-Ingelheim Vetmedica, Inc., St. Joseph, MO, USA),
or intraperitoneal administration of rAAV6-CMV-cre. rAAV6-
CMV-hPlAP was delivered via either retro-orbital injection or IM
injection (into the left TA muscle), as indicated. Blood samples
were collected via retro-orbital route, under isofluorane-induced
anesthesia. At the indicated timepoints, mice were euthanized
according to approved protocol and tissue samples were collected
for analysis.

WESTERN ANALYSIS
3 × 109 vector genome/well of AAV6 and AAV2 and 10 μl/well
of parvovirus vaccine at 1:10 dilution were loaded onto a 4–12%
NuPAGE Bis–Tris gel (Bio-Rad, USA). The gel was transferred
onto nitrocellulose membrane (Bio-Rad, USA). Membranes were
blocked with 5% non-fat milk, 0.1% Tween–PBS (w/v) overnight
at 4˚C and then incubated with serum at 1:200 dilution. Horse-
radish peroxidase (HRP)-labeled rabbit anti-dog Ig was used as
secondary antibody at 1:25,000 (Jackson ImmunoResearch, USA).
Immunoreactive proteins were visualized using the ECL system
(Amersham, USA).

CELL CULTURE
The 293 human embryonic kidney cells and HT-1080 human
fibrosarcoma cells were maintained in Dulbecco’s modified Eagle
medium supplemented with 10% fetal bovine serum supple-
mented with penicillin and streptomycin. Cells were cultured at
37˚C in an atmosphere of 5% CO2.

VIRUS NEUTRALIZATION ASSAY
Serum was prepared by centrifugation at 3000 rpm for 5 min, fol-
lowed by heat inactivation at 56˚C for 30 min. Virus neutralization
assays were done as previously described (Halbert et al., 2000;
Calcedo et al., 2009). Briefly, rAAV6-CMV-GFP or rAAV6-CMV-
hPlAP was diluted to 1 × 109 genome-containing particles per ml.
Serum was added to 100 μl of diluted virus to achieve the desired
final serum dilution (1:20, 1:50, 1:200, 1:500, or 1:800). The virus
and serum were incubated for 1 h at 37˚C, and 80 μl were added to
HT-1080 cells plated at 2 × 104 cells per well (12 well plates) the
previous day. Two days following infection, plates transduced with
rAAV6-CMV-GFP were counted with fluorescence activated cell
sorting (FACS). Cells transduced with rAAV6-CMV-hPlAP were
stained for hPlAP expression and the number of positive cells per
field was quantified.

HISTOLOGICAL ANALYSIS
Muscle tissue was frozen in liquid nitrogen-cooled isopentane
embedded in Tissue-Tek OCT medium (Sakura Finetek USA,
Torrance, CA, USA) and sectioned transversely in cryostat at
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10 μm. For hPLAP staining, sections were fixed with ice cold 4%
paraformaldehyde, washed three times in cold phosphate-buffered
saline, placed in 65˚C phosphate-buffered saline for 90 min, rinsed
in room temperature phosphate-buffered saline, and washed in
alkaline phosphatase buffer (0.1 mol/l Tris–HCl pH 9.5, 0.1 mol/l
NaCl, 0.01 mol/l MgCl2) for 10 min. Excess liquid was removed
from the sections, and Sigma FAST BCIP/NBT substrate solution
(Sigma, St Louis, MO, USA) was applied to each section for 30 min
at room temperature, in the dark. Slides were rinsed three times in
room temperature phosphate-buffered saline, dehydrated in 70%
EtOH for 5 min, 2× (95% EtOH for 2 min), 2× (100% EtOH
for 2 min), 2× (xylene for 3 min), and coverslipped with Per-
mount mounting media (Fisher Scientific, Fair Lawn, NJ, USA).
Images were captured using QIcam or Olympus digital cameras
and processed using QCapture Pro (QImaging, BC, Canada). For
hematoxylin and eosin m thickness were briefly fixed in methanol
and staining, cryosections of 10 stained with Gill’s hematoxylin
and eosin–phyloxine. The sections were washed, dehydrated, and
cleared in xylene before mounting with Permount.

LUMINOMETRY ASSAY
After sacrifice of CPV-vaccinated mice, the gastrocnemius muscle
was rapidly excised and flash frozen in liquid nitrogen. Frozen
muscles were then powdered using a mortar and pestle and
the protein was extracted with a protease-inhibiting buffer con-
taining 137 mM NaCl, 20 mM Tris–HCl, pH 7.6, 2 mM MgCl2,

1 mM 2-mercaptoethanol, 0.2% Tween 20 (Amersham), and 1×
Complete protease inhibitor (Roche, Indianapolis, IN, USA). Pro-
tein was quantified via spectrophotometric absorption using Brad-
ford reagent (Peirce, Rockford, IL, USA). The extract was then
analyzed for hPlAP expression using a commercial luminometry
kit (Applied Biosystems, Carlsbad, CA, USA)

VECTOR GENOME QUANTIFICATION
Muscles were snap frozen in liquid nitrogen and then pulverized
with a mortal and pestle. Pulverized muscle tissue was resus-
pended in tissue lysis buffer [0.5% NaDOC, 50 mM Tris, 150 mM
NaCl, 1% Triton, 0.8% protease inhibitor cocktail (Sigma-Aldrich,
St. Louis, MO, USA)]. DNA was isolated from cell and tissue
lysates using a DNeasy blood and tissue kit (Qiagen, Valencia, CA,
USA) according the manufacturer’s guidelines. Genome quan-
tification was performed utilizing a SV40 polyA-specific probe
and quantitative-PCR, as previously described (Gregorevic et al.,
2004).
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