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Glaucoma is a degenerative disease that constitutes the second cause of blindness in developed countries. Although it cannot be
cured, its progression can be prevented through early diagnosis. In this paper, we propose a new algorithm for automatic
glaucoma diagnosis based on retinal colour images. We focus on capturing the inherent colour changes of optic disc (OD) and
cup borders by computing several colour derivatives in CIE L∗a∗b∗ colour space with CIE94 colour distance. In addition, we
consider spatial information retaining these colour derivatives and the original CIE L∗a∗b∗ values of the pixel and adding other
characteristics such as its distance to the OD centre. The proposed strategy is robust due to a simple structure that does not
need neither initial segmentation nor removal of the vascular tree or detection of vessel bends. The method has been extensively
validated with two datasets (one public and one private), each one comprising 60 images of high variability of appearances.
Achieved class-wise-averaged accuracy of 95.02% and 81.19% demonstrates that this automated approach could support
physicians in the diagnosis of glaucoma in its early stage, and therefore, it could be seen as an opportunity for developing
low-cost solutions for mass screening programs.

1. Introduction

The World Health Organization (WHO) has reported an
increase of the number of patients suffering from eye dis-
eases due to the aging of world population [1]. Among all
of them, glaucoma is the second leading cause of blindness
in developed countries. This disease is considered as a
major public health concern, and its prevalence will
probably continue to increase as life expectancy continues
to rise [2].

Glaucoma describes a group of ocular disorders with a
common characteristic: the progressive loss of nerve fibers
in the retina. Although it cannot be cured, its associated
blindness may be prevented through early diagnosis. How-
ever, glaucoma is known as the “silent theft of sight” in the
sense that it presents no symptoms until vision is already lost.
Glaucoma should be diagnosed early in the disease course in

order to identify patients that require treatment to maintain
quality of life [2].

The loss of optical fibers due to glaucoma progression is
associated with a corresponding change in the optic disc
(OD). Therefore, the empty space within the OD and the
so-called cup is subsequently enlarged. That is the reason
why the cup to disc ratio (CDR), defined as the relation
between the OD and cup area, increases with the progression
of the disease. OD appearance is, therefore, critical in glau-
coma diagnosis, and images of the retina are mandatory for
a correct disease assessment.

Several eye imaging technologies have been developed
during the last 160 years [3]. Heidelberg retina tomograph
(HRT) and optical coherence tomography (OCT) along with
angiography are widely used in the diagnosis and follow-up
of patients with different ocular diseases such as diabetic
retinopathy or macular degeneration [3, 4]. Although OCT
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provides the best representation of the retina, devices based
on this technique are highly expensive and they cannot be
afforded by local medical centres [5]. As fundus imaging is
the most established way of retinal imaging in primary care
settings, an automatic glaucoma diagnosis system based on
fundus images could be deployed having the potential for
early disease diagnosis [6].

Nevertheless, the use of fundus imaging techniques alone
could not be enough for a mass screening programs. The lack
of specialists in local health centres makes the inspection of
every patient’s retinal image unaffordable. Moreover, the
amount of information would exceed the limit of clinicians’
ability to fully utilize it [3]. Under these circumstances, the
use of automated imaging classification as a triage test may
prove to be cost effective [7].

Image-based glaucoma diagnosis is performed mainly
with CDR measurement, that is, the computation of the
ratio of OD and cup region areas. Currently, this calculus
is performed on the basis of manually delineated areas
over the retinal fundus image. The skilled human grader
must carefully draw the region with an image editor soft-
ware, and afterwards, the ratio of the areas is calculated.
This method is time consuming and exhausting. A little
saving in time is provided by some acquisition of devices
that offer the possibility of extracting the OD and cup
region by adjusting an ellipse to four points that should
be introduced by the expert. Instead of carefully marking
the whole region, the physician should only mark four
reference points. However, assuming that the area is ellip-
tical and basing the adjustment on four points makes the
system a little bit faster, that is, about eight minutes per
eye under the Klein protocol [8], but less accurate. It
seems clear that the medical community needs an auto-
matic method for CDR computation. A computer-aided
diagnosis tool (CAD) integrating such an algorithm could
avoid problems of inaccurate results while saving time
and costs.

For automatic CDR estimation, the OD and cup regions
have to be segmented based on their characteristic appear-
ance (Figure 1). However, it must be noticed that the shape,
size, and colour variations on retinal images across a popula-
tion are expected to be high [3], making OD and cup segmen-
tation a challenging task (Figure 2). Generally speaking, OD
is an extremely intense region inside the fundus image and
can be identified from features such as the following [9]:

(i) Shape: the OD is roughly circular.

(ii) Colour: the OD usually presents hues ranging from
orange to yellow.

(iii) Brightness: the OD presents a brightness value that
is usually higher than the rest of the retinal image.

(iv) Size: the OD area is usually less than 1/7 of the total
eye.

The optic cup is immersed within the OD region. It usu-
ally presents a roughly circular shape and a bright yellowish
colour as can be appreciated in Figure 1. However, it is well

known that its segmentation from retinal fundus images is
arduous, due to the lack of depth information, which is
not available in the 2D images. Furthermore, the presence
of ill-defined and inhomogeneous optic cup boundaries
(see Figure 2) makes the problem even more difficult [10].

From the abovementioned characteristics of the OD and
cup, colour is the most relevant when trying to isolate both
areas [4]. Consequently, the proper colour space selection is
crucial for the eventual success of the algorithm. Conversely,
it is a general trend to only consider the illumination infor-
mation of pixels [11–21]. Two facts are presented by the
majority of papers to support their selection:

(1) The use of colour images involves higher complexity
due to their three-dimensional nature.

(2) Grey level images allow using well-known algo-
rithms [22].

Some of the methods using grey scale images select only
one colour plane of the three available in any colour image
representation (RGB, HIS, etc.). Most of these articles claim
that the OD can be easily discriminated from the G channel
when analysing the RGB components of the image [9, 23–33].

Frequently, blood vessels need to be previously inpainted
to prevent an interference with the OD segmentation
algorithm [23, 27, 33]. Likewise, there is a common trend
of using basic image processing techniques such as histo-
gram thresholding alone [30] or combined with other
methods [23–25, 31–34].

Equally important is the use of the R colour plane
[35–38], the V channel from HSV, [5, 39, 40], or the M
colour channel of CMY [41]. Only a minority of methods
relies on the luminance coordinate (L∗) of CIE L∗a∗b∗ colour
space [42].

Several authors prefer the use of more than two colour
planes usually from RGB colour space. The processing is
performed separately, as if different grey level images were
available [8, 10, 43, 44].

Optic
disc

Cup

Figure 1: The OD and cup as seen on a typical retinal fundus image.
The OD is presented as an almost circular region with a colour
ranging from orange to yellow. The cup is the brightest region
within it, with a diffuse border only distinguishable by vessel bends.
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The abovementioned techniques are based on grey level
image processing. From a computational point of view, the
use of scalar valuesmay reduce processing time. Nevertheless,
the correlation among different colour planes is neglected by
these approaches, and hence, some useful features may be
lost. Only across the integration of the information in all
channels, a colour image can be effectively segmented.

The use of the full colour representation on automatic
diagnosis assessment is important. However, equally sig-
nificant is the role of colour perception in object recog-
nition and scene understanding both for humans and
intelligent vision systems [45, 46]. Among all the possibil-
ities for colour image representation, the use of a uniform
colour space, that is, a representation of the image where
colour distances are correlated to perceptive differences
could benefit the quality of the results. Some authors have
used CIE L∗a∗b∗ colour space due to its uniformity and
the possibility of using advance colour metrics [47–49].
Authors in [50] used JCh colour space from the CIE-
CAM02 colour appearance model for OD extraction.
Although these methods pretend to take advantage of the
complete colour information available while being as close
to human perception as possible, OD segmentation is a
problem yet to be solved. For instance, authors in [50]
process only the grey level plane J. Methods illustrated in
[34] and [48] would not work in images where colour
differences between OD and background are not signifi-
cant. The computation of colour derivatives, only in cer-
tain pixels located in a radius centred on the OD, was
presented in [47]. In such approach, the final obtained
border is dependent on the separation of the radial lines.

Regarding cup segmentation, the same limitations about
colour spaces and human perception could be applied. It is
important to note that the cup area is more difficult to seg-
ment than OD due to vessels, border asymmetry, and colour
variability. It usually happens that images present no bright
yellowish area at all but the cup is still there. In these cases,
the cup edge is dictated by vessel bends. For this reason, the
majority of approaches presented in the past may not give
accurate results when dealing with complex image databases
[5, 8, 10, 26–28, 30–34, 40, 41, 44, 49, 51–54].

Although the abovementioned techniques present rele-
vant results, there are still some weak points that should
be addressed:

(1) The use of colour information is usually limited to
separately processing each colour plane. However,
retinal fundus images are vector-valued colour
images and therefore, their analysis in a scalar fash-
ion could add some errors to the process.

(2) Medical image perception is not addressed by the
majority of the approaches. The use of uniform col-
our spaces or advanced colour distances is limited.

(3) The complexity of the proposed techniques is high
making the tools unconnected and the method
inelegant.

(4) The proposed methods rely on vessel detection and
inpainting frequently. In many approaches, vessel
bends must be computed as well. The errors in this
initial stage will propagate to the rest of the algorithm.

(5) The methods are designed and tested in the same
image databases, with a limited number of images.
These databases are private in most cases. The gold
standard is usually not available. Therefore, the real
quality of the tool cannot be accessed.

To address these issues, the present technique has the
following key points:

(1) The method is simple. It has three stages only.

(2) It does not rely on the segmentation, inpainting, or
detection of vessel bends or other retinal image
structures.

(3) The method makes use of a uniform colour model
along with a colour perception-adapted distance
image.

(4) The technique has been extensively validated. It has
been designed on public image databases. The result

(a) (b) (c) (d)

Figure 2: The OD presents a general appearance making it suitable for its automatic detection. However, there is a high variability among
population: (a) clear colour change and red hue, well-defined border; (b) subtle colour change and red hue, diffuse border; (c) subtle
colour change and pale yellow fuzzy border; and (d) bright yellow diffuse border presence of peripapillary atrophy.
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of the test on these databases is presented. Once the
tool has been trained, a second experiment is per-
formed using a completely different database.

(5) As glaucoma diagnosis on retinal fundus images is
currently performed mainly by manual inspection,
freehand, or ellipse fitted, we do not present only
the segmentations of these areas but also the CDR
measurements that are automatically calculated. We
compare the results of the technique with the gold
standard provided by experts with both of the
approximation methods generally used.

2. Materials and Methods

2.1. Image Database. We constructed two image databases,
namely, Dataset1 and Dataset2, each containing 60 retinal
fundus images. These 120 images spanned a great diversity
of retinal content. The key point on selecting the images
was that they needed to be representative of the content that
the algorithm will encounter on its practical use.

Therefore, we explored seven publicly available databases
[55–61] to create Dataset1. Sixty images that offer a wide
range of appearances, illumination, and colours were selected
as shown in Figure 3 (a detailed list of images can be accessed
in the supplementary material available online at https://doi.
org/10.1155/2017/5953621). The image database comprised

healthy and unhealthy images of patients suffering from
glaucoma in some cases and also diabetic retinopathy. Two
experts performed manual annotation of all of the retinogra-
phies since public gold standard was not available.

Dataset2 included 60 images from the Surgery Depart-
ment and Glaucoma Unit of the University Hospital Puerta
del Mar of Cadiz (Spain). Images were annotated by two
experts and were used as an independent test set. The
complexity of the images of Dataset2 was high, as can be
appreciated in Figure 4, including challenging cases with no
visible cup, presence of abnormalities, or diffuse borders. In
Dataset2, two gold standards were used:

(a) The first gold standard consisted of the freehand
drawing on the retinal image. It was a tedious and
time-consuming task due to the difficulty of selecting
the precise border of the OD and cup regions.

(b) As a second gold standard, the OCT software per-
formed ellipse fitting. Experts marked up four points
for both regions. It must not be confused with image
processing-based ellipse fitting. The OCT software
only computes the equation of an ellipse based on
the four manually marked points. No image informa-
tion is taking into account.

Once the databases were built, a region of interest (ROI)
was automatically selected in order to reduce computational

(a) (b) (c) (d)

Figure 3: Dataset1 comprises a wide range of OD and cup appearances due to their different nature, population, and acquisition devices.

(a) (b) (c) (d)

Figure 4: Dataset2 is a private database compounded by retinal fundus images acquired by the same device. The overall complexity is high
due to the presence of many different appearances: fuzzy edges, subtle colour changes, atrophies, and so forth.
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time [11, 17, 18, 21, 27]. The ROI area corresponded to a
region with the following characteristics:

(i) Square shape

(ii) Centred on the OD

(iii) With an area equal to 1/7 of the retina size

It must be noticed that any of the methods presented
in literature about OD location could be used in this step
[9–47]. However, the contribution of the proposed tech-
nique relates on OD and cup detection and not OD
localization. In order to effectively evaluate the perfor-
mance of the technique not disturbing it with possible error
propagation, we have manually input OD centres for all of
the images.

2.2. Vector-Based Colour Derivatives. Image derivatives
were used in order to identify OD and cup boundaries,
due to their capability of capturing changes on a certain
pixel neighbourhood. Derivatives can be computed in sev-
eral directions by rotating the kernel before performing
the convolution.

Retinographies are colour images. Consequently, the
edges should be found by looking for colour changes. Edge
detection in colour images is usually performed by applying
the derivative kernels to the three colour channels indepen-
dently and then by combining the results. These kinds of
methods do not take into account the correlation among
colour channels, and, therefore, they tend to miss edges that
have the same strength but in opposite directions in two of
their colour components [62]. In an attempt to avoid this
issue, we have adopted the technique proposed in [62], where
colour images are treated as two dimensional (pixel location),
three-channel (colour planes) vector fields. Then, they can be
characterized by a discrete integer function I(x,y) that can be
written as follows:

I x, y = CP1 x, y , CP2 x, y , CP3 x, y , 1

where CP1 x, y , CP2 x, y , and CP3 x, y correspond to
colour channels and x, y to pixels’ locations. For instance,
in RGB colour space

CP1 x, y = R x, y , 2

CP2 x, y = G x, y , 3

CP3 x, y = B x, y 4

The magnitude of maximum variation at pixel x, y with
an orientation of 0° is defined as follows [62]:

B x, y = ΔV x, y , 5

where ΔV , if Euclidean distance (ΔE) is used, is defined
as follows:

ΔV x, y = ΔE V + x, y , V − x, y 6

The quantities V +, V −, H +, and H − are the convolution
kernels whose outputs are vectors corresponding to the local
average colours. Let the edge masks (k) be

v−1 v−2 v−3

0 0 0
v+1 v+2 v+3

, 7

and the image neighbourhood (W)

w 1w 2w 3

w 4w 5w 6

w 7w 8w 9

8

Each w i, i = 1,…, 9, is a vector with three components
corresponding to each colour plane. Then,

V + = v+1 w 7 + v+2 w 8 + v+3 w 9, 9

V − = v−1 w 1 + v−2 w 2 + v−3 w 3 10

To improve adaptation to human perception of the
method, instead of using Euclidean distance formula as in
(3), the technique presented in [63] was followed. The colour
space CIE L∗a∗b∗ was selected due to its uniformity. For the
colour distance formula, CIE94 was adopted instead of
Euclidean, due to its best performance and lower computa-
tional time when compared to other perception-adapted
colour differences such as CIEDE2000. Then,

w i = wL∗
i ,wa∗

i ,wb∗
i , i = 1,…, 9 11

Equation (9) can be rewritten as

V + = v+1wL∗
7 + v+2wL∗

8 + v+3wL∗
9 ,

v+1wa∗
7 + v+2wa∗

8 + v+3wa∗
9 ,

v+1wb∗
7 + v+2wb∗

8 + v+3wb∗
9

= VL∗
+ , Va∗

+ ,Vb∗
+ ,

12

that is, each local average colour will have its three-colour
components.

Following the same procedure, (10) can be rewritten as
follows:

V − = VL∗
− , Va∗

− , Vb∗

− 13

Subsequently,

ΔV = ΔE94 V+ , V− , 14

where ΔE94 is the CIE94 colour distance between the corre-
sponding vectors:
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ΔE94 =
ΔL∗
kLSL

2
+ ΔC∗

ab

kCSC

2
+ ΔH∗

ab

kHSH

2
15

For the case of ΔV ,

ΔL∗ =VL∗
+ −VL∗

− ,

Δa∗ =Va∗
+ − Va∗

− ,
Δb∗ =Vb∗

+ −Vb∗

− ,

C∗
+ = Va∗

+
2 + Vb∗

+
2
,

C∗
− = Va∗

−
2 + Vb∗

−
2
,

ΔC∗
ab = C∗

+ − C∗
−,

ΔH∗
ab = Δa∗ 2 + Δb∗ 2 + ΔC∗

ab
2,

SL = 1,
SC = 1 + 0 0045C∗

+,
SH = 1 + 0 0015C∗

−,
kL = kC = kH = 1

16

The magnitude of maximum variation can be computed
using (4). In the case that we want to calculate colour changes
in other directions rather than vertical (0°), we only need to
rotate the mask on (7) to the desired orientation.

As stated on the introduction, the OD and cup regions
present characteristic appearances directly related to colour.
However, the absolute colour value of a pixel should not be
trusted. Figures 2–5 show how colour variability is too high
to determine a specific colour range for every OD and cup
area. On the contrary, every OD and cup border present a
change of colour when compared to their surrounding pixels.
In other words, absolute colour values are not discriminative
but their relative changes on the retina can be (Figure 6).

In the present approach, we have taken advantage of this
relative change of colour to detect pixels belonging to OD
and cup edges. We computed Sobel vector-based colour
derivatives in 25 orientations (from 0° to 360° with a separa-
tion interval of 15°) for every pixel within the image. To
implement the Sobel operator, the mask of (10) at 0° was

−1 −2 −1
0 0 0
1 2 1

, 17

(a) (b) (c) (d)

Figure 5: Cup region segmentation is a challenging task due to its wide range of appearances: (a) bright yellow, well-defined border and small
size, (b) no perceptible colour change, (c) pale yellow, well-defined border and medium size, and (d) pale yellow, diffuse border and large size.

Figure 6: Colour changes represented by gradient arrows marked in blue offer the necessary information for OD and cup segmentation.
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while for 45°, the mask was

−2 −2 0
−1 0 1
0 1 2

18

Equation (2) was evaluated to measure the maximum
colour variation for every pixel and orientation. Figure 7
shows some examples where each pixel value corresponds
to its B value on that direction.

2.3. Classification Based on Bagged Trees. OD detection and
cup detection were achieved by classifying each pixel on the
image regarding its vector-based colour derivatives and its
distance to the OD centre.

Several classifiers were used. The best performance was
obtained with a bagged trees classifier, as it will be explained
in Results. Therefore, the bagged trees classifiers will be
described briefly in this section.

The idea of bagging is to obtain the best model by com-
bining the results of multiple weak classifiers into a single
and strong one [64]. In a bagged tree, the basic classifier is
a decision tree.

Data is divided into T training sets of size n, and T
decision trees are trained with those sets, each one trying to
fit the model. The T decisions are finally combined with a
majority voting rule. Bagging leads to improvements for
unstable procedures [65].

3. Results and Discussion

The discriminative power of colour derivatives when the OD
and cup are detected has been tested. To that purpose, a fea-
ture vector must be built for every pixel on each ROI. This
feature vector is the input for the classifier that will assign a
probability value to that pixel regarding its suitability of
belonging to the OD, cup, or background. The feature vector
contains all of the colour variation values for the 25 orienta-
tions, original CIE L∗a∗b∗ values of the pixel, its distance, and
the angle regarding the centre of the OD and its position.
These 32 features combine the a priori colour and spatial
knowledge about the OD and the cup.

The method has been extensively validated and tested
with two experiments carried out on both of the databases
detailed in Section 2.

0° 45° 270°

Figure 7: Vector-based colour derivatives for three of the computed orientations: 0°, 45°, and 270°.
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3.1. Image Database Dataset1. This database is composed of
60 retinal fundus images from six different public databases.
Dataset1 images present a variety of appearances, illumina-
tion conditions, retinal structures, and so forth. Conse-
quently, it is expected that an algorithm developed using
this database will be highly robust. A total of six classifiers
were trained and validated:

(i) Simple tree (ST).

(ii) Bagged tree (BT). This classifier was introduced in
Section 2.3.

(iii) Complex tree (CT). This is a decision tree with many
leaves that makes many fine distinctions between
classes.

(iv) Linear discriminant (LD). Decisions are made by
estimating, with Bayes theorem, the probability that
a new set of samples belongs to each class.

(v) Quadratic discriminant (QD). This classifier is an
extension of LD where heterogeneous variance-
covariance matrices are considered.

(vi) kNN Euclidean. kNN does not use a model to fit
the training data and subsequently classify the new
samples [66].

Model selection was performed using cross-validation.
For each classifier, the accuracy of the best parameter setting
was compared. Dataset1 was used as a fold cross-validation
set, which was subsequently and repeatedly divided into train
and validation sets. For this internal validation, 10-fold cross-
validation was performed. In each of the tenfolds, the
classifier was rebuilt from scratch. This entire procedure is
repeated 10 times. The reported accuracy was the average
over the accuracies for each fold.

The ability of the algorithm to perform an accurate clas-
sification of OD, cup, and background pixels was measured
by its sensitivity while its ability to determine the pixels that

do not belong to each of the three classes was expressed by
its specificity. Positive predictive value (PPV) and negative
predictive value (NPV) were also computed to give an idea
of the proportions of true positives and true negatives.
Table 1 shows the performance metrics that were used in this
study to evaluate the use of vector-based colour derivatives in
combination with each of the six classifiers.

The analysis of Table 1 reveals that BT classifier, which
showed a class-wise-averaged accuracy of 95.02%, provides
the best combination of classifier and vector-based colour
derivatives. This classifier showed a specificity of 99.23% for
the OD class and 99.80% for the cup class, while preserving
a sensitivity of 91.75% for the OD and 90.63% for the cup.
PPV values were 90.74% for the OD class and 94.83% for
the cup class. NPV was 99.32% and 99.62% for the OD and
cup classes, respectively.

3.2. Image Database Dataset2. This image database com-
prised 60 images provided by the University Hospital Puerta
del Mar, Cadiz, Spain. Images were acquired in a routine
screening process with the same acquisition device.

External validation establishes models’ transportability
and generalizability [67]. In this study, independent Dataset
2 was used to externally validate the fully trained classifier
previously selected using cross-validation in Dataset1. All
samples in Dataset1 were used to train the BT model. Two
experts made two annotations for each of the images on
the database:

(i) Freehand: Two glaucoma specialists meticulously
annotated the exact border of the OD and the cup.
This process was time consuming although constitut-
ing the most exact reference for error calculation.
This annotation was considered the gold standard
for our experiments.

(ii) Ellipse based: The OD and cup edges were obtained
by building an ellipse that contained four points

Table 1: Model performance evaluation under Dataset1 database. The three classes are background (class 1), optic disc (class 2), and cup
(class 3). (a) Simple tree, (b) bagged trees, (c) KNN, (d) complex tree, (e) linear discriminant, and (f) quadratic discriminant.

Indicator a (%) b (%) c (%) d (%) e (%) f (%)

Accuracy 95.54 98.66 97.22 96.63 85.55 89.11

Class-wise-averaged accuracy 82.70 95.02 89.39 86.99 53.28 61.39

Sensitivity class 1 98.17 99.61 99.31 98.88 90.59 95.19

Sensitivity class 2 74.35 91.75 82.23 79.16 46.84 40.70

Sensitivity class 3 77.21 90.63 78.94 79.55 46.42 45.16

Specificity class 1 89.43 96.20 91.24 90.90 74.78 63.71

Specificity class 2 97.29 99.23 98.61 98.07 91.73 94.56

Specificity class 3 99.23 99.80 99.50 99.43 95.93 98.23

PPV class 1 98.62 99.51 98.87 98.82 96.52 95.29

PPV class 2 69.30 90.74 82.91 77.12 31.77 38.07

PPV class 3 80.17 94.83 86.40 85.04 31.55 50.81

NPV class 1 86.35 96.93 94.51 91.30 50.76 63.20

NPV class 2 97.88 99.32 98.54 98.28 95.45 95.10

NPV class 3 99.08 99.62 99.15 99.18 97.79 97.79
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manually marked by the experts. This strategy
showed a lower computational time. However, the
obtained border was not as accurate as that in the
freehand approach.

3.2.1. Quality of the Segmentation. A first experiment was
performed to effectively know whether a postprocessing step
would eventually improve the quality of the results. To this
purpose, we took the probabilities for each pixel of belonging
to each class and, from this information, we built two proba-
bility images (see Figure 8) that are the basis for the final
postprocessing. This last step was performed in two ways:

(i) Active contour (AC) based: The probability images
that corresponded to the OD and the cup were thre-
sholded to obtain an initial mask. The threshold was
automatically obtained with Otsu’s technique. The
final OD and cup were segmented on the base of this
binary image and evolving on the corresponding
probability values. The Chan-Vese model [68] with
a number of iterations experimentally fixed to 20
was used for AC.

(ii) AC and ellipse fitting: This postprocessing consisted
on automatically adapting an ellipse to the boundary
pixels obtained with the previous postprocessing.

These two postprocessing steps were added to emulate
experts’ segmentations, which were in general smoother
than our algorithm’s results (Figure 9(a)). AC provides the

softness required while preserving the shapes (Figure 9(b)).
The ellipse-fitted result was intended to better compare
with manually marked ellipses provided with the database
(Figure 9(c)).

(a) (b) (c)

Figure 8: (a) Original ROI image, (b) OD probability image, and (c) cup probability image.

(a) (b) (c)

Figure 9: Result images for the original ROI of Figure 8. White colour corresponds to the cup, grey colour to the OD, and black colour to the
background. Labels assigned by the classifier: (a) without postprocessing, (b) with AC, and (c) with AC and ellipse fitting.

Table 2: Bagged tree model performance evaluation under
Dataset2 database. The three classes are background (class 1),
optic disc (class 2), and cup (class 3). (a) Without postprocessing,
(b) smoothed with AC, and (c) smoothed and ellipse fitting.

Indicator a (%) b (%) c (%)

Accuracy 94.54 94.75 94.61

Class-wise-averaged accuracy 79.66 81.95 81.19

Sensibility class 1 97.01 96.63 96.34

Sensibility class 2 73.07 83.02 83.18

Sensibility class 3 81.45 76.20 78.75

Specificity class 1 90.30 93.61 94.47

Specificity class 2 96.36 95.73 95.56

Specificity class 3 99.01 99.43 99.33

Positive predictive value class 1 98.68 99.13 99.24

Positive predictive value class 2 62.37 61.61 60.75

Positive predictive value class 3 77.93 85.10 83.58

Negative predictive value class 1 80.11 78.74 77.47

Negative predictive value class 2 97.74 98.55 98.57

Negative predictive value class 3 99.20 98.98 99.09
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As shown in Table 2, adding the postprocessing step after
the classifier output improved class-wise-averaged accuracy
from 79.66% to 81.95% and 81.19% using AC and AC
together with ellipse fitting, respectively.

Visually, Figure 10 illustrates that, taking freehand
annotations as the gold standard, the proposed method was
able to detect the OD and cup regions even when colour
differences were subtle, blood vessels were disturbing the
edges, or peripapillary atrophy was present in the retinal
images. Ellipse-based manual annotation did not extract the
precise shape of the areas, and therefore, the results were
not as accurate as expected.

3.2.2. Quality of CDR Measurement. CDR is widely adopted
as the standard measure for glaucoma detection. Three
methods for CDR calculation have been proposed [28]. The
first two methods are based on the vertical and horizontal
diameters of the cup and disc regions, VCDR and HCDR,
respectively. The third strategy is based on the areas of the
cup and disc ACDR. The latter is considered the best approx-
imation because, as the cup may be oriented at different
angles, ACDR measures will not be skewed unlike the VCDR
and HCDR. These measures could reflect direction influ-
ences [28]. Figure 11 shows the quantities involved in VCDR,
HCDR, and ACDR.

Original Proposed
Proposed

(ellipse fitted)
Gold standard

(freehand)
Manual

(four points)

Figure 10: OD and cup segmentation results. The second (automatic result without ellipse fitting) and third columns (automatic result with
ellipse fitting) present the OD and the cup in green.
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The equations for these parameters are

VCDR = CupVD
ODVD

,

HCDR = CupHD
ODHD

,

ACDR = CupArea
ODArea

,

19

where ODVD is the vertical OD diameter, ODHD is the hori-
zontal OD diameter, CupVD is the vertical cup diameter,
CupHD is the horizontal cup diameter, ODArea is the area of
the OD diameter, and CupArea is the area of the cup.

Following these definitions, we have computed VCDR,
HCDR, and ACDR for the 60 images in Dataset2 and using
the three proposed methods: (1) without postprocessing,
(2) with AC postprocessing, and (3) with AC and ellipse
fitting. In addition, we have calculated these measures on
the manually freehand-marked retinographies and on the
manual ellipse-fitted images. The results have been compared
using the absolute vertical (Eabsv), the absolute horizontal
(Eabsh), and the absolute area (EabsA) errors.

Eabsv = VCDRi −VCDRGS ,

Eabsh = HCDRi −HCDRGS ,
EabsA = ACDRi −ACDRGS

20

The subindex i refers to a value calculated with the
proposed algorithm with any of its two postprocessing
versions or with the manually ellipse fitting technique.
The subindex GT refers to the value calculated from
the ground truth images, that is, the freehand manually
annotated set.

Additional error measurements have been calculated:
relative vertical (Erelv), relative horizontal (Erelh), and relative
area (ErelA) errors.

Erelv =
Eabsv

VCDRGs
,

Erelh =
Eabsh

HCDRGS
,

ErelA = EabsA
ACDRGS

21

Mean and standard deviation of errors are presented
in Table 3.

The results of Table 3 show that the proposed automatic
algorithm with AC and ellipse fitting results is the best
approach regarding VCDR, ACDR, and HCDR.

3.2.3. Comparison with State-of-the-Art Techniques. It is
difficult to compare the performance of the proposed
strategy to other state-of-the-art approaches mainly
because each method uses different image databases that
are in many occasions private and unavailable. However,
we present the mean absolute error of 4 reported
methods in Table 4, in order to obtain an overall quality
comparison [35].

Table 4 indicates that the proposed method is outper-
forming other reported strategies in one order of magnitude.

OD
vertical
diameter

Cup
vertical
diameter

(a)

OD
horizontal
diameter

Cup
horizontal
diameter

(b)

OD
area

Cup
area

(c)

Figure 11: Quantities involved in CDR measurements. (a) VCDR, (b) HCDR, and (c) ACDR. Although, in (c), a rounded area is marked,
accurate OD and cup borders will provide accurate ACDR results.

Table 3: VCDR, HCDR, and ACDR computation performances
using Dataset2. The values are differences to the gold standard.
(a) Smoothed with AC, (b) smoothed and ellipse fitted, and
(c) manually ellipse fitted.

Indicator a b c

Eabsv mean± std 0.00± 0.08 0.01± 0.08 0.09± 0.13
Erelv mean± std 0.02± 0.16 0.00± 0.14 0.19± 0.25
Eabsh mean± std 0.10± 0.09 0.11± 0.08 0.15± 0.11
Erelh mean± std 0.16± 0.12 0.17± 0.11 0.25± 0.20
EabsA mean± std 0.09± 0.08 0.08± 0.08 0.11± 0.08
ErelA mean± std 0.20± 0.20 0.18± 0.21 0.36± 0.28
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4. Conclusion

Glaucoma is a silent disease that needs to be early diagnosed
to prevent associated blindness. One of the main indicators
of the disease is the CDR ratio, computed as the ratio of the
OD and cup regions. These regions must be segmented from
the retinal image. Most of the state-of-the-art techniques are
devoted to the segmentation of the OD because the cup is a
difficult area from the point of view of image processing: its
absolute colour may differ from one patient to another and
its border could be diffuse or even imperceptible. Most of
the authors agree that the OD and cup are the brightest
regions in the retinal fundus image and the use of grey level
processing to segment both of them is necessary. The major-
ity of the methods comprise several complex steps that
usually rely on experimentally fixed parameters. In addition,
blood vessels must be detected and inpainted prior to OD
and cup detection. Therefore, complexity is added and errors
are propagated. Additionally, vector colour information is
not taken into account and human perception is generally
forgotten. In this paper, we have addressed the problem of
CDR computation on retinal fundus images from the point
of view of colour science. Characteristic colour changes of
OD and cup edges were calculated in a uniform colour space
with a perception-adapted distance metric allowing an addi-
tional level of correlation with a human visual system. We
have tested six different classifiers with 60 images selected
from seven different public databases to build a robust and
precise model for CDR computing. As a result, bagged deci-
sion trees were found to produce accurate classification
results (95.02%). Then, the model was validated on a
completely different database that included 60 images of high
complexity. Again, the method showed accurate results
(81.19%), proving the fact that it generalizes well despite
the used database. CDR measurements based on this auto-
matic method are accurate at the light of the obtained mean
absolute and relative errors. To sum up, we have presented
an accurate, robust method, based on the kind of images
available in primary healthcare settings, that calculates
glaucoma indicators using colour information. Future work
will address the use of this system in mobile applications.
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