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Abstract

Objective

Premature aging and short telomere lengths of fetal tissues are associated with spontane-

ous preterm labor (PTL) and preterm premature rupture of membranes (pPROM). Mainte-

nance of telomere length is performed by the enzyme telomerase. Human telomerase

reverse transcriptase (hTERT) is a subunit of telomerase, and its dysfunction affects telo-

mere shortening. This study assessed whether maternal or fetal genetic variations in the

hTERT gene are associated with PTL or pPROM.

Methods

A case (PTL or pPROM) control (term birth) genetic association study was conducted in 654

non-Hispanic white mothers (438 term, 162 PTL, 54 pPROM) and 502 non-Hispanic white

newborns (346 term, 116 PTB, 40 pPROM). Maternal and fetal DNA samples were geno-

typed for 23 single nucleotide polymorphisms (SNPs) within the hTERT gene. Allele fre-

quencies were compared between cases and controls, stratified by PTL and pPROM.

Maternal and fetal data were analyzed separately.

Results

Allelic differences in one SNP of hTERT (rs2853690) were significantly associated with both

PTL (adjusted OR 2.24, 95%CI 1.64–3.06, p = 2.32e-05) and with pPROM (adjusted OR

7.54, 95%CI 3.96–14.33, p = 2.39e-07) in maternal DNA. There was no significant associa-

tion between the hTERT SNPs analyzed and PTL or pPROM in the fetal samples.

Conclusion

hTERT polymorphisms in fetal DNA do not associate with PTL or pPROM risk; however,

maternal genetic variations in hTERT may play a contributory role in risk of PTL and PPROM.
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Background

Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality.[1] It complicates

5–12% of pregnancies[2], and infant sequelae include respiratory distress syndrome, necrotiz-

ing enterocolitis, intraventricular hemorrhage, and sepsis, among many others. While some

preterm births are medically indicated for either maternal or fetal benefit, others are spontane-

ous (preterm labor [PTL] or preterm premature rupture of membranes [pPROM]). The pre-

cise biological signals and mechanisms that determine human parturition, term or preterm,

continue to be poorly understood. There are likely multiple and redundant pathways that con-

verge on the phenotype of preterm and term parturition.[3] One of the mechanisms initiating

parturition that our laboratory has reported recently is fetal membrane cell senescence. The

core hypothesis is that fetal amnion and chorion senescence and senescence-associated inflam-

mation is the initiator of a coordinated cascade leading to parturition.[4]

Evidence for fetal membrane senescence has been accumulating. In the second half of preg-

nancy, there is a gestational age-dependent reduction in telomere length of fetal leukocytes,

which has been shown to strongly correlate with telomere length of fetal membrane cells.[5]

At term, labor is associated with accelerated telomere shortening in fetal membrane tissues.[6]

It is thought that the oxidative stress and inflammation of labor contributes to telomere attri-

tion. Behnia et al reported increases in several markers of senescence from pregnancies in

labor compared to those sampled prior to the onset of labor.[7] To establish causality, the

same group established an in-vitro model of fetal membrane organ explant cultures and pri-

mary amnion epithelial cells from term not-in-labor tissue that showed oxidative stress

induces acceleration of telomere shortening and senescence and produces significant inflam-

mation.[6]

Replicative senescence is a telomere-dependent aging process that associates with a reduced

risk of cancer.[8,9] Telomeres are guanine rich caps on the ends of chromosomes that function

to protect chromosome integrity. Telomeres shorten over time due to incomplete replication

with each cell cycle, and therefore telomere length is one marker of cell aging.[10,11] Telomere

dysfunction is thought to be one of many signals that can induce premature cell senescence.

[9,11] Telomerase is the enzyme that maintains telomere length (thereby postponing cell-cycle

arrest) by adding nucleoside repeat sequences to the 3 prime end of DNA.[12] It is made of

two components: the human RNA subunit that acts as the template and the human telomerase

reverse transcriptase (hTERT), that adds the nucleosides.[10]

There is a robust literature describing hTERT polymorphisms associated with phenotypes

of both slowed aging, such as cancer,[13–16] as well as accelerated aging, such as cardiovascu-

lar diseases.[17–21] Specifically, shortened telomere length has been shown to be associated

with carotid atherosclerosis,[17] stroke, myocardial infarction, type 2 diabetes,[18] and coro-

nary artery disease.[19,22] Haycock et al recently published a large genome wide association

study (GWAS) that showed a protective effect of genetically increased telomere length on the

development of coronary heart disease and abdominal aortic aneurysm, as well as other non-

cardiovascular diseases.[22]

It is thought that the association of hTERT polymorphisms and clinical disease is mediated

through changes in telomere length. A few studies have shown associations between changes

in telomere length and genetic variants of hTERT,[15,23] as well as other genes.[24] These

studies suggest that, in addition to aging, genetic factors influence telomere length.

Fetal tissue telomere length differences are also associated with adverse pregnancy out-

comes. In pregnancies affected by pPROM, fetal leukocytes had significantly shorter telomeres,

compared to gestational age matched samples from PTL.[5] The telomere lengths are also

smaller than those from the term birth samples. This suggests that dysfunctional or accelerated
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aging of fetal membranes, evidenced by shorter telomeres, may contribute to pPROM. It also

may indicate that the aging mechanism leading to pPROM differs from that leading to PTL

with intact membranes.[25]

To summarize, normal aging of fetal cells is a physiologic process linked to term parturi-

tion. However, accelerated telomere shortening is linked to premature aging and adverse preg-

nancy outcomes, including pPROM. It has been hypothesized that telomere shortening acts as

a biologic clock, affecting the timing of labor.[4] Because telomerase regulates telomere length,

perhaps the accelerated telomere shortening seen in pPROM is related to reduced fetal telome-

rase activity. It has also been suggested that maternal decidual senescence plays a role in the

mechanisms of parturition,[26] and therefore maternal telomerase activity may contribute to

the phenotype of spontaneous preterm birth, as well.

There is ample evidence that genetics plays a role in the phenotype of preterm birth.[27–29]

While hTERT polymorphisms have been shown to be associated with certain types of cancers,

[13–15] and other diseases,[17–19,22] there have been no genetic association studies investi-

gating the association of hTERT polymorphisms and PTL or pPROM. hTERT has a biologi-

cally plausible role in spontaneous preterm birth via the fetal cell senescence pathway.

Our data thus far suggests that the two phenotypes of spontaneous PTL and pPROM are

due to different aging mechanisms, maybe even in different tissues. The purpose of this study

was to determine if maternal or fetal genetic variations (single nucleotide polymorphisms

[SNPs]) in the hTERT gene are associated with PTL or pPROM.

Materials and methods

Study design

Institutional review boards at TriStar Nashville, TN and The University of Texas Medical

Branch at Galveston, TX, approved this study. Subjects provided informed written consent to

use their biological specimens for various studies related to preterm birth. Genotype and

covariate data can be found in the Supplement (S1 Table).

We performed a case control genetic association study in women and newborns with PTL or

pPROM compared to those with term birth. This study utilized previously banked samples from

the Nashville Birth Cohort, which recruited women from the Centennial Medical Center in Nash-

ville, TN between September 2003 and December 2006. The methods have been previously

reported,[28] but briefly, the original cohort inclusion criteria were women aged 18–40 years with

a singleton, live birth. Women were excluded if their pregnancy was complicated by multiple ges-

tation, preeclampsia, placenta previa, fetal anomalies, gestational diabetes, polyhydramnios, oligo-

hydramnios, or surgery. Our analyses further excluded women or newborns with missing

genotypes. Racial disparity in genetic predisposition to both preterm birth[29] and telomere

length[30–31] has been reported previously; in addition, our biobank had low numbers of

remaining non-Caucasian samples. Hence, our study was restricted to the Caucasian population.

Cases of PTL were defined as delivery at less than 36 0/7 weeks gestation preceded by pre-

term labor with intact membranes. Cases of pPROM were defined as delivery at less than 36 0/

7 weeks gestation preceded by premature rupture of membranes. A cut-off of 36 0/7 weeks ges-

tation was used to correct for the lack of precision of pregnancy dating and to ensure a truly

different phenotype than those with term birth. Controls were women or newborns with term

birth, defined as 37 0/7 weeks of gestation or more.

Methods

Demographic and clinical data were obtained from questionnaires and medical records. Gesta-

tional age was determined by last menstrual period and corroborated by ultrasound dating.

Maternal hTERT variants are associated with preterm birth
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Race was determined by self-report and a questionnaire that traces ethnicity back two genera-

tions from the parents.

Maternal blood was collected at the time of admission for delivery either at term or preterm,

and cord blood was collected at delivery. DNA was isolated from maternal and neonatal cord

blood using the Autopure automated system (Gentra Systems, Minnesota, MN). 23 SNPs from

the hTERT gene were genotyped using the Sequenom platform (Table 1). Those SNPs that

genotyped with low efficiency on Sequenom were re-genotyped using Taqman assays; this

occurred with one SNP: rs2736100. We chose tagSNPs in low linkage disequilibrium using the

website https://snpinfo.niehs.nih.gov/. For quality control, SNPs were not analyzed if they

deviated from the Hardy-Weinberg equilibrium (p<0.001), had a low minor allele frequency

(<0.05), or had low genotyping efficiency (<0.95).

Statistical analysis

We performed 4 separate case-control analyses as PTL and pPROM were analyzed separately

and maternal and fetal DNA were also analyzed separately. All analyses assumed an additive

genetic model.

Maternal demographic and maternal and neonatal outcome data were compared between

cases and controls using student’s t, Chi-squared, or Mann-Whitney U tests, where appropri-

ate. These tests were performed using R software. Allele frequencies for each SNP were com-

pared between cases and controls using Chi-squared test. We then performed logistic

Table 1. hTERT SNPs that were genotyped for maternal and fetal analyses and those that were excluded from analysis.

hTERT

SNP

Included in maternal analyses? Reason for exclusion from maternal analyses Included in fetal analyses? Reason for exclusion from fetal analyses

rs2736114 Y NA Y NA

rs2075786 Y NA Y NA

rs4246742 Y NA Y NA

rs4975605 Y NA Y NA

rs10069690 Y NA Y NA

rs2242652 Y NA Y NA

rs2853677 Y NA Y NA

rs2853672 Y NA Y NA

rs2853690 Y NA N Low GE

rs2853676 Y NA N Deviated from HWE

rs2736098 N Low GE N Low GE

rs121918664 N Low MAF N Low MAF

rs35719940 N Low MAF N Low MAF

rs387907251 N Low MAF N Low MAF

rs121918666 N Low MAF N Low MAF

rs199422301 N Low MAF N Low MAF

rs121918663 N Low MAF N Low MAF

rs387907249 N Low MAF N Low MAF

rs199422297 N Low MAF N Low MAF

rs199422294 N Low MAF N Low MAF

rs34094720 N Low MAF N Low MAF

rs121918661 N Low MAF N Low MAF

rs387907247 N Low MAF N Low MAF

SNP: single nucleotide polymorphism, GE: genotyping efficiency, MAF: minor allele frequency, HWE: Hardy-Weinberg equilibrium

https://doi.org/10.1371/journal.pone.0195963.t001
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regression analysis (PLINK v1.07) to determine the association of each SNP with the outcome

of interest, adjusting for baseline variables that are known risk factors for the outcome of inter-

est, or differed on simple comparison between cases and controls with a p value of less than

0.05. For each regression analysis, p-values thresholds were chosen using the Bonferroni cor-

rection for multiple comparisons.

Results

The original cohort had 3,496 participants, including both maternal and fetal samples. In our

nested case-control study, for the maternal univariate analyses, there were 162 cases of PTL, 54

cases of pPROM, and 438 controls. For the fetal univariate analyses, there were 116 cases of

PTL, 40 cases of pPROM, and 346 controls.

SNP filtering

Of the 23 SNPs chosen for our study, 13 were excluded from the maternal analyses (12 for low

minor allele frequency and 1 for low genotyping efficiency), leaving 10 SNPs for analysis. In

the fetal analyses, 15 SNPs were excluded (12 for low minor allele frequency, 2 for low geno-

typing efficiency, and 1 for deviation from the Hardy Weinberg equilibrium), leaving 8 for

analysis (Table 1). The average genotyping rate in the remaining SNPs was 0.99.

Baseline characteristics

Maternal and newborn baseline characteristics are described in Tables 2 and 3. As expected,

significant differences between cases and controls were observed for gestational age, birth

weight, and several measures of socioeconomic status. APGAR scores were better for controls,

Table 2. Baseline characteristics of maternal cases and controls.

Maternal Controls N = 438 Maternal PTL Cases N = 162 P value Maternal pPROM Cases N = 54 P value

Maternal age (y) 28.4 ± 5.8 27.6 ± 5.8 0.13 25.8 ± 5.7 0.004

Nulliparity 31% (134) 30% (48) 0.90 39% (21) 0.28

Weight (pounds) 153 ± 37 164 ± 48 0.02 149 ± 47 0.004

Education <0.001 <0.001

<12 years 58% (252) 93% (150) 96% (52)

� 12 years 42% (186) 7% (12) 4% (2)

Income <0.001 <0.001

<15K 18% (79) 33% (53) 48% (26)

15–25K 18% (79) 11% (18) 4% (2)

25–50K 25% (111) 36% (59) 33% (18)

50–100K 26% (116) 18% (29) 13% (7)

>100K 9% (40) 2% (3) 0% (0)

Marital Status 0.38 <0.001

Unmarried 23% (102) 29% (47) 48% (26)

Married 72% (315) 67% (109) 50% (27)

Not recorded 3% (12) 2% (4) 0% (0)

Insured 78% (342) 93% (151) <0.001 96% (52) 0.003

Smoker 12% (52) 19% (31) 0.03 16% (10) 0.23

Birth weight (grams) 3376 ± 526 2420 ± 824 <0.001 2288 ± 1074 <0.001

Neonatal female sex 46% (200) 43% (69) 0.99 48% (26) 0.04

PTL: preterm labor, pPROM: preterm premature rupture of membranes

https://doi.org/10.1371/journal.pone.0195963.t002
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also as expected. A detailed description of the distribution of APGAR scores can be found in

the Supplement (S2 and S3 Tables).

Maternal SNP and PTL association

The maternal SNP minor allele frequencies among 162 PTL cases and 438 controls and the

results of univariate analysis may be found in the supplement (S4 Table). For the maternal

analyses, using the Bonferroni correction for multiple comparisons, the threshold for signifi-

cance was set at p <0.005.

Of the 10 maternal SNPs analyzed, one (rs2853690) was associated with PTL in the unad-

justed model (OR 2.42, 95%CI 1.93–3.05, p = 8.10e-11) (S4 Table). Logistic regression analysis

was also performed to assess the association with PTL after adjusting for possible confounders

(Table 4). The model adjusted for maternal weight, education (graduate high school or not),

income (annual <$15,000, $15,000–24,999, $25,000–49,999, $50,000–99,999, or�$100,000),

smoking status (Y/N), and insurance status (Y/N). 105 cases and 389 controls were included in

the logistic regression, after removing 57 cases and 49 controls with missing covariate data.

The SNP, rs2853690, remained significant in the adjusted model (aOR 2.24, 95% CI 1.64–3.06,

p = 2.32e-05). No other SNPs were significant after multiple testing correction in either the

adjusted or the unadjusted models.

Maternal SNP and pPROM association

The maternal SNP minor allele frequencies among 54 pPROM cases and 438 controls and the

results of univariate analysis can be found in the supplement (S5 Table). Using the Bonferroni

correction for multiple comparisons, the threshold for significance was set at p<0.005.

Table 3. Baseline characteristics of fetal cases and controls.

Controls N = 438 Infant PTL Cases N = 162 P value Infant pPROM Cases N = 40 P value

Maternal age (y) 28.3 ± 5.9 28.4 ± 5.7 0.88 26.6 ± 6.4 0.11

Nulliparity 24% (107) 19% (31) 0.50 30% (12) 1.0

Weight (pounds) 154 ± 38 161 ± 46 0.17 155 ± 43 0.97

Education <0.001 <0.001

<12 years 45% (197) 65% (105) 93% (37)

� 12 years 34% (150 6% (10) 7% (3)

Income 0.03 0.003

<15K 15% (64) 19% (30) 40% (16)

15–25K 16% (68) 12% (19) 18% (7)

25–50K 20% (86) 25% (40) 28% (11)

50–100K 21% (92) 14% (22) 10% (4)

>100K 6% (28) 2% (4) 0% (0)

Marital Status 0.45 0.003

Unmarried 20% (86) 22% (35) 50% (20)

Married 55% (243) 45% (73) 45% (18)

Insured 61% (269) 64% (104) 0.004 93% (37) 0.05

Smoker 10% (45) 15% (24) 0.05 28% (11) 0.03

Birth weight (grams) 3353 ± 506 2611 ± 768 <0.001 2640 ± 969 <0.001

Neonatal female sex 38% (165) 31% (51) 0.80 63% (25) 0.03

PTL: preterm labor, pPROM: preterm premature rupture of membranes

https://doi.org/10.1371/journal.pone.0195963.t003
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Of the 10 maternal SNPs analyzed, the same SNP that was associated with PTL, rs2853690,

was also associated with pPROM on univariate comparison (OR 4.59, 95% CI 3.18–6.62,

p = 3.0e-13), as well as one additional SNP, rs2736114 (OR 2.08, 95% CI 1.48–2.93, p = 0.0003)

(S5 Table). Logistic regression analysis was also performed to assess the association with

pPROM after adjusting for possible confounders (Table 5). Models adjusted for maternal age,

education (graduate high school or not), income (annual <$15,000, $15,000–24,999, $25,000–

49,999, $50,000–99,999, or�$100,000), marital status, smoker (Y/N), insurance status (Y/N),

and sex of the infant. 32 cases and 368 controls were included in the logistic regression, after

removing 22 cases and 70 controls with missing covariate data. Of the two SNPs that were sig-

nificant on univariate analysis, only SNP rs2853690, the same one that was independently

associated with PTL, remained significantly associated with pPROM (aOR 7.54, 95% CI 3.96–

14.33, p = 2.39e-07)

Table 4. Logistic regression results for maternal single locus allele frequencies among cases and controls and association with preterm labor.

SNP Minor allele MAF Term MAF PTL aOR (95% CI) P value

rs2853690 A 0.26 0.46 2.24 (1.64–3.06) 2.32E-05

rs2736114 T 0.27 0.26 0.97 (0.71–1.34) 0.8897

rs2075786 A 0.37 0.39 0.86 (0.65–1.14) 0.3756

rs4246742 A 0.15 0.17 0.87 (0.60–1.25) 0.5247

rs4975605 A 0.47 0.48 1.21 (0.91–1.60) 0.2666

rs10069690 T 0.27 0.27 0.97 (0.71–1.32) 0.859

rs2242652 A 0.19 0.20 1.27 (0.90–1.78) 0.261

rs2853677 G 0.45 0.42 0.84 (0.65–1.10) 0.2912

rs2853676 T 0.23 0.29 0.91 (0.68–1.22) 0.5973

rs2853672 C 0.51 0.46 0.75 (0.56–1.01) 0.1062

Model adjusted for maternal weight, education, income, smoking status, and insurance status.

SNP: single nucleotide polymorphism, MAF: minor allele frequency, PTL: preterm labor, aOR: adjusted odds ratio, CI: confidence interval

https://doi.org/10.1371/journal.pone.0195963.t004

Table 5. Logistic regression results for maternal single locus allele frequencies among cases and controls and association with preterm premature rupture of

membranes.

SNP Minor allele MAF Term MAF pPROM aOR (95% CI) P value

rs2853690 A 0.26 0.61 7.54 (3.96–14.33) 2.39E-07

rs2736114 T 0.27 0.44 2.16 (1.31–3.57) 0.01144

rs2075786 A 0.37 0.36 0.84 (0.53–1.35) 0.5541

rs4246742 A 0.15 0.14 0.58 (0.27–1.22) 0.2263

rs4975605 A 0.47 0.54 1.43 (0.90–2.28) 0.2038

rs10069690 T 0.27 0.22 1.09 (0.67–1.77) 0.7776

rs2242652 A 0.19 0.19 1.20 (0.68–2.12) 0.5968

rs2853677 G 0.45 0.33 0.66 (0.41–1.06) 0.1484

rs2853676 T 0.29 0.17 0.48 (0.27–0.87) 0.03968

rs2853672 C 0.51 0.36 0.50 (0.31–0.83) 0.02422

Model adjusted for maternal age, education, income, marital status, smoking status, insurance status, and sex of the infant.

SNP: single nucleotide polymorphism, MAF: minor allele frequency, pPROM: preterm premature rupture of membranes, aOR: adjusted odds ratio, CI: confidence

interval

https://doi.org/10.1371/journal.pone.0195963.t005
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Fetal SNP and PTL association

The fetal SNP minor allele frequencies among 116 PTL cases and 346 controls and the results

of the univariate analysis are found in S3 Table. The Bonferroni correction yielded a threshold

of p<0.006. Of the 8 fetal SNPs analyzed, no significant associations with PTL were found in

either the adjusted (Table 6) or unadjusted models (S6 Table).

Fetal SNP and pPROM association

The fetal SNP minor allele frequencies among 40 pPROM cases and 346 controls and the

results of the univariate analysis are found in S4 Table. The Bonferroni correction yielded a

threshold of p<0.006. Of the 8 fetal SNPs analyzed, no significant associations with pPROM

were found in either the adjusted (Table 7) or unadjusted models (S7 Table).

Conclusion

Feto-maternal tissue senescence is a physiological factor associated with term parturition in

humans. Premature and pathologic senescence activation in response to various pregnancy-

associated risk factors can contribute to preterm labor and delivery.[25] Multitudes of risk

Table 6. Logistic regression results for fetal single locus allele frequencies among cases and controls and association with preterm labor.

SNP Minor allele MAF Term MAF PTL aOR (95% CI) P

rs2736114 T 0.27 0.30 1.40 (0.99–1.98) 0.1057

rs2075786 A 0.42 0.42 0.85 (0.62–1.15) 0.374

rs4246742 A 0.16 0.15 0.72 (0.47–1.11) 0.2123

rs4975605 A 0.45 0.51 1.28 (0.95–1.72) 0.1757

rs10069690 T 0.27 0.28 1.07 (0.76–1.51) 0.7532

rs2242652 A 0.21 0.25 1.53 (1.04–2.24) 0.06831

rs2853677 G 0.44 0.49 1.05 (0.77–1.41) 0.81

rs2853672 C 0.48 0.48 0.83 (0.60–1.16) 0.3602

Model adjusted for maternal education, income, smoking status, and insurance status.

SNP: single nucleotide polymorphism, MAF: minor allele frequency, PTL: preterm labor, aOR: adjusted odds ratio, CI: confidence interval

https://doi.org/10.1371/journal.pone.0195963.t006

Table 7. Logistic regression results for fetal single locus allele frequencies among cases and controls and association with preterm premature rupture of

membranes.

SNP Minor allele MAF Term MAF pPROM aOR (95% CI) P

rs2736114 T 0.27 0.33 1.41 (0.85–2.37) 0.2611

rs2075786 A 0.42 0.38 0.69 (0.42–1.14) 0.2254

rs4246742 A 0.16 0.18 0.79 (0.42–1.51) 0.5523

rs4975605 A 0.45 0.56 1.44 (0.90–2.30) 0.1971

rs10069690 T 0.27 0.30 1.21 (0.72–2.03) 0.5508

rs2242652 A 0.21 0.24 1.19 (0.66–2.17) 0.6267

rs2853677 G 0.44 0.30 0.46 (0.26–0.78) 0.01734

rs2853672 C 0.48 0.32 0.45 (0.26–0.78) 0.01742

Model adjusted for maternal education, income, marital status, smoking status, insurance status, and sex of the infant.

SNP: single nucleotide polymorphism, MAF: minor allele frequency, pPROM: preterm premature rupture of membranes, aOR: adjusted odds ratio, CI: confidence

interval

https://doi.org/10.1371/journal.pone.0195963.t007
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factors have been linked to premature senescence activation; mainly oxidative stress inducing

factors like infection/inflammation,[32–33] obesity,[34–35] nutritional factors,[36–37] and

behavioral risks.[38–39] Oxidative stress induced by these risk factors can accelerate telomere

attrition causing early aging and inflammation contributing to either PTL or pPROM. Genetic

variation in maternal or fetal telomerase gene may also contribute to this process in the

absence of specific risk factors, or an interaction between the two may also predispose to

adverse pregnancy outcome. This study examined the existence of any genetic predisposition

to PTL and/or pPROM through variations in the telomerase gene.

We report that maternal hTERT SNP rs2853690 was significantly associated with both PTL

(aOR 2.24) and pPROM (aOR 7.54). Located in the non-coding region near the 3 prime end,

the functional role of this SNP is unclear. This SNP is not in obvious linkage disequilibrium

with any other variants in hTERT (r2 < 0.36 with all other SNPs in the gene) as determined

from 1000 Genomes Project data. We found no significant associations between any of the

analyzed fetal hTERT SNPs and PTL or pPROM.

The major strength of our study was that the samples came from an established biobank

with well-defined phenotypes and well-characterized race and ethnicity. Quality control mea-

sures were used to ensure that only subjects with high quality genotyping and only SNPs with

high genotyping efficiency were included. Additionally, we analyzed both maternal and new-

born samples, allowing us to investigate both the maternal and fetal contributions to risk of

preterm birth. Our candidate gene, hTERT, has a biologically plausible role in the mechanisms

of PTL and pPROM. And finally, a significant strength of our study is that we adjusted for

multiple comparisons using the Bonferroni correction, minimizing the risk that the associa-

tion we found was due to type I error.

The study was limited by small sample sizes of cases, especially pPROM. Also, the findings

may not be applicable to all populations because our study was restricted to Caucasians. Of

interest, the risk allele (A) is at least twice as common in African ancestry populations as com-

pared to European populations (https://www.ncbi.nlm.nih.gov/snp/), the former being at

higher risk for PTL and pPROM).[40,41] However, seemingly inconsistent results are that

germline telomere length appears to be longer in African individuals that those of European

descent.[30] One explanation for this could be that specific genetic predispositions vary

between races/ethnicities. A replication of our data in multiple independent cohorts, particu-

larly in one that includes people of African descent, is essential prior to projecting the useful-

ness of this SNP as a genetic marker of high risk pregnancy. Another limitation of this study is

that we have examined only SNPs in the hTERT gene and their association with PTB and

pPROM. Other genetic and epigenetic variations in the hTERT gene may also contribute to

functional alterations to hTERT activity or levels, contributing to adverse pregnancy

outcomes.

Telomerase’s role in uterine and feto-maternal tissues is as area of active research. In

women with recurrent implantation failure, expression of endometrial telomerase was

enhanced during the implantation window.[42] In pregnancy, it has been shown that hTERT

expression in the chorion is increased in the first trimester compared the second and third tri-

mesters.[43] Similarly, telomerase activity level has been shown to be significantly higher in

the first trimester in chorionic villi samples.[44] A study of human fetal tissues confirms the

same pattern of decreasing telomere length and decreasing telomerase expression across the

first trimester.[45]

Alterations in telomerase expression/activity have been shown to be associated with patho-

logic pregnancy states. While increased hTERT expression was noted in chorion cells of pre-

eclamptic patients,[43] decreased telomerase activity has been observed in trophoblasts and

placental biopsies from pregnancies affected by intrauterine growth restriction.[46–47] A
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study of growth discordant twins showed a tendency toward reduced telomerase activity in

placental trophoblasts of the smaller twin.[48] While the results are not consistent, they may

suggest a link between altered telomerase expression and/or activity and premature aging of

fetal tissue leading to placental insufficiency and growth restriction.

In our continued work on telomerase’s role in preterm birth, our lab has subsequently

performed hTERT gene activity and expression studies. We have found that telomerase has

no activity in fetal membranes in the second and third trimesters, nor is it expressed in fetal

membranes from either term or preterm placenta, including laboring and non-laboring sam-

ples. The lack of telomerase expression and activity in fetal membranes could explain why we

see no association between infant genetic variation in hTERT and PTL or pPROM in this

study. The lack of expression is also suggestive of unhindered telomere reduction to promote

the natural progression of senescence that will eventually result in parturition. This study

identifies a biologically plausible candidate gene for replicative studies and contributes to

the growing evidence that replicative senescence plays a role in maternal-fetal signaling of

parturition.
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