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The term “non-coding RNA” (ncRNA) is generally used to indicate RNA that does not encode a protein and
includes several classes of RNAs, such as microRNA and long non-coding RNA. Several lines of evidence
suggest that ncRNAs appear to be involved in a hidden layer of biological procedures that control various
levels of gene expression in physiology and development including stem cell biology. Stem cells have
recently constituted a revolution in regenerative medicine by providing the possibility of generating
suitable cell types for therapeutic use. Here, we review the recent progress that has been made in
elaborating the interaction between ncRNAs and tissue/cancer stem cells, discuss related technical and
biological challenges, and highlight plausible solutions to surmount these difficulties. This review
particularly emphasises the involvement of ncRNAs in stem cell biology and in vivo modulation to treat
and cure specific pathological disorders especially in cancer. We believe that a better understanding of
the molecular machinery of ncRNAs as related to pluripotency, cellular reprogramming, and lineage-
specific differentiation is essential for progress of cancer therapy.
© 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

Huge efforts undertaken to understand how tissues are formed
during development and are sustained by stem cells throughout life
have mainly concentrated on the genomes that can code proteins.
In the past decade, however, our comprehension of the non-coding
genome and its importance in cell biology has dramatically shifted.
Although most non-coding RNAs (ncRNAs) used to be regarded as
“junk”, the identification of thousands of long and short ncRNAs has
revealed that much of the genome, including ncRNAs, most likely
has functional roles [1] [2].
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be classified into small ncRNAs and long ncRNAs (lncRNA) [3].
Among them, microRNAs (miRNAs) in small ncRNAs and lncRNAs
especially have peaked the interest of many researchers. Various
aspects of both types have been scrutinised in terms of cellular
biology and have been implicated as key regulators in a variety of
cellular processes including stem cell biology [4] [5] [6]. One of the
features of miRNAs and lncRNAs that make them promising can-
didates for essential roles in stem cells is that their unique
expression patterns in stem cells have proved their involvement in
the maintenance of stemness [7] [8]. In addition, both miRNAs and
lncRNAs exhibit specific temporal and spatial patterns indicating
that they should play an important role in the developmental stage
[9] [10] [11].

In the last decade, the term “cancer stem cell” (CSC) was defined
as a cell within a tumour that possesses the capacity to self-renew
and to form heterogeneous lineages of cancer cells that consist of
the tumour [12]. Although there are numerous difficulties in
accurately characterising CSCs, several markers, such as LGR5 for
colorectal cancer and CD133 for several solid cancers, have been
widely validated and accepted [13] [14]. In accordance with dis-
secting the CSC markers out, it was proved that ncRNAs could also
Ai Communications Co., Ltd. This is an open access article under the CC BY-NC-ND

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wyasui@hiroshima-u.ac.jp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ncrna.2017.05.002&domain=pdf
www.sciencedirect.com/science/journal/24680540
http://www.keaipublishing.com/en/journals/non-coding-rna-research/
http://dx.doi.org/10.1016/j.ncrna.2017.05.002
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ncrna.2017.05.002
http://dx.doi.org/10.1016/j.ncrna.2017.05.002


N. Sakamoto et al. / Non-coding RNA Research 2 (2017) 83e8784
contribute to CSCmaintenance. Indeed, the lists of CSCmarkers and
ncRNAs in non-cancerous stem cells and CSCs are rapidly growing.
It is a daunting task to keep up with new insights into how these
complicated machineries are organised and their functions are
carried out.

In this review, we present an overview of the interaction be-
tween ncRNAs and non-cancerous stem cells/CSCs. We then survey
the present status of regenerative medicine in cancer treatment.
Finally, we detail ways to overcome the problem of the practical use
of ncRNAs in regenerative medicine for cancer treatment.
2. miRNAs in non-cancerous stem cells

Due to the difficulty in isolating adequate amounts of tissue
stem cells for RNA study, most studies have focused on miRNA
expression in embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs). After the establishment of iPSCs with the de-
livery of a few pluripotency factors, in-depth analyses of miRNA
expression patterns revealed that the miRNA expression profile in
iPSCs is quite similar to that in ESCs [15] [16]. Specifically, miRNAs
involved in pluripotency, such as the miR-290-295 cluster, miR-
302-367 cluster, and miR-17 family, are upregulated, and those
concerning cell differentiation, such as the let-7 family and miR-34
family, are downregulated while reprogramming is under way [17]
[18] [19] [20] [21]. Although this data seems to imply that some
miRNAs are deregulated in accordance with cell conversion, miR-
NAs genuinely play an essential role in the maintenance of iPSCs/
ESCs as themaintenance is disturbed by the loss of Dicer expression
[7].

One straightforward scheme to identify miRNAs effecting cell
pluripotency is simply to search for those miRNAs that are most
likely to interact with representative pluripotency-related genes,
including SOX2, OCT4, KLF4, and c-Myc. The miR-34 family is well
known to induce and maintain cell pluripotency by regulating
SOX2, n-Myc, and Nanog, and the let-7 family oppositely hinders
the induction of pluripotency through targeting of c-/n-Myc and
Lin28 [20] [22]. Prior studies have also emphasised that the con-
version of terminally differentiated cells to iPSCs requires mesen-
chymal to epithelial transition (MET), and ESCs can inversely
proceed with the reverse process, so-called epithelial to mesen-
chymal transition (EMT) [23]. Several lines of research have actually
determined that miRNAs concerned with the transition from
epithelial into mesenchymal cells, and vice-versa, are involved in
pluripotency or can potentially be promising markers for the
identification of stem cell populations. Indeed, miRNAs that play an
essential role in EMT/MET, such as the miR-370-373 cluster, miR-
302-367 cluster, miR-200, and miR-17 family, are well known as
modulators of pluripotency [24] [25] [26] [27]. Especially, exoge-
nous induction of the miR-302-367 cluster has been reported to
efficiently promote the reprogramming of somatic cells [28]. These
data have further shown that the generation and/ormaintenance of
iPSCs/ESCs cannot be completed without miRNAs. Table 1 shows a
summary of miRNA clusters/families that are related to mainte-
nance of ESCs/iPSCs.
3. lncRNA in non-cancerous stem cells

Most of the previous studies focused on the expression of
lincRNAs in ESCs and iPSCs due to the limitation on the amount of
tissue stem cells available for RNA study. Microarray-based analysis
revealed that 174 lncRNAs were significantly upregulated in ESCs in
comparison with those of somatic cells [29]. Further extensive
studies found that key factors for the induction of iPSCs, such as
OCT4, SOX2, c-Myc, and Nanog, were thought to regulate 10e12% of
ESC-enriched lncRNAs, which were further validated by functional
screenings based on short-hairpin RNA and reporter gene assays
[30] [31]. These findings showed that lncRNAs are quite essential in
the regulatory network of pluripotency. However, some lncRNAs
were found to take part in the opposite machinery: enhancing the
differentiation of stem cells. Indeed, Gomafu (AK028326) and
lincRNA-RoR were directly upregulated by Oct4 and appeared to
control Oct4 expression in a regulatory feedback loop [32] [33].
Conversely, Xist was found to interfere with the transcription of
Sox2, Oct4, and Nanog in ESCs, and lncRNA_N1/2/3 were identified
as a key regulator of neuronal differentiation that can directly
interact with nuclear factors such as REST and SUZ12 [34] [35].
Table 1 shows a summary of lncRNAs that are related to mainte-
nance of ESCs/iPSCs.
4. Possible involvement of the transcribed ultraconserved
region (T-UCR) in stem cell biology

The T-UCR is one of the novel classes of lncRNAs transcribed
from the genomic regions that are completely conserved in most
vertebrates including human, rat, and mouse [36]. The 481 coding
region of T-UCRs has been identified, and two transcripts are
generated from the sense/anti-sense strand of each region, which
means that 962 T-UCRs have been found thus far. Two major ma-
chineries are involved in the regulation of T-UCR expression: DNA
hypermethylation and interaction with miRNAs [37]. As miRNAs
have a crucial role in stem cell biology, an interaction between
miRNAs and T-UCRs presumably contributes to at least a part of the
regulatory mechanism of stem cells. However, no reports have
mentioned the involvement of T-UCRs in stem cell biology. Further
in-depth studies focusing on T-UCRs could have great potential to
lead to a better understanding of the bigger picture of stem cell
biology.
5. Non-coding RNAs in CSCs

Several lines of evidence have shown the critical roles of ncRNAs
in CSC biology. A comparative study of the miRNA expression
profile between ESCs and breast CSCs revealed that 37 miRNAs
were differentially expressed in breast CSCs, and 3 clusters of the
miR-200 family were significantly downregulated among them,
suggesting the induction of EMT and stemness in breast CSCs [38]
[39]. A comprehensive miRNA expression analysis using pancre-
atic CSCs exhibited a distinct signature; 210 miRNAs that are
involved in self-renewal and differentiation were deregulated [40].
miR-34 was found to be downregulated in pancreatic CSCs, and the
restoration of miR-34 inhibited self-renewal in these CSCs by dis-
turbing BCL2 expression and NOTCH signal transduction [41].

Accumulating evidence has provided insights into the impor-
tance of other ncRNAs as regulators in several critical steps of
cancer development, such as carcinogenesis, cancer invasion, and
metastasis. HOTAIR, one of the well-characterised lncRNAs, affects
cancer cell invasiveness by altering the methylation pattern of
H3K27 and is also a useful marker for predicting the clinical
outcome of patients with breast cancer [42]. In gastric cancer,
piRNA-651 is upregulated and piRNA-823 is downregulated, and
both are involved in tumour growth [43,44]. Based on these find-
ings, both the dysfunction and deregulation of ncRNAs could
potentially be involved in cancer progression. However, the prac-
tical contributions of these ncRNAs to CSC biology remain unclear.
Hence, extensive analyses are needed to attain a deeper grasp of the
detailed biological machinery behind how ncRNAs are directly



Table 1
A summary of non-coding RNAs related to generation and/or maintenance of ESCs/iPSCs.

Non-coding RNA Expression status in ESCs/iPSCs Validated target genes Functional roles

miRNA cluster/family
miR-290-295 cluster Upregulated Wee1, Fbxl5 cell cycle regulate
miR-302-367 cluster Upregulated p16, CDK2/4/6, cell cycle regulate

AKT1, TGFBR2, EGFR regulator of signal transduction
miR-370-373 cluster Upregulated p21, PTEN, SOS1 cell cycle regulate

cell death & apoptosis
miR-17 family Upregulated p21, Bim, CTGF, Tsp1 cell proliferation, apoptosis

angiogenesis
let-7 family Downregulated RAS, MYC, HMGA2, cell proliferation/differentiation

CyclinD, CDC25A
miR-34 family Downregulated Bcl-2, CyclinD1/E2, CDK4/6 apoptosis, cell cycle regulate

c-/N-Myc, SIRT1 cell senescence
long non-coding RNA
Gomafu Up/Downregulated SF1, Oct4 regulate Oct4 expression
linc-RNA RoR Up/Downregulated Oct4 regulate Oct4 expression
Xist Downregulated PRC2 Silencing H3K27Me3
lncRNA_N1/2/3 Up-regulated REST,SUZ12 neural differentiation
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involved in the development and progression of cancer.

6. Technologies to induce expression of ncRNAs for
regenerative medicine

As we have shown accumulating evidence of how ncRNAs
contribute to cancer and CSC biology, they could potentially be
hopeful targets for stem cell-based cancer therapy. One useful way
to modify the expression of any particular ncRNA could be through
synthetic nucleic acids. One challenge in the modulation of ncRNA
expression is the selection of the right candidate and the proper
evaluation of how the designed oligonucleotides affect a specific
biological pathway [45]. To reduce the possibility of enhancing
cancer development as a potential side effect, the optimal modu-
lation of key ncRNAs must be well monitored when researchers try
to use stem cells for therapeutic purpose. There are several tech-
niques to deliver ncRNAs to live cells, such as direct injection, viral
delivery, and non-virus based methods (Fig. 1).

6.1. Direct injection

The simplest ways for delivery of ncRNAs is by direct injection.
The effect is typically believed to be quite short because the oli-
gonucleotides are usually degraded by nucleases in most of the
body fluids. However, a single bolus injection of nucleic acid, an
antagonist of ncRNAs, is more likely to be active for several weeks
[46].
Fig. 1. A brief summary of current a
6.2. Viral delivery

Virus-based ncRNA delivery to cells using adenovirus, lentivirus,
or retrovirus vectors is one of the most widely accepted techniques
especially in vitro [47]. Although the viral vectors enable long-term
stable expression of ncRNAs, this approach does not seem to be
appropriate for in vivo study due to issues of toxicity and immunity
[48].

6.3. Lipid nanoparticles

In the field of regenerative medicine, precisely controlled
release of the designed reagents is quite important to regulate cell
differentiation. One upside of nanoparticles is that they can provide
more flexibility in formulation and design for improved uptake by
the cell [49]. However, one of the main limitations of this technique
is the lack of a proper mechanical support compound that is
essential to enhance the efficiency of the designed reagents [50].

These highly sophisticated miRNA delivery techniques cannot
only induce the expression of ncRNAs but can also be useful for
preparing the desired payload of ncRNAs for efficient stem cell-
based therapy.

7. State-of-the-art approach to stem cell-based cancer
therapy

One cutting-edge strategy for stem cell-based cancer therapy is
pproaches for ncRNA delivery.
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to generate stem cells that can concurrently express and secrete
multiple therapeutic reagents to potentially repress several lines of
cancer-related pathways [51]. Two examples of bimodal stem cells
are the combinations of herpes simplex virus thymidine kinase
therapywith TRAIL in glioblastomamodels and cytosine deaminase
(CD) with interferon-b in glioblastoma and breast cancer models in
mice [52] [53] [54]. A similar strategy was applied for use in
creating human umbilical cord mesenchymal stem cells (MSCs) to
secrete a CD20-specific single-chain Fv antibody fragment com-
bined with TRAIL [55]. Delivery of this fused immunoconjugate
with MSCs was much more efficient than with TRAIL alone in a
mouse model of non-Hodgkin's lymphoma as it simultaneously
repressed tumour cell growth and specifically led to apoptosis in
tumour cells. This strategy could potentially be useful for cancer
therapy via generation of MSCs that can secrete several suppresive
ncRNAs against cancer progression (Fig. 2). These results strongly
support the utility of MSCs for cancer therapy, and in-depth studies
will be required for further validation of the best combinations of
ncRNA target therapy for a given cancer.

8. Conclusion

With cues taken from the processes of tissue generation and
development, there is a significant potential to modulate the
expression of ncRNAs in cancer cells and CSCs by both endogenous
and exogenous methods to direct the activity of implanted stem
cells in cancer therapy. Although the spatial and temporal signaling
networks of ncRNAs need to be further elucidated, pursuit of the
best ncRNA-based therapy has immense potential to establish a
new scheme of cancer therapy.
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