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Abstract: The genetic protective factors for cognitive decline in aging remain unknown. Predict-
ing an individual’s rate of cognitive decline—or with better cognitive resilience—using genetics
will allow personalized intervention for cognitive enhancement and the optimal selection of target
samples in clinical trials. Here, using genome-wide polygenic scores (GPS) of cognitive capacity
as the genomic indicators for variations of human intelligence, we analyzed the 18-year records of
cognitive and behavioral data of 8511 European-ancestry adults from the Wisconsin Longitudinal
Study (WLS), specifically focusing on the cognitive assessments that were repeatedly administered
to the participants with their average ages of 64.5 and 71.5. We identified a significant interaction
effect between age and cognitive capacity GPS, which indicated that a higher cognitive capacity
GPS significantly correlated with a slower cognitive decline in the domain of immediate mem-
ory recall (β = 1.86 × 10−1, p-value = 1.79 × 10−3). The additional phenome-wide analyses identi-
fied several associations between cognitive capacity GPSs and cognitive/behavioral phenotypes,
such as similarities task (β = 1.36, 95% CI = (1.22, 1.51), p-value = 3.59 × 10−74), number series task
(β = 0.94, 95% CI = (0.85, 1.04), p-value = 2.55 × 10−78), IQ scores (β = 1.42, 95% CI = (1.32, 1.51),
p-value = 7.74 × 10−179), high school classrank (β = 1.86, 95% CI = (1.69, 2.02), p-value = 3.07 × 10−101),
Openness from the BIG 5 personality factor (p-value = 2.19 × 10−14, β = 0.57, 95% CI = (0.42, 0.71)),
and leisure activity of reading books (β = 0.50, 95% CI = (0.40, 0.60), p-value = 2.03 × 10−21), at-
tending cultural events, such as concerts, plays, or museums (β = 0.60, 95% CI = (0.49, 0.72),
p-value = 2.06 × 10−23), and watching TV (β = −0.48, 95% CI = (−0.59, −0.37), p-value = 4.16 × 10−18).
As the first phenome-wide analysis of cognitive and behavioral phenotypes, this study presents the novel
genetic protective effects of cognitive ability on the decline of memory recall in an aging population.

Keywords: cognitive genetics; aging genetics; phenome-wide association study; genome-wide
polygenic score; sociogenomics

1. Introduction

The magnitudes of cognitive decline in aging, a major health concern in contemporary
society, differ substantially across individuals [1,2]. Existing literature suggests that the
heterogeneity of cognitive decline is partially owing to the fact that some adults are more
resilient to neuropathological changes than others [3–5]. Cognitive resilience is concep-
tualized as an individual’s capacity to overcome negative effects or stress on cognitive
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functioning despite aging or neuropathologic changes [6,7]. Diverse factors have been
hypothesized to explain cognitive resilience, including brain structural features, genetic
factors, and personality attributes acquired over the lifespan that offset the negative ef-
fects (i.e., cognitive decline) of brain aging, insult, or pathologies [8,9]. Elucidating the
underlying mechanisms that may differentiate and identify aging adults with high or low
cognitive resilience is essential to inform the homogeneity of adults in clinical trials for risk
stratification and providing preventive intervention.

Studying cognitive resilience in the elderly is of special interest because the finding
may provide insights into maintaining good cognition and “aging well” without develop-
ing dementia due to Alzheimer’s disease or other causes. However, while studies have
reported the genetic risk factors of accelerated cognitive decline among individuals with
dementia [10–12], we know very little about the genetic protective factors against cognitive
decline that are present in the normal aging population. Recent studies have identified sev-
eral genes and proteins that are assumed to be associated with cognitive resilience [9,13,14],
but no study has yet aggregated multiple genetic variants into a single score that may
summarize individual-specific indices of cognitive capacity and their impacts on cognitive
resilience and other related attributes. In addition, most studies have not assessed the
inherited genetic profile of resilient people, nor have they associated these genetic factors
with the rate of cognitive decline or other behavioral life course outcomes, which may
help us understand the genetic backgrounds of resilient and non-resilient people, along
with how variations in genetic profile affect life course alterations other than cognition.
Genome-wide polygenic scores (GPS) leverage the fact that most human traits are the result
of the aggregated influence of many genetic variants, both common and rare [15–17]. By
aggregating the minuscule effects of millions of genetic variants into a single score, GPS
allows researchers to stratify individuals by their genomic propensity for a particular trait
and select individuals with extremely high or low GPS for further research. The recent large
genome-wide association studies (GWAS) of educational attainment, an often-used proxy
phenotype for human intelligence, identified 1271 independent autosomal loci reaching
genome-wide significance [18]. These findings suggest that several biological pathways
related to brain development or neuron-to-neuron communication contribute to human
intelligence. While the GWAS revealed many genetic variants associated with cognitive
capacity phenotypes (such as cognitive performance, math ability, and highest math class
taken) [18–25], the genomic contribution to specific cognitive domains remains unknown,
as does their relationship to cognitive changes with aging.

Since general cognitive ability is known to be highly heritable (50–70%) and poly-
genic [26,27], we utilized GPS to account for the genome-wide factors underlying cognitive
capacity and its changes with aging [21,24,28,29]. We leveraged the comprehensive pheno-
type information of a 50+ year social longitudinal database for phenome-wide association
studies (PheWAS). The Wisconsin Longitudinal Study (WLS), the longest-running social
longitudinal study in the United States [30,31], encompasses a detailed and broad lifelog
of cognition, personality, financial, health, and socioeconomic status. The surveys have
been repeatedly administered the same cognitive ability tests with the time interval of
~10 years in their latest survey rounds, as well as collected the genotype data of the partici-
pants, which creates a deep genotype-phenotype catalog of an individual’s cognitive and
behavioral traits over their adult lives (Files S1).

Herein, we hypothesize that the polygenic influence of the cognitive capacity can
explain certain patterns of cognitive abilities and the rate of their decline during aging
and other socio-behavioral phenotypes that might be affected by the genetics of cognitive
abilities. We tested the associations between the longitudinal observations of individual
cognitive/behavioral phenomes and the GPSs of four different cognitive phenotypes (educa-
tional attainment, cognitive performance, math ability, and highest math class taken), focusing
on the secular changes in cognitive test scores. The approach was designed to systematically
address the following research questions: first, whether a particular cognitive domain was
more impacted by polygenic influence than other cognitive domains; secondly, whether
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individuals with different GPSs showed different patterns of cognitive decline during
aging, which suggests whether attributes of cognitive resilience are genetically inherited;
and, thirdly, the extent to which the phenotypic variances of the behavioral/personality
attributes could be explained by the genetic liability of the cognitive capacities which may
help us understand how the different genetic profiles of resilient people affect their life
course alterations other than cognition. We aimed to investigate not just whether the lower
cognitive test scores of certain groups of individuals were associated with the GPS itself,
but also whether the rate of cognitive decline was influenced by the joint interaction effect
between time and GPSs, which are themselves differentiated over time.

2. Materials and Methods
2.1. Data

The WLS is based on 10,317 individuals surveyed in 1957—representing a 1/3 random
sample of Wisconsin high school graduates that year—with randomly-selected siblings
empaneled later. The study has collected 27,000+ phenotypic variables of the partici-
pants, ranging from cognition, personality, financial, and socioeconomic to genotype data
during 6 waves of data collection over 60 years. The cohort represents non-Hispanic
White Americans who completed at least 12 years of high school education in the United
States. The participants underwent in-person, telephone structured interviews or mail-in
questionnaires for each survey round after providing informed consent. All the instru-
ments and operations were approved by the Institutional Review Board of the University
of Wisconsin-Madison.

2.2. Genotype Data and Quality Control Process

From 2007–2008, saliva samples were collected by mail or during a home interview,
and 9019 individuals were successfully genotyped at the Johns Hopkins University Center
for Inherited Disease Research (CIDR) using the Illumina HumanOmniExpress-24 v.1.1
array designed for human genome build 37/hg19. The subsequent quality control process
filtered individuals with (i) genotype missingness rate > 0.05 in all chromosomes, (ii) mis-
match between recorded sex and genetically determined sex, (iii) high genetic relatedness
with other individuals (>0.025), (iv) outlier in heterozygosity/homozygosity test, and
(v) non-European ancestry outliers. Non-European individuals were identified by visually
inspecting the principal component analysis (PCA) plot of the covariance matrix of the
WLS genotype data with 1000 Genomes reference populations [32]. Additionally, SNPs
with (i) genotype call rate < 0.95, (ii) Hardy-Weinberg exact test p-value < 1.0 × 10−5, and
(iii) minor allele frequency < 0.01 were excluded from the data, resulting in 607,469 autoso-
mal SNPs in 8527 European-ancestry individuals considered for further analysis. The data
was then imputed to the Haplotype Reference Consortium (HRC) v1.1 European reference
panel [32] and resulted in 39,127,657 variants. The detailed imputation and QC report are
available separately [33,34].

2.3. Construction of Cognitive Capacity GPS

A set of cognitive ability-related GPSs were constructed based on four large-scale
GWAS MTAG summary statistics on educational attainment (EA, n = 1,131,881), cognitive
performance (CP, n = 257,841), self-reported math ability (MA, n = 564,698), and highest-
level math class taken (HM, n = 430,445) from Lee et al. [18] and available from the WLS
website upon request [30]. We downloaded the set of GPSs that was calculated with
PLINK 1.9 [35] using the SNP weights adjusted for linkage disequilibrium using LDpred
software [36]. All the SNP weights were obtained from cognitive GWAS discovery samples
that did not contain the WLS participants.



Genes 2022, 13, 1320 4 of 14

2.4. Outcome Measures
2.4.1. Cognitive Phenotypes

The participants’ cognition was assessed longitudinally using various tasks and struc-
tured questionnaires throughout the survey period of 60+ years. Our analysis used the
participants’ cognition data from the four WLS survey rounds (taken in 1957, 1992–1994,
2003–2003, and 2011). The WLS data included the IQ scores of the participants from the
Henmon-Nelson Test of Mental Ability with 90 items collected in their high school junior
years in 1957, which measured general verbal, quantitative, and spatial knowledge [37–39],
and their high school class rank percentile, which was based on the mean grade taken
throughout the high school courses. The years of education (educational attainment) were
calculated from the highest educational degree held by each participant at their middle age.
We also included the cognition component of the Health Utilities Index 3 (HUI3 cognition
level) which asked the subjects about their self-perceived cognitive status at the time of
the interview.

Beginning in 1992–1994, 10 types of cognitive tasks were systematically proposed to the
subjects at three time points over an 18–19 year period, including similarities (administered
at survey timepoint 1/2/3), letter fluency (timepoint 2/3), category fluency (timepoint 2/3),
immediate recall (timepoint 2/3), delayed recall (timepoint 2/3), digit ordering (timepoint 2/3),
number series (timepoint 3), linguistic function (timepoint 3), including two health literacy
assessments, the Newest Vital Sign (NVS) Health Literacy Assessment (timepoint 3) and the
Short Test of Functional Health Literacy in Adults (STOFHLA) (timepoint 3). The phenotypes
selected for the phenome-wide analysis are denoted with italics throughout the manuscript
and their measurement criteria are available in the Supplementary Material. All the raw
scores were z-scored for the analysis.

2.4.2. Behavioral Phenotypes

The participants’ personality traits were assessed with the Big 5 Factor Model of
Personality inventory test [40] in the WLS 1992–1994 collection wave. The five personality
traits are known as one of the most common and influential models in the field of personality
research and remain relatively stable over a lifetime. The Big 5 Factor Model of Personality
test describes an individual’s personality in five basic dimensions: extraversion, openness,
neuroticism, conscientiousness, and agreeableness. A higher score on each scale indicates the
person has higher tendencies and behaviors representing the personality traits.

The subjects were asked to report on the time they spent participating in different
leisure activities in hours per week or year. We compared various types of leisure activities
including reading, writing letters, watching movies/TV, light or vigorous physical activity (alone
or together), doing crafts, hunting/fishing, playing a crossword puzzle/other word game, attending
cultural events, etc. The description of each leisure activity is provided in the Supplementary
Material. To correct for outliers with extreme hours of certain activities, we took the natural
logarithm of the reported hours for each activity and used it for the analysis.

In addition, we included two occupational standing variables collected in the WLS
2003–2005 wave based on their current or past employment information. The occupational
education score was a numeric value of the types of industry or class-of-worker categories
based on the 1990 US Census data, which indicated a percentage of persons who had at
least a year of college education, ranging from 0 to 999. The occupational income score was
calculated from the 1990-basis occupational earning scores, representing the percentage of
persons in the 1990 US Census data in an industry or class-of-work category who earned
more than $14.30/h in 1989, ranging from 37 to 876.

Since the IQ data of the participants’ spouses were available, we also included this
variable for the analysis, hypothesizing that the behavior of assortative mating is associ-
ated with the GPSs of the cognitive abilities. Previous literature suggests the psychiatric
hypothesis of assortative mating in academic achievements and IQ [41–45].
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2.5. Statistical Analysis
2.5.1. Cognitive/Behavioral PheWAS

Linear regression was used to investigate the associations between the four types
of cognitive capacity GPSs (EA, CP, HM, and MA) and the normalized variables of the
cognitive and behavioral phenotypes. Each cognitive capacity GPS was tested in separate
models. We adjusted for biological sex, age, and the first 10 PCs of genetic ancestry and
estimated each GPS’ significance (p-value), effect size (β), 95% confidence interval (CI), and
proportion of variance explained (R2) for the target outcomes. Bonferroni-adjusted signifi-
cance level of 2.60 × 10−4 was used to correct for multiple testing (48 tested phenotypes * 4
cognitive capacity GPS).

2.5.2. Cognitive Changes

We selected 7 repetitive measures administered to the participants among aforemen-
tioned cognitive assessments, with an average interval of 6.5 years. We investigated its
interaction effects with the cognitive capacity GPSs as the participants aged, including
similarities, letter fluency, category fluency, immediate recall, delayed recall, digit ordering, and
HUI3 cognition level (timepoint 2/3). Linear mixed-effects regressions were nested by
the individual ID and each survey round (random effect) and we included the follow-
ing fixed covariates in the analysis: age at the survey time point, biological sex, the first
10 ancestrally-informative principal components (PC1-10) of the genotype data and years
of education. Bonferroni’s correction was used to adjust for multiple testing, and the scores
were normalized except for the ordinal variable, HUI3 cognition level. We hypothesized
that the contribution of genetic factors to the cognitive phenotypes was associated with the
different degrees of cognitive decline in a particular cognitive domain. The analyses were
performed in the R 3.5.1 environment, and the linear mixed-effect model was run with lme4
package [46]. We calculated Schielzeth and Nakagawa’s R2 for generalized linear mixed
effect models using r.squaredGLMM function from MuMIn R package [47–49].

3. Results
3.1. Participant Demographics

Our study included 8511 European-ancestry individuals with DNA genotype data,
behavioral questionnaire data and cognitive assessment data available, including seven dif-
ferent cognitive ability tasks administered repetitively with an average interval of 6.5 years
(SD = 1.25 year). The average age of the study participants was 48.6 at the time of the first
round of the cognitive assessment (WLS survey round 4 (survey timepoint 1), 1992–1994,
SD = 15.4 years), 64.2 at the second assessment (WLS survey round 5 (survey timepoint 2),
2003–2005, SD = 4.1 years), and 70.7 at the time of the last assessment (WLS survey round
6 (survey timepoint 3), 2011, SD = 4.2 years). The sample was 51.8% female, 47.8% com-
pleted high school or less than one year of college (number of years of education), and
78.2% were born in Wisconsin, USA.

3.2. PheWAS of Cognitive GPSs in the Cognitive/Behavioral Phenome
3.2.1. Cognitive Phenotypes

Across all of the PheWAS results, IQ score showed the strongest association with
the four cognitive GPSs in terms of the p-value and the increased proportion of variance
explained (strongest with CP GPS, p-value = 7.74 × 10−179, β = 1.42, 95% CI = (1.32, 1.51))
(Figure 1, Table 1, Supplementary Table S1). The variance of the IQ scores explained by the
CP GPS was 10.4% (Adjusted R2), whereas the baseline covariate model without the GPS
variable explained 0.8% of the IQ score variance.

The years of educational attainment measure (strongest with EA GPS, p-value = 1.62 × 10−129,
β = 1.73, 95% CI = (1.59, 1.87)) and the high school class rank (strongest with EA GPS,
p-value = 3.07 × 10−101, β = 1.86, 95% CI = (1.69, 2.02)) also significantly associated with all
four cognitive GPSs, following the IQ score. The variance of high school class rank explained
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by the EA GPS was 17.1% (Adjusted R2), whereas the baseline covariate model without the
GPS variable explained 9.2% of the high school class rank variance.
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Figure 1. PheWAS plots of the Educational attainment (EA) and Cognitive Performance (CP) GPS
in the Cognitive/behavioral phenome of the WLS participants. (a) PheWAS plot of Educational
Attainment (EA) GPS. (b) PheWAS plot of Cognitive Performance (CP) GPS. The cognitive/behavioral
phenotypes are presented on the x-axis. The phenotype variables were retrieved from the WLS
survey data, primarily from the cognition and leisure activity modules in the 1957, 1992–1994,
2003–2005, and 2011 waves. The red line represents the phenome-wide significance level, og10 of
the Bonferroni corrected p-value for multiple testing corrections (α = 0.05/(48 tested phenotypes * 4
GPS) = 2.60 × 10−4). The size of each point is proportional to the effect size of each cognitive capacity
GPS-phenotype association.

Among the cognitive tasks, the similarities task presented the strongest statistical sig-
nificance and positive effect size with the cognitive GPSs in all three rounds (strongest with
timepoint3 similarities and EA GPS, p-value = 3.59 × 10−74, β = 1.36, 95% CI = (1.22, 1.51)).
The cognitive GPSs also showed robust associations with the number series (strongest with
HM GPS, p-value = 2.55 × 10−78, β = 0.94, 95% CI = (0.85, 1.04)) and digit ordering tasks
(strongest with CP GPS, p-value = 8.63 × 10−41, β = 0.78, 95% CI = (0.67, 0.89)) across the dif-
ferent cognitive GPSs. Several cognitive tasks were also consistently and significantly asso-
ciated across the cognitive GPSs with positive effect sizes, including letter fluency (strongest
association with timpoint3 letter fluency and CP GPS, p-value = 5.01 × 10−30, β = 0.61, 95%
CI = (0.50, 0.71)), category fluency (strongest association with timpoint3 category fluency and
EA GPS, p-value = 2.03 × 10−18, β = 0.95, 95% CI = (0.74, 1.16)), immediate recall (strongest
association with timpoint3 immediate recall and EA GPS, p-value = 5.29 × 10−22, β = 0.80,
95% CI = (0.64, 0.96)), delayed recall (strongest association with timpoint3 delayed recall
and CP GPS, p-value = 5.00 × 10−15, β = 0.45, 95% CI = (0.34, 0.56)), NVS Health Literacy
assessments (strongest with CP GPS, p-value = 2.28 × 10−29, β = 0.92, 95% CI = (0.76, 1.07)),
which indicated that genetic contribution to cognitive abilities was positively correlated
with higher cognitive scores for several assessments (Table 1).
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Table 1. Phenome-wide association studies (PheWAS) analysis for the four cognitive capacity GPSs
with the cognitive/behavioral phenotypes. The table presents only the phenotypes significantly
associated with all four cognitive capacity GPSs (Educational attainment (EA), Cognitive Performance
(CP), Math Ability (MA), and Highest Math Class (HM)). The top cognitive capacity GPS-phenotype
associations are presented from the full PheWAS results (available in Supplementary Table S1).
Positive β (effect size) indicates that the genetic contribution to cognitive capacities is positively
correlated with a higher score for each measurement module. The significance level of p < 2.60 × 10−4

was used according to the Bonferroni correction.

Category
Strongest
Cognitive

Capacity GPS
β

95% CI*
(lower)

95% CI*
(upper) p Adjusted

R2

IQ Cognition CP GPS 1.42 1.32 1.51 7.74 × 10−179 10.4%
High School Class Rank Cognition EA GPS 1.86 1.69 2.02 3.07 × 10−101 17.1%
EducationalAttainment Cognition EA GPS 1.73 1.59 1.87 1.62 × 10−129 12.0%

HUI3 Cognition
Level (R6)** Cognition HM GPS −0.32 −0.42 −0.22 2.63 × 10−10 1.2%

Immediate Recall (R6) Cognitive Task EA GPS 0.80 0.64 0.96 5.29 × 10−22 8.6%
Similarity (R4) Cognitive Task EA GPS 1.35 1.20 1.49 3.86 × 10−74 5.1%
Similarity (R5) Cognitive Task EA GPS 1.27 1.12 1.41 5.05 × 10−65 5.6%
Similarity (R6) Cognitive Task EA GPS 1.36 1.22 1.51 3.59 × 10−74 6.1%

Number Series Task Cognitive Task HM GPS 0.94 0.85 1.04 2.55 × 10−78 7.9%
Category Fluency (R5) Cognitive Task EA GPS 0.95 0.74 1.16 2.03 × 10−18 4.9%
Category Fluency (R6) Cognitive Task CP GPS 0.61 0.46 0.75 3.45 × 10−16 6.0%

Delayed Recall (R6) Cognitive Task CP GPS 0.45 0.34 0.56 5.00 × 10−15 7.9%
Digit Ordering (R5) Cognitive Task CP GPS 0.65 0.53 0.76 4.51 × 10−28 3.3%
Digit Ordering (R6) Cognitive Task CP GPS 0.78 0.67 0.89 8.63 × 10−41 5.0%

Health Literacy
Task (NVS) Cognitive Task CP GPS 0.92 0.76 1.07 2.28 × 10−29 10.0%

Letter Fluency (R5) Cognitive Task EA GPS 0.73 0.56 0.90 7.98 × 10−17 4.2%
Letter Fluency (R6) Cognitive Task CP GPS 0.61 0.50 0.71 5.01 × 10−30 5.5%

OccupationalEducationScore Occupational
Status EA GPS 1.22 1.08 1.36 4.77 × 10−61 4.8%

OccupationalIncomeScore Occupational
Status EA GPS 0.90 0.76 1.03 3.50 × 10−37 13.4%

Watching TV Leisure Activity EA GPS −0.48 −0.59 −0.37 4.16 × 10−18 1.9%
Reading Leisure Activity EA GPS 0.50 0.40 0.60 2.03 × 10−21 4.8%

Fishing/Hunting Leisure Activity EA GPS −0.59 −0.77 −0.42 1.72 × 10−11 15.3%
Attendance to
cultural events Leisure Activity EA GPS 0.60 0.49 0.72 2.06 × 10−23 4.8%

Openness Personality EA GPS 0.57 0.42 0.71 2.19 × 10−14 4.0%

* CI = Confidence interval; ** Only for HUI3 Cognition Level module, lower score indicates better cognition level.

3.2.2. Behavioral Phenotypes

Among the Big 5 Personality traits, all the four GPS associations of openness (strongest
with EA GPS, p-value = 2.19 × 10−14, β = 0.57, 95% CI = (0.42, 0.71)) met phenome-wide sig-
nificance with positive effect sizes. In addition to openness, the HM and MA GPSs presented
significant associations with neuroticism (strongest with MA GPS, p-value = 1.92 × 10−6,
β = −0.32, 95% CI = (−0.45, −0.19)), showing negative effect sizes.

Leisure activities, such as reading books, magazines, newspapers or other reading
material (strongest with EA GPS, p-value = 2.03 × 10−21, β = 0.50, 95% CI = (0.40, 0.60))
and attending cultural events (strongest with EA GPS, p-value = 2.06 × 10−23, β = 0.60,
95% CI = (0.49, 0.72)) presented phenome-wide significant associations across the cog-
nitive GPSs with positive directions. Notably, watching TV (strongest with EA GPS,
p-value = 4.16 × 10−18, β = −0.48, 95% CI = (−0.59, −0.37)) and fishing/hunting (strongest
with EA GPS, p-value = 1.72 × 10−11, β = −0.59, 95% CI = (−0.77, −0.42)) showed signifi-
cant negative associations with all the cognitive GPSs. Other phenome-wide significant
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activities included writing letters (strongest with EA GPS, p-value = 2.28 × 10−11, β = 0.32,
95% CI = (0.23, 0.41)), working on crosswords or word games (strongest with CP GPS,
p-value = 1.27 × 10−10, β = 0.39, 95% CI = (0.27, 0.51)), and vigorous physical activities
(alone) (strongest with EA GPS, p-value = 7.39 × 10−10, β = 0.61, 95% CI = (0.42, 0.80))
(Table 1, Figure 1).

Occupational education scores (strongest with EA GPS, p-value = 4.77 × 10−61,
β = 1.22, 95% CI = (1.08, 0.36)) and occupational income scores (strongest with EA GPS,
p-value = 3.50 × 10−37, β = 0.90, 95% CI = (0.76, 1.03)) presented positive relationships
across all the cognitive GPSs. The association of the spouse’s IQ did not reach phenome-
wide significance with any of the cognitive GPSs. The full PheWAS results of the phenome-
wide significant associations are available in Supplementary Table S1.

3.3. Cognitive GPSs Correlate with Immediate Recall Changes

Our linear mixed effect model identified a significant age-x-GPS interaction effect on
the immediate recall task. All four cognitive capacity GPSs showed significant interactions
with the participants’ age (Age: GPS) for the immediate recall test scores (strongest with EA
GPS, p-value = 1.79 × 10−3, β = 1.86 × 10−1) (Table 2). Their positive effect sizes suggested
that an individual with a higher EA GPS tended to show fewer changes in the cognitive
assessments as the individual aged.

Table 2. Linear mixed-effects model analysis results for the temporal changes of the immediate
recall assessment score of the WLS participants according to the cognitive capacity GPSs, including
Educational attainment (EA), Cognitive Performance (CP), Math Ability (MA), and Highest Math
Class (HM) with the age interaction effect. The effect size of each variable is presented with the 95%
confidence interval in parentheses.

Dependent Variable

Immediate Recall

Educational
Attainment GPS

Cognitive
Performance GPS Math Ability GPS Highest Math

Class Taken GPS

Age −0.108 *** −0.161 *** −0.160 *** −0.161 ***
(−0.149, −0.066) (−0.185, −0.136) (−0.185, −0.136) (−0.185, −0.136)

GPS 0.204 *** 0.032 *** 0.021* 0.028 **
(0.077, 0.331) (0.013, 0.051) (0.002, 0.040) (0.009, 0.047)

Years of
Educational
Attainment

0.069 *** 0.070 *** 0.072*** 0.070 ***
(0.061, 0.077) (0.062, 0.078) (0.064, 0.079) (0.062, 0.078)

Sex 0.148 *** 0.149 *** 0.150 *** 0.149 ***
(0.111, 0.186) (0.111, 0.186) (0.112, 0.187) (0.111, 0.187)

Age:GPS
interaction

0.186 *** 0.027 ** 0.026 ** 0.035 ***
(0.069, 0.303) (0.009, 0.046) (0.007, 0.044) (0.017, 0.053)

Log likelihood −15,805.540 −15,809.350 −15,812.970 −15,808.150
Akaike Inf. Crit. 31,649.08 31,656.71 31,663.94 31,654.31

Bayesian Inf. Crit. 31,788.53 31,796.16 31,803.39 31,793.75
Note: ** p < 0.01; *** p < 0.002, 0.002 = Bonferroni-adjusted Significance Level with 7 cognitive modules
* 4 GPS tested.

Compared to the individuals in the lowest GPS quartile, individuals in the highest
GPS quartile showed a smaller decrease in their immediate recall score changes in later
survey rounds. The slope of participants’ age in the lowest GPS quartile (β= −1.97 × 10−1,
95% CI = (−0.231, −0.163), p-value of slope = 8.61 × 10−31) distinctively showed a
more intense decrease compared to the highest GPS quartile group (β = −1.24 × 10−1,
95% CI = (−0.158, −0.090), p-value of slope = 6.67 × 10−13) (Figure 2a). The pseudo-R2 of
our linear mixed models, explaining the immediate recall by the cognitive capacity GPS, was
up to 0.063 with fixed effects and was 0.170 with both fixed and random effects (both with
EA GPS).

To visually depict the degree of cognitive changes according to GPS, we divided the
cohort into four quartiles based on the GPS of each individual and analyzed the average
phenotypic changes of each group over time. The average immediate recall task scores of
the individuals in the highest GPS quartile were 0.044 (z-score) at timepoint 2 (average age
of participants 64.5), and this increased to 0.073 (z-score) at timepoint 3 (average age 71.5)
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(1.65-fold increase). In contrast, the average task scores of the individuals in the lowest GPS
quartile were −0.031 (z-score) at timepoint 2 and decreased to −0.077 (z-score) at timepoint
3 (2.48-fold decrease) (Figure 2b).
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Figure 2. Graphical results of the linear mixed-effect model analysis showing that individuals with
a higher cognitive GPS presented a slower trajectory of memory decline than those with a lower
GPS. Changes in seven cognitive assessments (immediate recall task, category fluency task, digit
ordering task, delayed recall task, letter fluency task, similarities task, and health utility index (HUI)
level 3 cognition level) and the interaction effects of the CP GPS are shown. The selected seven
cognitive assessments were repeatedly administered to 8511 European ancestry individuals between
the average age of mid−50s (survey timepoint 1) and mid−70s (survey timepoint 3). (a) Interaction
plots showing the different slopes of age−dependent interaction effects by the cognitive capacity
GPS on the cognitive assessments. The x−axis indicates the age of the WLS participants at the survey
timepoint, while the y-axis indicates each cognitive assessment score (z−scored). The four lines
indicate the different slopes of the individuals’ cognitive changes stratified by GPS. The gray area
represents the 95% confidence interval of each slope. The similarities task was the only task that
was repeatedly administered to the participants since timepoint 1 (Average participants’ age 48.6).
(b). Bar plots showing the stratification performance of the cognitive capacity GPS in each cognitive
assessment module. Quartile 1 on the x-axis includes the individuals with the lowest cognitive GPS
(bottom 25%) and Quartile 4 includes the individuals with the highest. The number on the y-axis
represented the average phenotypic scores by each GPS quartile.
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4. Discussion

In this study, we assessed the genetic influence of general cognitive abilities on cog-
nitive and behavioral phenome using an integrative approach of GPS-based PheWAS on
longitudinal observations in the aging population. We hypothesized that the contribution
of genetic factors to cognitive capacities is associated with specific cognitive or behavioral
phenotypes, and even different degrees of cognitive decline in certain cognitive domains.

Our study identified that the effects of the age-x-GPS interactions were significantly
positive across all four cognitive capacity GPSs (Table 2), and individuals with a higher
cognitive GPS had a slower trajectory of memory decline than those with a lower GPS
(Figure 2a). This result indicates that the portion of the cognitive ability under genetic
influence may serve as a ‘buffer’ against memory decline in aging. These observations
align well with existing studies on the protective effect of education and intelligence on
the occurrence of dementia [50]. A close relationship between early-life education and
intelligence with cognitive decline has been reported for dementia and Alzheimer’s disease
(AD) [51]. Even though it is not yet clear how early-life education and intelligence moderate
the risk for dementia, our findings suggest that individual variations of memory decline
are closely associated with the polygenic influences of cognitive abilities.

Among the repeated assessments of the seven cognitive domains with an average in-
terval of 6.5 years, a decline in immediate memory recall during aging significantly correlated
with the cognitive GPS. Memory recall, assessed by the immediate and delayed recall tests of
words, is hippocampus-dependent [52–54]. We did not observe a significant interaction
effect in the domain of delayed recall. It is interesting that the discovered genetic protective
effect exerted specifically on the hippocampus-related immediate memory recall. There
are two implications worth noting. Firstly, given the specificity of the correlations among
the various cognitive domains, the genetic protective factor of immediate memory decline
may be mediated via the hippocampus. Indeed, the hippocampus is the primary mediator
of interventions for cognitive wellness or dementia, such as aerobic fitness [55], diet [56],
and medication [57–59]. This is closely related to the unique role of the hippocampus in
neurogenesis and synaptic plasticity [60,61]. Future research should thus test whether the
hippocampus and hippocampal network underlies the genetic projective effect on imme-
diate memory decline, but not in delayed recall, and if so seek to elucidate the mechanisms
involved. Secondly, given the role of hippocampal memory impairment in the pathophysiol-
ogy of AD, our finding may lead to a potential link of the inherited genetic factor of cognitive
resilience to the individual differences in hippocampal degeneration, as well as memory
decline in AD [4,62]. Testing this link will allow better stratification of AD and monitor the
disease’s course by the individual-specific genetic profiles of cognitive resilience.

Our PheWAS identified several phenome-wide associations between cognitive ca-
pacity GPSs and cognitive assessments. The similarities task from WAIS, number series
task, and digit ordering task showed the strongest associations across the four cognitive
capacity GPSs regarding effect size (β) and p-value (Figure 1, Figure S1). These findings
suggest that the cognitive components required to successfully complete the similarities,
number series, or digit ordering tasks might strongly overlap with the genetic components of
cognitive capacities primarily exhibited by the domain of fluid intelligence. The series of
cognitive components involved in the similarities and Number series tasks, such as logical
memory, symbol search, and reasoning, might be closely linked to early-life cognition,
all of which may serve as phenotypic indicators for fluid intelligence. Our findings are
backed up by the previous knowledge that fluid intelligence is considered to be more
dependent on biological influences and less dependent on past learning experiences than
crystallized intelligence [63].

Our analysis identified several phenome-wide significant associations of cognitive
capacity GPSs with several early-life cognitive phenotypes, including IQ scores, educational
attainment, or high school class rank. The significant genetic association between cognitive
capacity and IQ scores or educational attainment has been well established in several GWAS
studies on human intelligence [18,22–25]. The IQ scores of the WLS respondents were
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derived from the Henmon-Nelson test of mental ability, which is regarded as a general
measure of overall intelligence, capturing both fluid and crystallized intelligence.

PheWAS of the behavioral phenome identified several behavioral traits highly related
to genetic factors of cognitive capacity. All of the tested cognitive capacity GPSs positively
correlated with openness among the Big 5 Personality factors, and some GPSs negatively
correlated with neuroticism (Supplementary Table S1). The finding presents an interesting
cross-trait hypothesis in which variances in personality dimensions may be partially ex-
plained by the genomic components of cognitive capacity or vice versa. ‘Openness’ could
be regarded as the attitude and tendency to explore, detect, understand, and appreciate
complicated new information patterns through both the senses and in the abstract [64].
Previous studies support our findings, concluding that an overall open-minded attitude
might positively influence the long-term variances of cognitive abilities with the willingness
to explore [65]. Not only for the Big 5 Personality factors, but overall, we believe that our
PheWAS findings could be developed further for examining several cross-trait hypotheses
related to human cognition in future studies.

No significant associations between spouse IQ and cognitive abilities were identified,
which indicates that the behavioral associations between assortative mating and cognitive
abilities are unclear. In addition, a strong relationship between occupational income and
several cognitive capacity GPSs was found, which supports existing studies demonstrating
a strong association between general mental ability and job performance [66].

A few limitations of this study should be noted. The WLS included two time points
for measuring changes in their cognitive assessments with an average interval of 6.5 years.
Adding more cognitive measurements through time will strengthen our findings by more
thoroughly monitoring cognitive changes over a lifetime. Also, the unexplored impact of
other sociodemographic variables such as socioeconomic status, educational environment,
lifestyles, or family structure, should be considered to better connect our theoretical findings
with the phenome-wide expression of cognitive abilities. In addition, we used European-
ancestry-specific summary statistics to construct the cognitive capacity GPSs and applied
them to the participants of European ancestry. Researchers the should note that application
of our findings to non-European populations could be different, thus the results should be
interpreted with caution. Future investigation is needed to elucidate the generalizability of
our findings across diverse ancestry groups. Lastly, shared variance among the cognitive
and behavioral phenome may interrupt the discovered genotype-phenotype associations.
However, our correlation analysis (Supplementary Figure S2), revealed only a few extreme
correlations (r > 0.5) among the distinct phenotypes except when comparing measurements
to different instances of the same test. The results should be interpreted with caution
considering the shared variances of tested phenotypes. Our findings could serve as the
first cognitive-phenome map that describes the functional boundaries and behavioral
implications of human cognition from a genetic perspective, and the map could be further
expanded with the advanced phenotyping of human cognition and behavior traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13081320/s1, Figure S1: Distribution of the cognitive/behavioral phenotypes; Figure S2:
Correlation matrix of the cognitive/behavioral phenotypes and the cognitive capacity GPSs. Table S1:
Phenome-wide Significant Results of Cognitive Capacity GPSs on the Cognitive/Behavioral Phenome
(p < 2.60 × 10−4, Bonferroni corrected); File S1: Supplementary Method: survey Instruments for
creating the Cognitive/Behavioral Phenome [37–45,67–72].
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