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Abstract: Male infertility is approaching a concerning prevalence worldwide, and inflicts various
impacts on the affected couple. The hormonal assessment is a vital component of male fertility
evaluation as endocrine disorders are markedly reversible causatives of male infertility. Precise
hormonal regulations are prerequisites to maintain normal male fertility parameters. The core male
reproductive event, spermatogenesis, entails adequate testosterone concentration, which is produced
via steroidogenesis in the Leydig cells. Physiological levels of both the gonadotropins are needed to
achieve normal testicular functions. The hypothalamus-derived gonadotropin-releasing hormone
(GnRH) is considered the supreme inducer of the gonadotropins and thereby the subsequent en-
docrine reproductive events. This hypothalamic–pituitary–gonadal (HPG) axis may be modulated
by the thyroidal or adrenal axis and numerous other reproductive and nonreproductive hormones.
Disruption of this fine hormonal balance and their crosstalk leads to a spectrum of endocrinopathies,
inducing subfertility or infertility in men. This review article will discuss the most essential en-
docrinopathies associated with male factor infertility to aid precise understanding of the endocrine
disruptions-mediated male infertility to encourage further research to reveal the detailed etiology
of male infertility and perhaps to develop more customized therapies for endocrinopathy-induced
male infertility.
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1. Introduction

Male infertility has stirred global concerns over the trend of its increasing prevalence
and ambiguity of its etiopathogenesis [1–6]. Given that almost half of the global infertil-
ity cases involve male factors, it is essential to understand the core mechanisms of male
infertility causation [7]. The endocrine system is the prime regulator of the reproductive
functions [8–10]. Male reproductive functions are dependent on a complex crosstalk of hor-
mones [10]. Gonadotropin-releasing hormone (GnRH) is synthesized by the hypothalamus
and promotes the anterior pituitary to secrete the gonadotropins, luteinizing hormone (LH)
and follicle-stimulating hormone (FSH). FSH acts on the Sertoli cells, which accelerate the
spermatogonial maturation. In Leydig cells, LH acts to cause the synthesis and release
of testosterone [9,10]. The testicular testosterone level must be much greater than that in
the serum, to support normal spermatogenesis. This intratesticular testosterone indirectly
increases germ cell maturation as a result of its actions on Sertoli cells [11,12]. Despite the
fact that endocrinopathies are only occasionally related with infertility in males (about
1% to 2%), the treatment of these disorders provides patients with a tailored approach
to fertility preservation and restoration [12]. Endocrinopathies can be divided into two
categories: those characterized by a lack of hormones and those characterized by an excess
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of hormones [13]. In each of these categories, specific hormonal abnormalities fall into
one of the subcategories with specific hormonal abnormalities (Table 1; [12,14–28]). In this
review, we elucidate the disorders in which hormone imbalance can have a deleterious
impact on male fertility. We go over the pathogenesis and clinical presentations of each
endocrine disorder extensively. We also enumerate the standard diagnosis procedures as
well as the ideal management approach, as well as prospective future areas for study in
this field.

Table 1. Reports on endocrinopathies and their impact on male reproduction.

Endocrinopathy Changes in Male Reproduction Study

Hypogonadotropic
hypogonadism

(Genetic: Kallman syndrome)

Delayed puberty and infertility caused by a
malfunction of GnRH-secreting neurons to migrate;

cessation of gonadotropin secretion
[12,14]

Hypergonadotropic
hypogonadism

Increased FSH/LH, normal or ↓testis volume,
decreased pubic hair and penis size, infertility [15]

Androgen excess Inhibition to GnRH secretion, normal or ↓FSH, ↓LH, [16,17]

Estrogen excess ↓T:E2, ↓semen parameters [18,19]

Hyperprolactinemia Normal or ↓FSH/LH, ↓testosterone [20–23]

Insulin disorders
↓spermatogenesis, ↓reduced vacuolization in the

Sertoli cells, ↓fertility, ↓semen parameters, ↓Leydig
cells count, ↓testosterone

[24–28]

↓ = decrease; T:E2, testosterone to estradiol ratio.

2. Hypogonadotropic Hypogonadism

A state of reduced testosterone production caused by low levels of the gonadotropins
and estradiol is known as hypogonadotropic hypogonadism (HH). Many different factors
can contribute to HH, which can be classified into two groups: congenital and acquired
GnRH deficiency [14].

The Kallmann syndrome is a genetic etiology of HH. This genetic disorder occurs
in an X-linked recessive manner [29]. It can be caused by diverse mutations, the most
common is KAL1 gene mutation. There are several characteristics of hypogonadism,
including facial deformities, anosmia, neurologic abnormalities and renal agenesis [15,30,
31]. Hypogonadism and its clinical implications (including delayed puberty and infertility)
are caused by a malfunction of GnRH-secreting neurons to migrate [12]. As a result of
this failure of migration, GnRH secretion is absent, which again results in the cessation
of gonadotropin secretion. In pituitary functional disruption caused by tumors, surgery,
stroke, or infiltrative disease, HH can be acquired rather than genetically inherited [14].
Whatever the underlying cause of HH, the fundamental problem is low gonadotropin levels,
which can be corrected with pharmacological replacement [32]. Gonadotropin therapy (GT)
is used to treat HH, which is characterized by the replacement of insufficient hormones. It is
administered with the help of hormones such as human menopausal gonadotropin (hMG),
recombinant FSH (rFSH), and human chorionic gonadotropin (hCG). The utilization of hCG
originates due to its qualities as an LH analogue, which act on the Leydig cells, increasing
the synthesis of androgens throughout the reproductive process [32]. hMG is a hormone
found in postmenopausal women urine samples, which contain both the gonadotropins.
It is used to treat menopausal symptoms [33]. For men with HH, GT is often commenced
by administration of hCG alone for 3 to 6 months before inclusion of other hormones.
The doses of hormones range from 1000 to 1500 USP units administered intravenously
or subcutaneously thrice weekly. The effectiveness of treatment can be determined by
testing serum testosterone levels, for maintaining its normal levels over time. When it
comes to spermatogenesis, appropriate intratesticular testosterone concentrations are the
most important goal to achieve. However, it is not routinely measured in GT. Testicular
testosterone concentrations, on the other hand, indicate a linear relationship with the
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amount of hCG injected [15]. Typically, after 3 to 6 months of hCG monotherapy, the
patient’s testosterone levels stabilize and the patient becomes ready to begin replacement
medication for FSH levels. One technique of FSH replacement comprises the administration
of hMG at doses ranging from 75 to 150 IU IM/SC thrice weekly at different body sites. As
an alternative, rFSH be administered at 150 IU IM/SC thrice weekly in combination with
other hormones [5]. There are few studies on the relative efficacy of hMG as compared
to rFSH in women undergoing in vitro fertilization (IVF), but there has been very little
research done in male patients. It has been demonstrated that this method of replacing
gonadotropins produces good results, with spermatogenesis occurring in more than 90%
of treated males [12]. In most cases, the time it takes for spermatogenesis to occur is fairly
variable, with the average response occurring in 6 to 9 months on average. Individuals may
need to be treated for up to 12 years before seeing any improvement, and some may never
see any improvement with this treatment [34]. A study conducted on 38 Australian men
with HH showed that the median period from first sperm in the ejaculate to conception
was 7.1 months [31]. Despite the fact that spermatogenesis takes place in a great proportion
of infertile patients, sperm concentrations reached via GT can still fall below target levels
(often less than 20 × 106 per mL). In spite of this fact, the GT leads to extremely favorable
fertility outcomes. In another study, 24 men with HH treated with gonadotropin had the
mean sperm concentration of 16.7 × 106 per mL and still they achieved pregnancy [35].
Men with testicles larger than prepubertal sizes (>4 mL) were found to have higher rates
of sperm production, according to retrospective research of Japanese men [36]. A total
of 87 infertile males with HH were researched in Saudi Arabia. They were administered
with intramuscular gonadotropins for 26 months, improving fertility in the study group.
As a whole, 35 of the 87 patients (40%) were successful in conceiving their child [37].
A substantial number of studies focus on establishing determinants of response to GT,
which is an essential topic of investigation. According to the results of the previously
described long-duration research on Japanese men, there is a relationship between the
pretreatment and post-GT testicular size. According to a study, males with testicular sizes
greater than 4 mL bore 71% likelihood to respond of treatment, while men with testis sizes
less than 4 mL showed about 36% possibility to respond to the treatment. Furthermore,
the above-mentioned study discovered that just the size of the testicles prior to treatment
was a conception determinant. Specifically, men who responded to the treatment showed
a testis volume of 9.0 ± 3.6 mL prior to treatment, whereas for the nonresponders, the
mean testicular volume was 5.7 ± 2.0 mL prior to treatment [37]. It is important to note
that the variations in conception rates between males who suffered from HH caused by
congenital or acquired etiologies are not statistically significant. A greater size of testis was
described to be an individual marker of response time to GT, and attaining a total testicular
volume of over 20 mL following treatment doubled the chance of attaining both the normal
semen quality and conception rate [31,35]. The lower sperm concentrations than the typical
targets of infertility therapy, shown in these trials, may be able to attain pregnancy when
the treatment follows appropriate assisted reproductive therapies (ARTs). Aside from that,
such clinical management may improve the effectiveness of sperm extraction. An additional
therapy option for men suffering from HH is the practice of antiestrogen medications. These
compounds attach with hypothalamic estrogen receptors (ER) in a competitive manner.
When estradiol is present, it inhibits gonadotropin release at this endocrine site through
the process of ‘negative feedback’.

Antiestrogen drugs work by binding to these receptors in the hypothalamus, prevent-
ing hypothalamic negative feedback of estradiol and resulting in an upsurge in GnRH
release from the hypothalamus. Higher GnRH secretion results in elevated adenohypophy-
seal gonadotropin secretion, which in turn drives an upsurge in testicular testosterone
synthesis. In this family of drugs, clomiphene citrate is the most often used agent, but other
related drugs include raloxifene, tamoxifen, and toremifene. These medications have been
explored in the context of empirical treatment for idiopathic male infertility in the past, with
variable outcomes [31,34]. The focused use of clomiphene in individuals with established
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HH, on the other hand, has proven to be beneficial in a few specific situations. Four men
suffering from HH were administered with 50 mg clomiphene citrate thrice weekly in a
study conducted in the United States, and three of the patients had better testosterone
levels and semen parameters. Two of these three males went on to have documented
pregnancies as a result of this [38]. Case studies have also reported alike improvements
at the biochemical level, despite the fact that reproduction was not the primary target
of these therapies [18,39]. One of the retrospective studies involving 31 men examined
the efficacy of clomiphene citrate in comparison to androgen therapy. The highest serum
testosterone levels were found in the group that received testosterone injections, while the
lowest levels were seen in the groups who received topical testosterone plus clomiphene
treatment. However, it was confirmed by the Androgen Deficiency in Aging Males (ADAM)
questionnaire that there was no difference in overall levels of satisfaction across the different
groups [40,41]. The usage of clomiphene for the management of male infertility has been
linked with diverse adversities, including visual problems, gastrointestinal distress, weight
gain, hypertension, and sleeplessness [34]. Despite the fact that administering testosterone
therapy to promote spermatogenesis is not suggested, a substantial number of healthcare
providers continue to employ this strategy to this purpose. It was discovered in a study that
almost 25% of urologists examined have recommended testosterone to increase spermato-
genesis [41]. Exogenous testosterone, on the other hand, has been shown to have negative
effects on spermatogenesis. An increase in exogenous testosterone triggers hypothalamic
negative feedback, resulting in reduced levels of GnRH, LH, and FSH, and also testicular
testosterone. It has been reported that suppressing testicular testosterone < 20 ng/mL can
significantly affect spermatogenesis [42]. Exogenous GnRH medication is an additional
medical treatment option for HH that might be explored. Synthetic GnRH analogues can be
injected to induce the secretion of gonadotropins. However, because of the shorter half-life
of these agents, as well as the requirement for pulsatile secretion, a method of frequent
administration must be used to administer them. These approaches are inconvenient, and
evidences show no significant improvement via treatment of HH [11].

3. Hypergonadotropic Hypogonadism

An insufficient or nonexistent function of the testicles is the primary disturbance in
hypergonadotropic hypogonadism. Because there is no negative feedback from testicular
testosterone, estradiol, or inhibin B, gonadotropin levels are adequately raised. Spermato-
genesis is hampered if the body does not produce enough androgens. As well as testicular
shrinkage and fibrosis, these men often have significantly diminished germ cell numbers,
which contributes to an unusually reduced rate of spermatogenesis in the testicles. It is
possible to develop hypergonadotropic hypogonadism due to genetic or acquired causes.
Although exogenous testosterone therapy can be used to treat males suffering with hyperg-
onadotropic hypogonadism who do not wish to become pregnant, it should be avoided in
men who are attempting to conceive. A lesser amount of research has been done on the
treatment of males who are attempting to conceive.

Infertile men with hypergonadotropic hypogonadism are treated with medical ther-
apies alone or in combination with ARTs. Gonadotropins, selective estrogen receptor
modulators (SERMs), aromatase inhibitors (AIs), and their combinations are among the
available treatment options [43]. Men suffering from Klinefelter syndrome (KS) have been
recommended to use aromatase inhibitors [15]. Treatment of a small group of patients
suffering from KS who were using estrogen-blocking drugs revealed that their hormone
levels improved, albeit no information was provided about the menstrual characteristics
of this subset. Furthermore, testolactone medication was found to be more effective than
anastrozole for these patients when it came to hormone levels [44]. When surgical sperm
extraction follows adjuvant medical therapy in males with KS, it is crucial to point out the
additional potential benefit that may be gained. In some cases, surgical sperm extraction
alone has been shown to result in effective retrieval in up to 50% of cases [23,45]. In a
retrospective study involving a group of 68 KS males of reproductive age, 56 were treated
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for reduced levels of testosterone (300 ng/dL) with a combination of pharmacological med-
ications (aromatase inhibitors, clomiphene, and hCG) before undergoing microdissection
TESE [45]. One hundred and sixty-six (56%) of the men who underwent medical therapy
prior to TESE were treated with anastrozole alone, one hundred and twelve were treated
with anastrozole and weekly hCG, nine were treated with anastrozole and weekly hCG,
four were treated with hCG only, and clomiphene citrate was administered to three patients.
In terms of successful sperm extraction, there was no significant difference between spe-
cific agents; however, when patients reacted to medical therapy by having posttreatment
testosterone levels more than 250 ng/dL, these medical regimens resulted in enhanced
sperm retrieval. More specifically, effective sperm extraction was observed in 77% of men
with posttreatment testosterone > 250 ng/dL, compared to 55% of men with posttreatment
testosterone 250 ng/dL [45]. When LH levels grow above normal throughout puberty,
testosterone supplementation is most commonly used to treat the problem. Research
projects now underway may contribute to the development of evidence-based guidelines
for androgen supplementation timing, despite a paucity of available data. Because the
trial was neither randomized and blinded, the generalizability of the findings is uncer-
tain [46]. A retrospective study reported that infants with KS who received testosterone
treatment had superior cognitive development at 3 years and 6 years old. A randomized
controlled experiment on KS in early adolescence is now enrolling participants with the
goal of examining the psychosocial impact of topical testosterone [47] in this population.
Studies now underway may contribute to the development of evidence-based guidelines
for the timing of androgen supplementation, despite a paucity of available information.
Since KS testing may soon be integrated into standard prenatal care in the near future, the
rate of KS diagnoses is expected to increase significantly in the coming years [48]. It is
expected that this adjustment will result in an increase in the rate of diagnosis of up to five
times the existing rate. Therefore, a higher rate of diagnosis may encourage the research
community to devote more time and resources to studying patient-centered KS health and
treatment outcomes.

4. Androgen Excess

It has been shown that testosterone acts as a negative feedback inhibitor on the hy-
pothalamic secretion of GnRH in the testis. This is an indirect impact that is considered
to be caused by the aromatization of testosterone into estradiol. Excess testosterone in the
bloodstream can act in this manner, suppressing this axis and resulting in the suppression
of spermatogenesis. Excess testosterone can be caused by either exogenous testosterone
administration or endogenous testosterone synthesis. Inadvertent testosterone overpro-
duction can occur as a result of therapeutic treatment, but testosterone overproduction can
also occur as a result of the illicit use of anabolic steroids. In general, exogenous androgens
reduce gonadotropin release, resulting in decreased intratesticular testosterone levels and
decreased spermatogenesis, regardless of the underlying etiology. The presence of normal-
to-high serum testosterone levels in conjunction with reduced gonadotropins suggests the
presence of the condition. The first step in treating a male who has been diagnosed with
androgen excess is to identify and eliminate the exogenous source of the extra androgen.
The return of spermatogenesis normally happens within four months; however, it has
been reported that it might take up to three years in some situations [16,49]. If the sperm
parameters do not improve sufficiently or do not improve quickly, some evidence shows
that GT may be advantageous in increasing intratesticular testosterone levels [17]; how-
ever, this has not been proven. If a patient’s response to treatment remains unsatisfactory
following a trial of gonadotropin medication, limited evidence suggests that clomiphene
may be used to reestablish the hypothalamic–pituitary–gonadal (HPG) axis [50]. Anabolic
androgenic steroids (AAS) usage has not been a major topic of discussion in mainstream
medicine until recently, when a new study on young men in the United States revealed the
negative health impact of AAS. A retrospective intervention on more than 6000 patients
suggested that steroid abuse contributed to the etiology in more than one-third of hypogo-
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nadism patients. Moreover, about one-fifth of men treated for symptomatic hypogonadism
reported previous use of anabolic androgenic steroids [51]. As the prevalence of steroid
addiction continues to rise, an increasing number of psychiatrists are recognizing anabolic
androgenic steroid dependency as a distinct diagnostic entity [52]. The ability to counsel
patients suffering from anabolic steroid-associated hypogonadism and to understand their
motivation for use is critical for both preventing future use and recognizing other diseases
the patient may be suffering from, such as primary hypogonadism, that the provider can
safely treat medically. Endogenous androgen synthesis can also result in an increase in
androgen levels. While congenital adrenal hyperplasia is the most prevalent endogenous
cause, other possibilities include functional tumors (adrenal or testicular) and androgen
insensitivity disorders [12,30]. However, despite the fact that congenital adrenal hyperpla-
sia is most usually discussed in the context of female fertility, there have been numerous
studies associating the disease to lower male fertility [53,54]. When it came to attempting
pregnancy, just two-thirds of males with congenital adrenal hyperplasia were successful,
according to one of these studies [55]. In terms of treatment, a variety of approaches have
been examined and found to be effective, including the use of hCG in conjunction with
FSH, clomiphene citrate, and intracytoplasmic sperm injection [56,57].

5. Estrogen Excess

It has already been mentioned that testosterone’s capacity to limit GnRH release at
the hypothalamus is mediated by the hormone’s conversion into estrogen. A primary
excess of estrogens can work in a similar manner to have an inhibitory effect on the HPG
axis, resulting in lower fertility in both men and women. As with females, testosterone
and estrogen are created in the testicles, but the main source of estrogen in males comes
from the peripheral aromatization of testosterone by the enzyme aromatase, which can
be found in adipose tissue. Because of the increasing incidence of obesity in our society,
more men are at risk of developing estrogen excess. Many doctors believe that the ratio
of testosterone to estradiol (T:E2), in particular, is a crucial indicator of estrogen excess,
with a goal ratio greater than 10:1 being sought by many. Pavlovich et al. [24], when they
analyzed a cohort of infertile men, discovered that their T:E2 ratios were much lower than
those of the fertile control group (6.6 versus 14.5). Inhibitors of the aromatase enzyme
are used to treat women who have a relative estrogen excess. Aromatase inhibitors are
classified into two categories: steroidal drugs (for example, testolactone) and nonsteroidal
medicines (for example, ethinyl estradiol) (e.g., anastrozole). Both have been demonstrated
to be effective in the treatment of infertile males who have low T:E2 ratios. Testolactone,
50–100 mg twice day, was used in the Pavlovich research to treat 63 men who were suffering
from male factor infertility and low T:E2 ratios. Increasing the T:E2 ratio and enhancing
sperm quality, as measured by concentrations and motility, were found to be successful
treatment strategies [40]. Raman and Schlegel conducted a trial in which they treated
140 infertile men with aberrant T:E2 ratios with either testolactone (100–200 mg daily) or
anastrozole (100–200 mg daily). Both treatment arms demonstrated an improvement in
the T:E2 ratio, as well as increased sperm concentration and motility in both cases. Aside
from KS, where testolactone was found to be superior in treating the aberrant T:E2 ratios,
the study did not find any statistically significant differences between the two types of
aromatase inhibitors when it came to hormonal profile or semen analysis. These trials,
taken together, demonstrate that aromatase inhibitors have a clear function in the treatment
of infertile males with aberrant T:E2 ratios. This therapy technique may be particularly
beneficial in the treatment of obese people [58].

6. Hypothyroidism

Thyroid hormones are necessary for the development and functioning of tissues as
well as to maintain normal body metabolism [59–61]. However, there have only been
a few human investigations examining the link of hypothyroidism with male infertil-
ity/subfertility [62–65] (Figure 1). Although it has been established long before that
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adult-age hypothyroidism leads to reduced sexual desire [66], the exact association of
hypothyroidism with infertility has only lately been explored. While hyperthyroidism
is associated with elevated sex-hormone-binding globulin (SHBG) levels, human stud-
ies have reported that hypothyroidism leads to a reduction in levels of SHBG and total
serum testosterone [65,67]. Hypothyroidism, in contrast to hyperthyroidism, is reportedly
associated with lower free testosterone levels [68]. When it comes to exogenous GnRH,
hyperthyroid individuals have an increased response, which can be ascertained by a di-
minished response in hypothyroid individuals [62]. In a few hypothyroid cases, men
also have shown hypothyroidism-mediated diminutive basal levels of LH and FSH [69].
Having this condition in a prepubertal male for an extended length of time would result in
reduced gonadotropin-mediated Leydig and Sertoli cells functions, which could result in a
reduction in the maturation of the sperm itself. Although the number of cells in the testis
would increase, the number of mature cells would decrease as a result of this procedure.
This may serve as a plausible reason for the increased testicular size observed in some
hypothyroid patients, and it has been shown to be connected with a decrease in mature
germ cells in the seminiferous tubules [70].

In order to better understand the link of hypothyroidism with male fertility, exten-
sive research was conducted on rats. In comparison to the control rat group, induced-
hypothyroidism rat models showed lighter testes, lesser number of testicular germ cells,
tinier and fewer seminiferous tubules, and deteriorated sperm parameters [63,64,71]. Long
before the discovery of the thyroid hormone, hypothyroidism was related with decreased
libido and erectile dysfunction [72]. Moreover, a concurrent study had projected that higher
thyroxine (T4) levels associate significantly with enhanced sperm concentrations [73]. Be-
sides sperm concentration, hypothyroidism has also been shown to decrease the percentage
of sperm of normal morphology, disrupt sperm motility, as well as reduce the semen
volume. About 76% of individuals had normal morphology once their hypothyroidism
was corrected, according to one study [74]. However, the largest study to date found signif-
icant changes in sperm morphology between 23 hypothyroid and 15 euthyroid males [74],
despite the fact that no studies have yet established a difference in sperm motility between
hypothyroid and euthyroid men. It has also been shown that primary hypothyroidism in
prepubertal males is associated with histologic abnormalities of the testicular cells, which
is consistent with the theory that low LH and FSH levels in hypothyroid males result in an
abnormal number of immature germ cells in the seminiferous tubules [70]. Just as has been
demonstrated in the case of hyperthyroidism, treatment of the underlying thyroid hormone
imbalance can enhance semen parameters [67,74]. A relative dearth of information exists
regarding hypothyroidism and the characteristics of the male reproductive system. Despite
this, the findings of these studies imply that there is a relationship between thyroid function
and sperm production (Table 2; [63,64,68,69,71,73,75–86]).

Table 2. Effects of hypo- and hyperthyroidism on male reproductive functions.

Hypothyroidism Hyperthyroidism References

Prepubertal testicular
volume and function

↑ Early onset of
spermatogenesis ↓ [75–77]

Sperm count Normal or ↓ ↓ [78,79]
Testicular germ cell count ↓ [63,64,71]

Sperm motility ↓ ↓ [80,81]

Sexual function Impaired Impaired; precocious
ejaculation [73,79,81,82]

Erectile function ↓ ↓ [73,82,83]
Free testosterone level ↓ ↓ [68]

LH and FSH levels ↓ ↑ and SHBG [69]
E2 ↓ ↑ [84–86]

↑ = increase, ↓ = decrease.
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Figure 1. Endocrinopathies and male reproduction. (A) Neuroendocrine regulation by hypothalamic–
pituitary–gonadal (HPG) axis maintains the normal secretion and functions of reproductive hormones.
Gonadotropin-releasing hormone (GnRH) is synthesized by the hypothalamus, which stimulates the
anterior pituitary to secrete the gonadotropins, luteinizing hormone (LH) and follicle-stimulating
hormone (FSH). Whereas, gonadotropin-inhibitory hormone (GnIH) inhibits the anterior pituitary
gonadotropin synthesis and release. In Leydig cells, LH acts to aid steroidogenesis. FSH acts
on the Sertoli cells, supporting spermatogenesis. Sertoli cells secrete activin and inhibin among
other substances, which mediate positive and negative feedback on the HPG axis, respectively.
(B) Hormonal disturbances owing to endocrinopathies can impair hormonal crosstalk, thereby
disrupting essential male reproductive functions. Upregulation of aromatase CYP19 (Cytochrome
P450 Family 19) gene leads to a higher conversion rate of testosterone to estrogen, inducing estrogen
excess, which in turn inhibits the HPG axis. Hyperprolactinemia is characterized by high serum
prolactin levels that impede GnRH release from the hypothalamus, reducing gonadotropin secretion
and perhaps inhibiting gonadotropin actions on the gonads. Endocrinopathies including obesity,
thyroid hormone imbalance, and diabetes mellitus disrupt the intricate metabolic balance, elicit
various metabolic hormones and inflammatory mediators, and may induce oxidative stress, all of
which adversely affect the normal endocrine crosstalk regulating male reproductive functions.

Hypothyroidism may also result in hyperprolactinemia due to elevated levels of
thyrotropin-releasing hormone (TRH), leading to infertility.

7. Hyperthyroidism

As previously mentioned, the exact involvement of thyroid hormones in the spermato-
genesis is only partially understood [59]. Hyperthyroidism, on the other hand, appears to



Life 2022, 12, 10 9 of 23

have a negative impact on sperm parameters [78] (Figure 1). Compared to healthy controls,
individuals with hyperthyroidism have been shown to possess greater levels of SHBG and
LH, but lower free testosterone levels [78]. Patients with hyperthyroidism have been found
to have significantly compromised sperm parameters, including low motility, low ejaculate
volume, low sperm concentration, and aberrant sperm morphology. After achieving an
euthyroid condition, the investigators reported that semen tests performed 7 to 19 months
following an euthyroid state showed restoration of 85% of seminal abnormalities. As
per another study, hyperthyroidism was shown to have various adverse effects on sperm
parameters [87], which were restored on achieving an euthyroid level with medical thyroid
ablation. As with hypothyroidism, there is a paucity of information on the relationship
between hyperthyroidism and spermatogenesis [66,78]. The available evidence, on the
other hand, appears to indicate that hyperthyroidism can have adverse impact on sperm
parameters.

There has been extensive research into the effect of thyroid function on fertility in a va-
riety of animal models, with the majority of studies concluding that when thyroid hormone
levels deviate from normal ranges, the effect on fertility and libido is negative [66,71,88].
Mechanisms differ significantly between the various species under investigation, making it
difficult to reach a consensus on specific claims. Increased levels of SHBG in humans [89]
are a well-known feature of hyperthyroidism, which results in elevated levels of serum
testosterone. It appears that thyrotoxicosis has no effect on the biologically available form
of testosterone, known as free testosterone [90], leaving the clinical consequences of the
condition unclear. A similar pattern has been observed in many men with thyrotoxicosis,
with elevated levels of circulating E2 possibly due to increased binding of E2 to SHBG [84].
In some men, an increase in the amount of SHBG-bound estrogen is accompanied by an in-
crease in the rate at which estrogens are produced [85]. This is consistent with the stigmata
associated with increased estrogen exposure that frequently accompanies hyperthyroidism
in men, such as gynecomastia, spider angiomas, and decreased libido [91]. When com-
pared to euthyroid controls, the levels of gonadotropins in men with hyperthyroidism are
usually normal. However, some studies have discovered that the LH and FSH responses
to GnRH are exaggerated in hyperthyroid patients compared to euthyroid controls [91].
These studies would appear to support the notion that thyroid hormone levels are related
to gonadotropin sensitivity (or sensitivity to estrogen). Others have observed an increase
in basal LH and FSH levels, as well as a hyper-responsiveness to exogenous GnRH in
hyperthyroid patients, which has been linked to the condition [86].

8. Hyperprolactinemia

Hyperprolactinemia, defined as an excess of the hormone prolactin, is among the
major endocrinopathies related to male infertility [25] (Figure 1). The diagnosis is rather
straightforward, as hyperprolactinemia may be found with routine serum tests; however,
determining the origin of the condition can be difficult. Hyperprolactinemia can arise
as a result of hypothyroidism, liver illness, stress, and the use of certain drugs (such as
phenothiazines and tricyclic antidepressants), as well as in the presence of functional pitu-
itary adenomas [25,26]. The symptoms of excess prolactin may be asymptomatic in some
cases or lead to hypoandrogenic state or galactorrhea, while reduced libido and erectile
dysfunction are reported in the other cases [26,27]. Hyperprolactinemia can cause male
infertility due to its inhibitory effects on hypothalamus [28]. As a result, the hypotha-
lamus is unable to secrete gonadotropins, which in turn affects testosterone production
and spermatogenesis. Prolactin levels that are too high are associated with a decreased
ability to produce testosterone [28]. Because of the numerous impacts on the HPG axis,
a patient may present with a variety of symptoms, including diminished sexual desire,
erectile dysfunctions, and reduced semen quality [25]. Once hyperprolactinemia has been
diagnosed, the practitioner should order an MRI scan of the pituitary gland to rule out
any other potential causes. If a prolactinoma is discovered, it can be classified according
to its dimension and form. The most important distinction is between microadenomas,
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which are lesions smaller than 10 mm in diameter, and macroadenomas, which are lesions
larger than 10 mm in diameter. The medical treatment for prolactinoma is focused on
inhibiting the release of prolactin with the use of dopamine agonists if the tumor is found
to be present, which include, pergolide, cabergoline, bromocriptine, and quinagolide, with
cabergoline and bromocriptine being the most well-characterized agents [25,92]. These
agonists take advantage of dopamine’s inherent suppression of prolactin release to achieve
their effects. In certain cases, this can really result in the tumor shrinking, albeit the process
usually takes months to complete. Nausea, vomiting, and postural hypotension are among
side effects that can occur after using dopamine agonists. However, despite the fact that
inhibition of excess secretion of prolactin prevents disruption of the HPG axis, few studies
have examined the effects of dopamine agonists on reproductive functions. Bromocriptine
was used in a 1974 trial to treat men with functional prolactinomas and hypogonadism,
and the results revealed no increase in sperm motility [93]. On the other hand, a study
compared cabergoline and bromocriptine in the same cohort of patients, and both treatment
regimens showed significant improvements in sperm quantity, motility, rapid advancement,
and morphology in a period of six months [94]. In a later study conducted at the same
institution, seminal fluid parameters were compared between men who had prolactinomas
and men who did not. According to a study conducted on healthy control males, after
2 years of treatment with cabergoline (starting dose 0.5 mg weekly, gradually titrated to
PRL levels), the majority of men had regained testicular functions in comparison to the
healthy control.

When bromocriptine and cabergoline are compared, it is observed that cabergoline
has higher effectiveness at normalizing levels of prolactin and regressing tumor load [95].
Furthermore, when comparing cabergoline to bromocriptine, a higher percentage of indi-
viduals demonstrate a clinical response to cabergoline. Finally, compared to bromocriptine,
cabergoline has a considerably better rate permanent remission rate and fewer side ef-
fects [95]. All things considered, cabergoline is frequently the initial treatment option for
males with prolactinomas after other options are exhausted. In many situations, treatment
of prolactinomas with dopamine agonists is beneficial; nonetheless, a considerable propor-
tion of men may still remain persistently hypogonadotropic despite receiving treatment.
The use of clomiphene citrate, according to a study, may be a successful therapy option for
these men. Hypogonadal men treated with clomiphene (50 mg per day for 3 months) had
increased levels of testosterone as well as improved sperm motility [96]. Prolactinomas can
be treated with ablative therapies such as radiation therapy or transsphenoidal excision,
which are both effective. Ablative therapy is usually reserved for patients who have failed
to respond to medical treatment. Ablative treatments work by removing the prolactin
source and, as a result, the suppression of GnRH secretion that is occurring. It is still vital to
monitor the patient’s gonadotropin levels after treatment since additional intervention with
exogenous gonadotropins may be required to maximize therapeutic benefit. Treatments
for male infertility have generally relied on empirical ways to increase spermatogenesis.
However, this is changing. Over the past two decades, researchers have obtained a better
understanding of the biology of male infertility as well as the outcomes related with empir-
ical fertility treatment. It has been proposed that medical agents be used in a more targeted
and directed manner as a result of this knowledge. This has led to a decrease in the usage of
‘empiric therapy’ compared to what was used two decades ago. Various therapies for male
infertility are utilized to improve the hormone milieu, which in turn helps to maximize
spermatogenesis in the male partner. Exactly this has been the primary topic of this chapter.
Numerous additional medicinal treatments, on the other hand, are routinely utilized to
treat a variety of different particular pathophysiologic disorders that contribute to male
subfertility. Sympathetic agonists, antimicrobial, and anti-inflammatory pharmaceuticals
are some of the agents in this class. There are clear indications for the use of each of these
pharmacological classes in specific male infertility cases. One key point that has been
clearly established in the literature over the last few years is that empirical medical therapy
is generally of low utility and benefit in the treatment of infertility in men, as has been
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demonstrated in numerous studies. Despite the fact that randomized, placebo-controlled,
double-blinded interventions are time- and money-consuming, they continue to be the
gold standard for determining whether or not a medical treatment is successful. In past few
years, more than one agent has failed in that regard, yet this is positive progress. While the
number of medical treatments for male infertility is minimal, this should drive us to further
research the pathophysiological mechanisms that lead to male infertility. This improved
perception of the underlying issues that contribute to male infertility will allow us to design
further, more effective medical treatments for male infertility.

9. Insulin Disorders and Diabetes Mellitus

Studies show that diabetes has negative impacts on both male and female reproduc-
tion [19,97–99], and that the consequences of this are reflected in an increased prevalence
of infertility [100,101]. According to the American Diabetes Association, about 90% of
diabetes cases are accompanied by changes in their reproductive functions, diminished
libido, and infertility or subfertility [102]. Moreover, men with diabetes have been shown
to be more susceptible to a variety of sexual issues, though both growing physical illnesses
and a deteriorating psychological reaction play a role [103], as previously mentioned.
Several studies have researched and reported on the various diseases that diabetic males
typically suffer from, as well as the resulting reproductive problems that might result from
these conditions.

Spermatozoa can generate energy by both glycolysis and oxidative phosphorylation.
They are capable of producing energy both from exogenous hexoses (such as glucose,
mannose, and fructose), as well as other substrates (such as amino acids, citrate, lactate,
and lipids). Despite the fact that spermatozoa are able to produce their own insulin, these
cells remain sensitive to hormonal alterations [104]. Consequently, in diabetes, insulin
insufficiency or insulin sensitivity affects the endocrine route (negative feedback loop),
resulting in reduced male reproductive function as a result (Figure 1).

Several animal investigations on induced hyperglycemia demonstrated some negative
effects on male reproductive function, which were associated with impaired endocrine
control. Additional effects of diabetes include reduced vacuolization in the Sertoli cells [26],
reduced spermatogenesis [19,20], decreased fertility [99], changes in the morphology of
the epididymis [21], reduced levels of gonadotropins and serum testosterone [105], and
diminished count of germ cells, Leydig, and Sertoli cells [99]. These impacts of diabetes
mellitus upon spermatogenesis have been thus proven via both animal and human studies.

A further study by Ballester et al. [22] found a reduction in Leydig cells count and
functions in diabetic mice models induced with streptozocin (STZ). The drop in Leydig cells
count was associated with a reduced serum LH, which may partially explain the stimulating
role of LH on the Leydig cells in the laboratory setting. Moreover, it was discovered that
LH is a mediator of Leydig cell formation, which involves signaling processes that involve
insulin and insulin-like growth factor 1 [106,107]. However, tyrosine phosphorylation was
completely inhibited, and expressions of androgen receptors, GLUT-3 receptors, as well as
the insulin-like growth factor 1 receptors were all downregulated [108]. The altered cell
function was also observed in the absence of tyrosine phosphorylation. In addition to these
findings, several other animal studies [109–111] have looked into the effect of diabetes on
male fertility and come to similar conclusions. Additionally, diabetes reportedly affects
the spermatogenic cycle by impeding the FSH actions on the Sertoli cells [22,112]. Insulin
insufficiency in type I diabetes does not seem to affect spermatogenesis by directly affecting
the seminiferous epithelium, but rather through a shift in serum FSH levels. With a
reduction in FSH levels, a decrease in tubular FSH receptors is observed in type I diabetes
caused by STZ. This results in a reduced response to FSH stimulation by the epithelium
of the seminiferous tubules. Because of this, diabetes interferes with spermatogenesis by
interfering with insulin’s regulating influence on serum FSH levels [22,112].

A similar finding has been made about the role of glucose role in spermatogenesis
and the acrosome reaction (AR) [113], where a medium without glucose hindered the



Life 2022, 12, 10 12 of 23

spontaneous AR, which was quickly recovered after the addition of glucose to the media.
GLUTs are responsible for transporting these substrates into the cell [114]. GLUTs are
specialized transporters catalyzing the passive glucose diffusion into cells. A total of
14 members make up the GLUT family, which can be split into three groups based on the
sequence similarities between them [115].

It is known that GLUT8 is a member of the class 3 transporters and that it is expressed
preferentially in the testis [116,117]. It was discovered in mature human spermatozoa,
according to research on the expression of the GLUT8 gene [118], that the gene is expressed
in the acrosome and midpiece region. The acrosome and midpiece areas of mature sper-
matozoa from mice were similarly reported to contain the molecule [119]. As previously
stated, some studies have discovered GLUT8 in developing spermatocytes of the stage
1 type, but none have discovered it in mature spermatozoa [116]. The glucose that is
carried into the cell is turned into energy, which is required for spermatogenesis and cell
motility to occur. Reduced sperm motility and poor fertilization were seen as a result of the
disruption of GLUT8 function mediated by lower insulin levels [120]. As previously stated,
diabetics have a decreased gonadotropin response to GnRH [106], which could explain
this phenomenon.

10. Obesity and Endocrine Disruption

The mechanisms by which obesity is linked to male infertility remain largely unidenti-
fied [121,122]. The obesity-associated impairment of the HPG axis regulations of testicular
function may be the most acceptable mechanism to explain this phenomenon [123]. The
pituitary gonadotropins are controlled by the pulsatile hypothalamic GnRH release. LH
acts on Leydig cells, primarily regulating steroidogenesis, while FSH acts on Sertoli cells,
primarily regulating the process of spermatogenesis [124]. Overweight or obese men have
larger and higher number of adipocytes, which generate more adipokines and metabolic
hormones, increasing the levels of inflammatory mediators in the circulation [125]. Adipose
tissue-secreted molecules modulate the intricate regulation of the HPG axis, which may
help to understand the mechanism of how the obesogenic attributes lead to male subfer-
tility. Studies have reported that the typical obesity-related parameters, such as the body
mass index (BMI), total body fat, abdominal fat, and subcutaneous fat in men, correlate to
lower testosterone levels and increased concentration of estrogen [126,127]. One possible
explanation is that in obese men, activities of the estrogen-metabolizing enzyme, aromatase
cytochrome P450, are exceedingly high. This enzyme is expressed in excess by white
adipocytes relative to that by Leydig cells. Aromatases convert androgens to estrogens, and
thus obese men have a high estrogen level [128]. Male reproductive functions, including
spermatogenesis and other androgen-dependent functions, are affected by such changes in
sex hormones. Estrogen, being more biologically active than testosterone, has the potential
to cause significant downstream effects with even a small increase in its plasma levels,
resulting in the disruption of testicular functions [129]. In fact, a total estrogen reduction
in the testis interferes with normal steroidogenesis and spermatogenesis [130]. Increased
estrogen levels in obese men are thought to be caused by a negative feedback that inhibits
the GnRH released in pulses and thereby also hinder LH and FSH release, according to the
hypothalamic ERs expressions [131]. This mechanism ultimately results in a deficiency of
gonadotropins, which in turn results in insufficient androgen synthesis and spermatogene-
sis. Inhibin B, a growth-like protein released by Sertoli cells, also functions as a feedback
inhibitor of FSH synthesis. It also stimulates the Leydig cells to produce testosterone.
A high estrogen level or another mechanism could be responsible for obesity-induced
reduction of inhibin B production in obese males [132].

Obesity causes a variety of bodily disorders that have a significant impact on the
physiological hormonal milieu [124]. Due to excess white fat accumulation in obese men,
estrogen levels rise, and adipose tissue hormones surge, which has an impact on the
hormones that play a role in steroidogenesis and spermatogenesis. As previously discussed,
an increase in estrogen levels is caused by an enhanced aromatase activity, which converts
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testosterone into estrogen. In the human body, adipose tissue serves as a major energy
source as well as an endocrine gland by secreting hormones. It is possible for these tissues
to synthesize a variety of bioactive substances, such as adipokines, which stimulate chronic
low-grade inflammatory responses and interact with numerous metabolic pathways [133].
The accumulation of excess fat results in the release of free fatty acids into the circulation,
which is a critical factor in the regulation of insulin sensitivity. However, adipokines must
be maintained at physiological levels to ascertain normal metabolic functions [134].

Obesity stimulates the release of hormones from adipose tissue, including leptin, ghre-
lin, orexins, obestatin, adiponectin, and other metabolic hormones, which possess unique
roles in reproductive functions [8,135–139]. Leptin regulates the satiety center and body
weight primarily through three hypothalamic leptin-sensitive neurons: neuropeptide Y,
γ-aminobutyric acid (aminobutyric acid), and proopiomelanocortin neurons [140]. Despite
the fact that leptin has the ability of crossing the blood–brain barrier, it has inhibitory effects
on neuropeptide Y and gamma-aminobutyric acid neurons, which have actions upon the
proopiomelanocortin neurons and brings about the satiety sensation while increasing the
amount of energy expended [125]. As a result, leptin, a regulatory adipose tissue hormone,
maintains a healthy balance between food intake and energy expenditure via its impacts on
hypothalamic control [135]. According to reports, leptin has important roles in metabolism
as well as in neuroendocrine regulations. Aside from its roles in glucose metabolism, leptin
is involved in the endocrine control of male reproductive maturation and functions. It
has been demonstrated on obese mice lacking leptin gene that the absence of functional
leptin may lead to suppressed gonadotropin secretion, which results in infertility, whereas
exogenous leptin treatment restores fertility in the obese mice [141]. When laboratory
rats were administered with anti-leptin antibodies over an extended period of time, LH
secretion and testicular functioning were inhibited. Leptin also bears a regulatory role in
spermatogenesis, as evidenced by the fact that leptin-deficient mice had impaired spermato-
genesis as well as increased pro-apoptotic genes expression levels in the testis, resulting in
the induction of germ cell apoptosis [142]. Only a few reports have been published that
oppose the beneficial impacts of leptin on male reproduction, demonstrating its inhibiting
effects on testicular functions when administered in very high doses [143]. Leptin induces
reactive oxygen species (ROS) generation in human endothelial cells by elevating the rate
of mitochondrial oxidation of fatty acids [144,145]. Leptin has been shown to upregulate
the HPG axis via induction of GnRH, FSH, and LH, among other hormones [146]. It has
the ability to exert a direct influence on the gonads because its receptor isoforms are found
in high concentrations in the testis [146]. The serum adiponectin concentrations are shown
to be inversely related to those of testosterone [147] and ROS [148].

It is possible that leptin, through its influence on kisspeptin, can control hypothalamic
GnRH secretion. Almost everyone agrees that kisspeptin is important in reproductive
endocrine regulations. Kisspeptin is found in the arcuate nucleus of the hypothalamus
and may act as a connection between metabolism and reproduction [149]. Kisspeptin
reportedly suppresses lipogenesis while simultaneously inducing lipolysis [150]. Metabolic
syndromes, such as obesity, are characterized by decreased hypothalamic and adipose
tissue kisspeptin mRNA (KISS1) expressions [149]. Because kisspeptin increases the hy-
pothalamic GnRH release in pulses, obesity-mediated inhibition of kisspeptin may lead
to hypothalamic hypogonadism [149,150]. Another developing adipose tissue hormone,
orexins (hypocretins), apparently increases testosterone synthesis by increasing activity of
steroidogenic enzymes in the Leydig cells [151]. Orexins appear to be protective against
oxidative cell damage as well [152,153].

Obese males have been found to have a significantly higher secretion of resistin from
their adipocytes, according to several studies. Resistin has the potential to cause insulin
resistance (IR) in obese males, resulting in type 2 diabetes [154,155]. According to the ‘The
Endocrine Society Clinical Practice Guidelines (2010)’, men suffering from type 2 diabetes
should undergo tests for low levels of testosterone [98]. Type 2 diabetes is accompanied by
IR in obese men, which may lead to secondary hypogonadism. Pro-inflammatory cytokines
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(interleukin 6 and tumor necrosis factor-alpha) act on the HPG axis, aggravating the dis-
ease [128,156,157]. Obese men’s elevated insulin levels may also diminish SHBG levels,
resulting in lower testosterone functions than are required for optimal spermatogenesis.
Since compensating low SHBG levels for low testosterone levels in obesity has failed, it
is possible that IR has a direct impact on Leydig cell production of testosterone [128,158].
Ghrelin is called the ‘hunger hormone’ since it causes people to feel hungry. According to
some research, ghrelin is a neuropeptide that is secreted by gastrointestinal ghrelinergic cells
and is reportedly associated with lower serum testosterone levels in obese men [159–161].
Ghrelin receptors can be located in the testicles, and they play an important part in the
process of steroidogenesis. The direct impact of ghrelin on spermatogenesis, on the other
hand, is still up for debate [159]. Ghrelin may accelerate ROS and induce oxidative stress,
which can interfere with normal testicular activities [162]. The hormone adiponectin has
a diametrically opposed relationship to fat and IR. It predominantly impacts upon the
skeletal muscle, liver, and the endothelial cells that line the inside of blood vessels. It has
the ability to promote nitric oxide synthesis, which aids in the process of angiogenesis [163].
It helps in managing obesity-associated nonalcoholic steatohepatitis, a condition charac-
terized by redness, and accumulation of fat and gristly tissues in the liver, among other
symptoms [164]. Vaspin functions in the progression of obesity and metabolic dysfunctions,
and has a role in the development of diabetes and IR. Body fat percentage, BMI, and blood
glucose levels are all substantially correlated with the visceral expression of vaspin mRNA
in humans. It follows a sex-based direction, and the occurrence of the disease is signifi-
cantly higher in women compared with men [165]. Apeline [166], fatty acid-binding and
acylation-stimulating peptides, visfatin [156], omentin [167], chemerin [168], irisin [169],
and plasminogen activator inhibitor-1 are some of the other adipokines that have been
discovered recently.

All of the obesity-related hormones that have been discovered to date, including those
mentioned above, are able to only partially reveal the complex mechanisms by which
obesity paves ways to male infertility. Future in-depth studies are required to identify an
adipokine that is ‘derived from fat’ and that aids us in our ‘fight against fat’. Obesity has
emerged as a major public health concern in both developed and developing countries in
the twenty-first century. Socioeconomic status changes, unhealthy eating habits, a stressful
lifestyle, and a lack of physical activities all contribute to developing obesity and related
disorders [170].

Despite their dynamic nature, the seminiferous tubules maintain an equilibrium be-
tween cell growth and death [171]. Following the first spermatogenic wave, there is a
period of differentiation of germ cells, which is governed by complex hormonal signals.
The B-cell lymphoma-xL (Bcl-xL)- and Bcl-2-associated X protein (Bax) systems direct
cells to undergo apoptosis if cell differentiation in this phase exceeds the physiological
limit [172,173]. Specific physiological or pathological conditions might cause spermato-
gonial apoptosis. In obese people, spermatozoa from artificial insemination have been
found to have a high rate of apoptosis. Obesity-induced germ cell death is responsible
for the majority cases of male subfertility and infertility [174]. The traditional Bax and
Bcl-2 balance regulates spermatogonial apoptosis. Obesity alters the Bcl-2/Bax ratio in
the testis, boosting Bax while decreasing Bcl-2 expression. These changes could activate
downstream apoptotic signaling caspases, particularly caspase 3 in spermatogonia [123].
Furthermore, obesity-related hyperlipidemia and lipid metabolic disorders cause the endo-
plasmic reticulum to promote spermatogenic cell death by increasing GRP78 mRNA and
protein expression [175,176].

Human sperm quality is a well-established male fertility predictor, which is on the
decline around the world [4,5,177,178]. It has been widely observed that obesity and
overweight, as well as the associated allostatic load, are linked to a higher occurrence of
azoospermia and oligozoospermia in males and females, respectively [179]. Proper control
and disciplined weight loss resulted in a significant increase in testosterone concentrations
and improvements in sperm functions [180]. The most validated and conventional male
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fertility parameter is semen quality, which mainly includes sperm count, sperm morphology,
sperm motility, and semen volume. The properties of seminal fluid in males are influenced
by their general reproductive health as well as external signals. Even a slight deviation
from homeostatic conditions can result in a decrease in the parameters of the spermatozoa.
Trauma, systemic illnesses, an unhealthy lifestyle, low nutritional status, environmental
stress, and metabolic abnormalities, such as obesity, can all have a negative impact on
the quality of sperm and the ability to reproduce [181]. The link between a high BMI
and poor steroidogenesis and spermatogenesis, as well as deteriorated semen quality, has
been established, although further research is needed to confirm this association in more
detail [158].

In comparison to normal-weight men, obese men have been shown to have three
times higher possibility of sperm counts less than 20 × 106/mL. ‘Oligozoospermia’ is the
name used to describe this condition of decreasing sperm count [129]. Chavarro et al. [182]
showed in their comparison of overweight and obese males that those with a higher BMI
(>25 kg/m2) had a reduced total sperm count compared to those of normal weight. A rise
in body mass index (BMI) is associated with a decrease in the volume of semen ejaculated.
Additionally, a broad-spectrum investigation involving 1558 Danish military males found
a negative relationship between higher BMI and total sperm count and concentration (both
of which were low) [183]. Obesity has also been reported to alter sperm morphology and
motility, while the exact process is still being investigated [184]. These data have been used
in a number of studies to imply that obesity has an adverse effect on male reproductive
health [127,185].

11. Endocrinopathies, Oxidative Status of Male Reproduction

Due to the disruption of the balance between oxidants and antioxidants in the male
reproductive system, the majority of these hormonal abnormalities might result in the
generation of ROS [71,103,144]. These ROS interfere with the crosstalk between distinct en-
docrine axes, which is detrimental to male reproductive functions. Increased production of
ROS results in lipid peroxidation of Leydig cells and developing testicular cells, lipoprotein
degradation, protein aggregation, DNA fragmentation, and enzyme inhibition. [186,187].
Testicular OS results in a decrease in testicular testosterone production as a result of dam-
age to the Leydig cells or endocrine tissues such as the anterior pituitary [188,189]. The
natural steroidogenesis process generates ROS, mostly from mitochondrial respiration and
steroidogenic cytochrome P450 enzyme catalysis [190]. These ROS damage spermatozoa
mitochondrial membranes and also inhibit steroidogenesis. [191]. OS is connected with
an increase in the percentage of immature spermatozoa through an indirect effect on the
production of male hormones [192–195]. A favorable link has been demonstrated between
PRL and free T4 (fT4) with total antioxidant capacity (TAC), but not with gonadotropins or
gonadal steroids. It has also been observed that systemic hormones may modulate seminal
TAC [196].

It is undeniable that certain hormones, including testosterone and melatonin, may act
as antioxidants, protecting sperm and other testicular cells from the damage caused by
ROS [197,198]. Other steroidogenic pathway metabolites, such as DHEA, have been shown
to increase the level of cellular antioxidants, albeit the exact process is still unexplained [199].
Researchers have discovered a direct communication between testosterone and antioxidants
such as selenium and/or coenzyme Q10 (CoQ10), as well as an indirect communication
between testosterone and zinc, in male infertility [200,201]. CoQ10 has also been shown to
reduce FSH and LH levels [202]. It has been discovered that there is a negative correlation
between the serum levels of testosterone, E2, fT4, and sperm DNA fragmentation [203,204].
Besides selenium and coenzyme Q10 (CoQ10), N-acetyl-cysteine, in particular, has also
been shown to impact semen parameters by increasing the levels of testosterone and inhibin
B [205]. Nonetheless, additional research is required to determine relevant antioxidants, as
well as their appropriate levels, that could potentially be used in clinical future practice in
the treatment of endocrinopathies-induced male infertility [206].
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It has been discovered that the administration of FSH can minimize ROS and subse-
quent sperm DNA damage in idiopathic infertile males [207,208]. Although it has been
claimed that testosterone can cause DNA damage in Sertoli and germ cells by activating
caspase activity in Sertoli cells, further research is needed to determine whether this is
accurate [209]. It has been suggested that the long-term effects of antioxidants can change
the levels of FSH, testosterone, and inhibin B [210].

12. Conclusions

Endocrine regulations of male reproductive functions follow intricate mechanisms.
The principal endocrine axis in the regulation of male reproduction, HPG axis, is sub-
jected to positive and negative feedback regulations by testicular hormones as well as
to modulation via various other endocrine axes and numerous other reproductive and
nonreproductive hormones. Quantitative or qualitative defects of any of this hormonal
crosstalk or their receptors would lead to a spectrum of endocrinopathies, such as hy-
pergonadotropic and hypogonadotropic hypogonadisms, androgen/estrogen excess, and
hyperprolactinemia, causing male subfertility or infertility. The precise understanding of
the endocrine disruptions-mediated male infertility may pave ways to research unleashing
the potential diagnostic tools, offering effective management and treatment protocol to
address this multifarious and sensitive pathological state.
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