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Abstract

Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and
experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly.
However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes
computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these
proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the
percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and
21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli
and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the
ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in
the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using
elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt
more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the
16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of
contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more
efficient, we show that this trend holds for most of the 30S r-proteins.
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Introduction

Ribosomes are the macromolecular machines that synthesize

proteins in all living organisms. They are composed of ribosomal

RNA (rRNA) and ribosomal proteins (r-proteins) that self-assemble

into functional units. The efficient and accurate self-assembly of

the active ribosome in vivo is essential for cell growth because

new ribosomes and proteins must be produced in order for cells

to grow. It is estimated that approximately 60% of all cellular

transcriptional activities have been attributed to the synthesis of

rRNA in a rapidly growing cell [1] and 40% of the total energy of

an E. Coli cell is directed towards the synthesis of proteins [2]. It is

therefore not surprising that ribosome biogenesis in cells is

intricately regulated. Elucidating this complex regulation network

has become the focus of a rapidly developing field.

The assembly of the ribosome requires the orchestration of highly

coordinated events that involve both rRNA folding and r-protein

binding. While many cofactors have been identified that participate

in assembly in vivo, active functional units can be assembled in vitro in

the absence of these cofactors [3]. The small 30S subunit of the

bacterial ribosome (see Figure 1), which is composed of 16S rRNA

and 21 r-proteins, has been more extensively studied than other

structural assemblages and is a good system to analyze in order to

determine what is important for the ribonucleic particle (RNP)

assembly. In particular, the 30S subunit was the first to be

reconstituted from purified components by the Nomura group in

the late 1960’s [4]. The reconstituted 30S active particles showed

nearly the same activities in all performed biochemical assays. This

ability to reconstitute active particles in vitro allows for in-depth

exploration of the roles of the individual components in ribosome

assembly and their functions by the combinatorial addition and

omission of individual components [3,5–6]. These experiments

revealed that the 30S subunit assembles in a sequential and ordered

process [3]. The Nomura group also provided a detailed assembly

map describing the sequential and interdependent binding of all r-

proteins [7]. The map also classified the proteins as primary,

secondary, and tertiary binders, depending on their ability to bind to

16S rRNA. The primary proteins bind to bare rRNA, secondary

proteins can bind to 16S rRNA after at least one primary protein

has already bound, and tertiary proteins require at least one primary

and one secondary protein [6].

The Nomura assembly map reflects the equilibrium thermody-

namics of r-protein binding with 16S rRNA to intermediates.

Using chemical probing methods, these binding kinetics were
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more recently studied by Powers et al. [8] Based on their ex-

perimental results, the r-proteins were divided into early, mid,

mid-late and late binders. The kinetics data were partially in

agreement with thermodynamic data in that the tertiary binding

proteins were consistently found to be late binders. The availability

of atomic structures of the 30S subunit [9–10] provided tre-

mendous new opportunities to understand the assembly mecha-

nism. Most of the knowledge gained in earlier experimental studies

was found to be consistent with the determined structures.

In the meantime, significant progress was made with experi-

mental methods to probe the ribosome assembly mechanism.

Time-resolved X-ray-dependent hydroxyl radical footprinting

[11–12] provides resolution on the order of milliseconds, much

shorter than other chemical probing methods [8]. Directed

hydroxyl radical probing [13–15] allows for the detection of specific

interaction sites between proteins and RNA. The Williamson group

used PC/QMS (pulse-chase followed with quantitative mass

spectrometry) to measure the kinetics of individual protein binding

during the assembly of the full ribosomal complex [16]. New

experimental data suggest that ribosome assembly proceeds via

multiple parallel pathways [16–17] rather than a single pathway

involving the formation of a single rate-determining ‘‘reaction

intermediate’’ RNP [18]. Current understanding of the ribosome

assembly process suggests it is similar to protein folding in that it can

proceed via multiple pathways across a rugged energy landscape.

Many computational studies have shed light on some important

aspects of ribosome structure and function. Molecular dynamics

simulations have been performed to analyze ribosome interactions

with and the accommodation of transfer RNA (tRNA) during

translation [19–22], as well as to characterize the interactions

between cognate tRNA codons and their messenger RNA

(mRNA) anticodons [23–24]. Other simulations and calculations

used structures from various stages of translation to study the

behavior of incoming mRNA transcripts [25] and nascent

polypeptides in the ribosome’s exit tunnel [26–27]. Interactions

between ribosomes and members of a class of antibiotics called

aminoglycosides have been elucidated via computational tech-

niques [28–31] and have shed light on important interactions

between these small molecules and the decoding center of the

ribosome. Investigations of the interactions between the ribosome

and important non-ribosomal proteins, such as the elongation

factor EFTu, have been performed using MD [32] and quantum

level calculations [33]. Other quantum calculations have been

used to address the function of ribosome catalysis, such as the

mechanism of and possible transition states in peptide bond

synthesis [34–35]. These investigations have enriched the current

understanding of ribosomal function and additional computational

analyses on the dynamical structure of the ribosome and its

components can further elucidate the mechanisms by which the

ribosomal machinery assembles and operates.

Despite significant progress in recent years, the understanding

of ribosome assembly remains limited. One major obstacle in this

field is elucidating the mechanisms of coordinated RNA folding,

protein binding, and the associated conformational changes of

RNA and r-proteins [36]. Although earlier studies suggested [37]

that r-proteins adopt the same structures in solution as in the

assembled ribosome, more recent studies suggest [36] that there

are conformational changes in the r-proteins and rRNA upon

forming the complexes. Predicting RNA structure is also one of the

most challenging topics in structural biology because a single

stranded RNA can adopt a variety of secondary and tertiary

structures. The 16S rRNA molecule in a ribosome is divided into

Figure 1. The 30S T. thermophilus subunit (1J5E), interface side.
The 16S rRNA and r-proteins of interested are highlighted: 59 Domain
yellow, Central Domain grey, 39 Major Domain orange, and 39 Minor
Domain purple; S15 blue, S17 dark green, and S20 dark red. The E. coli
structure (2AVY) is nearly identical, but slight structural differences for
the proteins of interest are discussed in the text and visualized in
Figure 2. The remaining r-proteins have been removed for better
visualization of the 16S rRNA domains.
doi:10.1371/journal.pcbi.1002530.g001

Author Summary

Ribosomes are complex cellular machines that synthesize
new proteins in the cell. The accurate and efficient
assembly of ribosomal proteins (r-proteins) and ribosomal
RNA (rRNA) to form a functional ribosome is important
for cell growth, metabolic reactions, and other cellular
processes. Additionally, some antibacterial drugs are
believed to target the bacterial ribosome during its
construction. Hence, ribosomal assembly has been an
active research topic for many years because understand-
ing the assembly mechanisms can provide insight into
protein/RNA recognitions important in many other cellular
processes, as well as optimize the development of
antibacterial therapeutics. Experimental studies thus far
have provided still limited understanding about the
assembly process. To further understand the assembly
process, we have computationally studied the dynamic
properties that r-proteins exhibit during assembly and the
relationship between dynamics, physical properties, and
binding propensity. We observe significant charged
interactions between r-proteins and rRNA. We also detect
a strong correlation between contact residues and their
dynamic mobilities. Protein residues contacting with rRNA
are observed to be more mobile in comparison with other
residues. We also relate the location of the r-protein in the
fully assembled ribosome to its susceptibility for large
conformational changes prior to binding.

Linkage between Dynamics and Assembly of Ribosome
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four domains: the 59 domain, the central domain, the 39 major

domain and the 39 minor, each with a well-defined structure

(see Figure 1). Magnesium ions are thought to stabilize the

secondary structure of RNA and many r-proteins are thought to

stabilize the tertiary structures. Many of the r-proteins interact

with and bind to only one domain, but a few associate with more

than one, such as S20 which interacts with both the 59 and the 39

minor domains. The Harvey group [38] analyzed the atomic

contacts of r-proteins with RNA in the 30S subunit structure and

reported the interesting observation that most of the late binding r-

proteins were found to bind at the 39 end of 16S RNA. This

observation was consistent with the earlier understanding that 16S

RNA folds with 59 to 39 polarity [6,14]. The Harvey group further

used coarse-grained representations of RNP structures to examine

the potential fluctuations of binding sites when proteins were

removed or added. Their study shows that the binding sites of

primary proteins are formed first and, once associated, these

proteins help organize the late binding sites. Trylska et al. [39]

calculated the binding energy of individual r-proteins with the 16S

RNA by solving the Poisson-Boltzmann equation, which accounts

for electrostatic interactions. Though the calculated binding

energies varied, some late binders were found to have less

favorable binding free energies while the early binders were found

to be more favorable, an observation consistent with known

experimental results. Other studies used various coarse-grained

representations to explore the global motions of the ribosome

[25,40–43] and the assembly of the 30S [44–45]. Despite the

coarse representations of ribosomal structure, some of the known

dependencies of r-protein and rRNA binding were captured in

these computational studies.

Ribosome assembly remains an active research field. A better

understanding of its assembly mechanisms will provide valuable

biochemical insight into cellular regulation and will allow for the

optimal development of ribosome-targeted drugs. While experi-

mental studies continue to make great progress, computational

studies reported so far are still limited. Most of the earlier reported

computational studies have used coarse-grained representations of

the ribosome. To truly understand the specific binding of r-

proteins with 16S RNA, atomistic details need to be considered.

Because assembly involves both RNA folding and protein binding,

the examination of individual components before and after

binding in atomistic detail is necessary. Here we specifically

investigate the potential correlation between r-protein dynamics

properties and their binding properties. The aim is to answer the

following specific questions: what are the key residues that bind to

the 16S rRNA? Are these key residues more flexible than the

others? Do free r-proteins adopt the same conformations as those

found in the assembled 30S subunit? To explore the answers to

these questions, we rely on the use of atomistic molecular dynamic

simulations of r-proteins as well as other methods developed in our

own group.

Results/Discussion

Ribosomal proteins are enriched with positively charged
amino acids

Ribosomal proteins are known to be positively charged and

many of these positively charged amino acids, especially those

residues on the long extension tails, were found to interact with

RNA [10,46–47]. We performed a simple calculation of the net

charge of ribosomal proteins based on the sequences reported for

the 2AVY and 1J5E structures, counting Asp and Glu as 21, Lys

and Arg as +1, with all other residues treated as neutral. Of course,

some of these residues might have some charge because of shifted

pKa values due to their location in the tertiary structure, but we will

ignore these minor effects at present. Table 1 presents the net

charge of r-proteins for the two species. The two r-proteins that

are not positively charged could be explained by their special

positions in the assembly map: S2 is the last protein to assemble [7]

and S6 is known to form a dimer with S18 [48–49], which is

positively charged, before associating with rRNA. The remaining

r-proteins are all positively charged. We also note that the charge

on r-proteins from T. thermophilus is on average higher than that for

the E. coli proteins, which may relate to the general observation

that ribosomal subunits for thermophiles such as T. thermophilus are

more stable than those of mesophiles such as E. coli [50].

Moreover, ribosomal proteins are enriched with positively charged

amino acids. The typical percent of amino acids for Lys, Arg, Glu

and Asp are 5% each for cytosolic proteins [51]. However, in the

case of r-proteins, the total percentage of Lys and Arg is

approximately 20% (18.7% for E. coli and 21.2% for T.

thermophilus), while the sum of Glu and Asp percentages remained

near 10%. Klein et al had earlier examined the amino acid

distributions of r-proteins in the large subunit (50S) and reported a

similar bias toward the positively charged amino acids [46].

We have further examined the contacts made between r-

proteins and the RNA based on the atomic structures of the 30S

subunit from the two species. Here, a contact is defined as having

any atoms of a protein residue within 3.5 Å of any rRNA

nucleotide atoms. Table 2 presents the number of contacts made

by each r-protein, along with the number of contacts with

positively charged residues. It is clear that a high percentage of

contacts between r-proteins and rRNA are made by positively

charged residues. The total average percentages of contacts made

by positively charged residues are 39% for E. coli and 46% for T.

thermophilus, and both are significantly higher than the total

Table 1. Net charges of r-proteins.

r-protein E. coli T. thermophilus

S2 21 27

S3 19 21

S4 17 23

S5 9 7

S6 212 0

S7 14 15

S8 5 12

S9 16 16

S10 3 10

S11 15 16

S12 21 27

S13 14 20

S14 15 16

S15 8 8

S16 6 11

S17 6 15

S18 12 19

S19 12 10

S20 16 25

S21 14 12

Note: S21 for T. Thermophilus is called THX.
doi:10.1371/journal.pcbi.1002530.t001

Linkage between Dynamics and Assembly of Ribosome
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percentage of the positively charged amino acids in r-proteins for

the two species. These results together affirm the known impor-

tance of charge-charge interactions in the ribosome [10,46–47].

Structures and contact residues are more conserved than
sequences

Figure 2 shows structural alignments for the three proteins from

the two species. The percentages of sequence identity between the

two species are 60% for S15, ,40% for S17, and ,28% for S20,

but the percentages of conserved residue class are considerably

higher: 75% for S15, ,58% for S17, and ,47% for S20. Thus,

the structures for the three ribosomal proteins are well conserved,

with RMSD values of 1.1 Å for S15, 1.4 Å for S17, and 2.1 Å for

S20. In the cases of S17 and S20 from T. thermophilus, there are

extra C-terminal regions, as shown in Figures 2b and 2c.

Residues that contact rRNA exhibit higher than average

sequence conservation. For S15, the percent of conserved contact

residues is about 54% (52% for E. coli and 56% for T. thermophilus),

which is just under the overall sequence conservation. For S20, the

percentage of conserved contact residues is 38% for E. coli and 35%

for T. thermophilus, both of which are considerably higher than the

overall sequence conservation. For S17, the percentage of conserved

E. coli contacting residues (52%) is higher than the overall sequence

conservation, whereas that for T. thermophilus contacting residues

(31%) is less. The conserved contact residues percentages for S17

and S20 from T. thermophilus are lower than those for E. coli because

T. thermophilus has extra C-terminal regions that make several

additional non-conserved contacts. (Supplementary Tables S1, S2,

S3 present the contact residues for S15, S17 and S20 for the two

species, with conserved residue identities in red and conserved side

chain types, largely Lys/Arg substitutions, colored green.)

Further analysis of the identities of these contact residues reveals

that, aside from the positively charged residues, His, Thr, Ser,

and Gln are also common, all of which are polar and can form

hydrogen bonds with rRNA. For example, of the twenty-seven E.

coli S15 contacts, five are basic (Lys48, Arg54, Arg64, Lys65, and

Lys73), five are histidines (His38, His42, His46, His50, and His51),

ten are polar (Ser2, Thr5, Thr8, Thr22, Ser24, Gln28, Gln35,

Ser52, Ser61, and Gln62), and one is aromatic and polar (Tyr69).

The remaining six contacts are acidic (Asp21 and Asp49) or

nonpolar (Gly23, Leu31, Leu39, and Gly55). Therefore, most

contacts between the r-proteins and the rRNA are either charged

interactions, or hydrogen bonds, with few aromatic stacking or

nonpolar interactions.

Dynamics and conformational changes of S15
S15 is a primary binding protein which binds in the 39 major

domain of 16S RNA. In the assembled 30S subunit, S15 is solvent-

exposed and located on the back of the 30S subunit body. The 16S

RNA binding site of S15 is at the three-way junction of helices 20,

21, and 22 in the 16S central domain. The primary, secondary,

and tertiary structures of S15 are highly conserved across species:

four bundled a-helices are connected by short loops (Figure 2a).

All 16S rRNA contact residues are found on one side of S15,

located on helices 1, 2 and 3 and the loops connecting the three

helices, but helix 4 does not have any contacts with rRNA.

Table 2. Contacts between r-proteins and r-RNA in total and for charged residues.

E. Coli Contacts (3.5 Å cut off) T. Thermophilus Contacts (3.5 Å cut off)

r-proteins Total Pos. Neg. % Pos. Total Pos. Neg. % Pos.

S2 19 7 0 37% 17 5 1 29%

S3 40 7 2 18% 42 13 2 31%

S4 64 23 3 36% 83 38 4 46%

S5 46 13 0 28% 48 19 1 40%

S6 8 3 0 38% 14 8 1 57%

S7 29 15 3 52% 49 30 2 61%

S8 37 10 3 27% 40 12 2 30%

S9 81 44 1 54% 88 45 5 51%

S10 42 15 1 36% 49 17 2 35%

S11 52 19 0 37% 50 16 0 32%

S12 75 28 4 37% 83 44 5 53%

S13 48 22 0 46% 71 35 0 49%

S14 54 23 0 43% 53 29 3 55%

S15 42 8 3 19% 43 15 3 35%

S16 42 20 3 48% 57 29 2 51%

S17 32 14 2 44% 70 33 2 47%

S18 30 16 0 53% 18 13 0 72%

S19 37 17 1 46% 49 22 1 45%

S20 52 24 2 46% 62 32 4 52%

S21 6 2 3 33% 30 16 1 53%

Total 836 330 31 39% 1016 471 41 46%

Note: The total number of protein contacts for S15, S17, and S20 above differs from the total number of contact residues presented in Supplementary Tables S1, S2, S3
because some protein residues are in contact with more than one nucleotide, which are presented here as multiple contacts.
doi:10.1371/journal.pcbi.1002530.t002
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In previous structural studies, X-ray [52–54] and NMR [55–56]

derived structures were reported and the only significantly

different conformation reported was in the crystal structure [52]

where helix 1 was rotated 90u away from the remaining bundled

helices. Additional studies have been published about the role of

S15 in ribosome assembly and antibiotic responses with mutagen-

esis studies [57] and MD simulations, studying the effects of Mg2+

ions on the protein alone and with its rRNA binding site [56]. It

has been suggested that this protein acts as a bridge between the

large and small subunits in the fully assembled ribosome [58].

Root-mean-square deviations (RMSD) were calculated from the

molecular dynamics simulations of the S15 protein and are

presented in Figure 3a. The S15 from the two species exhibit

relatively low RMSD values during MD simulations, with values

remaining below 5 Å. Figure 4 presents the root-mean-square

fluctuation (RMSF) values calculated over the period of time from

10 ns until the end of the simulation. Contact residues are shown

as solid symbols in the plot. High RMSF values were observed for

the loop connecting helices 2 and 3, and several conserved contact

residues are located in this loop. The contact residues found on

helices 2 and 3 have very low RMSF values, whereas helix 1 and

the loop connecting helices 1 and 2 have a few contact residues

with moderate RMSF values. Helix 4, which has no contacts with

16S RNA retains its helical structure during the MD simulation

and has moderate RMSF values. Representative backbone

structures for E. coli and T. thermophilus S15 are depicted in

Figure 5. The proteins retain their secondary and tertiary

structures during the MD simulations and only small conforma-

tional changes are observed for either S15 protein. This indicates

that the S15 protein from both organisms is a relatively stable

protein in solution and that the conformations observed during the

simulations are similar to that of the attached protein in the

assembled ribosome.

Table 3 compares the average RMSF for contact residues with

respect to average RMSF for all residues. The average RMSF

value for all E. coli S15 residues is 2.11 Å and for all contact

residues is 2.24 Å. For T. thermophilus S15, all residues average

RMSF is 1.84 Å and all contacts is 2.37 Å. These differences are

small, but statistical analysis shows that S15 contact residues are

positively enriched with mobile residues, as indicated by enrich-

ment factors greater than 1 for both species (Table 3; EF = 1.08

and p-value = 0.217 for E. coli; EF = 1.46 and p-value = 0.008 for

T. thermophilus, see Methodology for explanation of enrichment

factors and the p-value). The P-values for these enrichment factors

signify that the mobility enrichment of T. thermophilus contact

residues is significant while it may not for E. coli.

Dynamics and conformational changes of S17
In the 30S subunit, S17 is also solvent exposed and is located

near S15 in the 59 domain of the 16S rRNA. To date, no X-ray

crystal structures have been determined for S17 alone, but a low

resolution NMR solution structure has been presented for Bacillus

stearothermophilus S17 [59]. The S17 structure found in the E. coli

30S subunit is comprised of a small b-barrel and an extended ß-

hairpin loop (Figure 2b). The contact residues are located on one

end of the b-barrel and in the extended ß-hairpin loop. The S17

from T. thermophilus has an extra C-terminal a-helix which makes

additional contacts with the 16S rRNA (Figure 2b). Thus, E. coli

contact residues exhibit somewhat higher conservation than the

overall sequence does, whereas T. thermophilus contact residues are

slightly less conserved than the sequence of the full-length proteins.

In the E. coli 30S subunit, the S17 ß-hairpin loop is embedded in

rRNA and contains five contacts, three of which are found

contacting helix 11 of the central domain with two contacting the

59 domain at helix 21. The axis of the b-barrel is oriented into the

main part of the rRNA, and the end of the barrel nearest the RNA

contains the remaining contact points, all of which contact the 59

domain of 16S rRNA along helices 7, 9, and 11. Because these

contacting residues associate with both the 59 domain and the

central domain, E. coli S17 is a plausible anchor between them.

The T. thermophilus S17 also contacts these two 16S domains but

includes an additional ten protein contacting residues in its C-

terminal a-helix and coiled tail. These residues have a larger

extent of contact with helix 11 and strengthen the association with

Figure 2. Comparisons of S15, S17, and S20 proteins from two different species. E. coli proteins are shown in the lighter shade and T.
thermophilus in the darker shade. Contact residues are shown as stick representations and some important parts of the proteins, discussed in the text,
are labeled.
doi:10.1371/journal.pcbi.1002530.g002
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the central domain at helices 20 and 27. Research indicates that

the 30S subunit assembly begins at the 16S rRNA 59 end [8] and,

S17 appears to organize the 59 region [14], so it is clear that the

cooperative conformational changes and rRNA binding of this

protein are likely to play an important role in the early stages of

ribosome formation.

During the MD simulation of E. coli S17, the b-sheet structures

remained stable: the average RMSD for this protein was relatively

low (below 5 Å; lime green plot, Figure 3b). Conversely, a much

higher RMSD was observed for S17 from T. thermophilus (olive

green plot, Figure 3b), although the protein did take on a relatively

stable conformation after ,80 ns of simulation. Further investi-

gation reveals that the extra a-helix in T. thermophilus S17 is

responsible for the high RMSD values. The structurally homol-

ogous portions of the proteins have comparable RMSD values (T.

thermophilus homolog: dark green plot, Figure 3b), both around 4 Å.

The backbones of structurally homologous portions both retain

their overall shape during the MD simulations.

S17 RMSF values (Figure 6) were calculated from the MD

simulations starting from the 10 ns point until the end of the

trajectory. While the T. thermophilus S17 generally exhibited larger

deviations from its starting structure than did the E. coli S17, when

sequentially aligned, the RMSF values for the structurally

homologous portions of the proteins correlate well. For E. coli

S17, the loops connecting the ß-strands, the extended ß-hairpin

loop, and both termini exhibit comparably high RMSF values,

whereas the ß-strands participating in the ß-barrel (valleys in

Figure 6) have low RMSF values. The same pattern is true for the

homologous portion of the T. thermophilus RMSF plot, and the

extra C-terminal region exhibits very large RMSF values. The

contact residues in the E. coli S17 are located in the highly mobile

ß-hairpin, the moderately mobile Loops 1 and 6, as well as the

least mobile ß-strands of ß-barrel: ß5, the last residue of ß1, and

the first of ß2. In T. thermophilus S17, there are four regions of the

protein with high RMSF (the N-terminus, the ß-hairpin loop,

Loop 4, and the C-terminus), all of which contain contact residues.

In fact, every residue in Loop 4 is a contact residue, and residues

close to each end of the loop also have high RMSF values. The

three contact residues in the a-helix have high RMSF and the ten

residues in the C-terminal coil have some of the highest RMSF,

seven of which are contact residues. The low and moderate

contact residues are found in the ß-barrel: ß1, Loop 1, ß2, and ß3.

Representative structures seen throughout the E. coli and T.

thermophilus S17 simulations are shown in Figure 7. The RMSF

data and these images indicate that the structurally homologous

regions of the S17 protein behave similarly in solution and that the

ß structures of both homologs retain their overall shape

throughout the simulations, whereas the flexible C-terminal a-

helix in T. thermophilus loses its helical structure. These data imply

that the ß-barrel confers good stability in solution for the two

species.

Further analyses of the relative mobility of contact residues

shows similar trends as S15. The average RMSF (Table 3) for all

residues in E. coli S17 is 1.85 Å and 2.28 Å for all contacting

residues; for T. thermophilus, the average for all residues is 4.68 Å,

and 5.74 Å for all contacting residues. The differences in these

values, while small, indicate that contact residues are, on average,

more mobile than all residues for both S17 proteins. Enrichment

factors for S17 show positive mobility enrichment for contact

residues in both species (Table 3; EF = 1.10 with p = 0.199 for E.

coli; EF = 1.40 with p = 0.008 for T. thermophilus), with p-values

indicating that T. thermophilus enrichment is significant while it may

not be for E. coli.

Dynamics and conformational change of S20
In the 30S subunit crystal structures from both species, protein

S20 is found deeply embedded in the 16S rRNA. This protein

contacts 16S RNA helices 6–9, 11, and13 in the 59 domain and is

the only r-protein to contact helix 44 in the 39 domain. The

structure of S20 consists of a unique set of three bundled a-helices,

with helix 1 twice as long as the others, the N-terminus most

deeply inserted into the subunit, and only a small portion of the

three-helix bundle exposed to solvent. While the E. coli and T.

thermophilus S20 proteins have a generally conserved tertiary body

(Figure 2c), the T. thermophilus S20 crystal structure is missing its

first seven residues and has an additional 15 residue C-terminal tail

which the E. coli protein does not have.

The simulation RMSD values for S20 from both species

oscillate wildly (Figure 3c), indicating the proteins conformation

vary broadly from their starting conformations (up to ,20 Å).

Multiple length simulations (at least 200 ns) show that while S20

RMSD may remain within a range of 5–10 Å for a time, the

protein does not adopt a solution-stable conformation. The S20

RMSF plots (Figure 8) have similar trends for both E. coli and T.

Figure 3. RMSD values for S15, S17, and S20 proteins. E. coli
proteins are represented by lighter squares and T. thermophilus by
darker triangles. The S17 include the RMSD value for just the part of the
structure that is homologous (dark green) to E. coli S17 (omitting the
extra T. thermophilus C-terminal part). Notably, this C-terminal part of
S17 causes the T. thermophilus to greatly increase its overall mobility.
doi:10.1371/journal.pcbi.1002530.g003
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thermophilus S20 proteins, and aside from the first portion of a1, the

three a-helices are primarily located at valleys in the plots. The

highly flexible region of a1 binds to rRNA helices 6, 7, and 13,

whereas the nearby, more stable contact residues in a1 contact the

tip of rRNA helix 44, a helix that has no contacts with any other

small subunit proteins. The remaining contacts have relatively

moderate or low RMSF values. As seen in the other proteins, the

loop regions between the stable secondary structures are located at

peaks in the RMSF plot, whereas the a-helical regions themselves

correspond to the RMSF valleys. Visual inspection of the

Figure 4. RMSF values for S15. E. coli proteins are represented in red with squares indicating contact residues and T. thermophilus proteins are
colored blue with triangles for contacts. In these figures, the proteins have been sequentially aligned to demonstrate the behaviors of the conserved
structural elements. Aligned Residue Numbers, therefore, do not necessarily reflect the actual residue indices of the protein sequence.
doi:10.1371/journal.pcbi.1002530.g004

Figure 5. S15 structural variations during MD simulation. Backbone snapshots of both proteins are in shades of blue (E. coli light blue; T.
thermophilus dark blue). Backbone starting structures are shown in yellow.
doi:10.1371/journal.pcbi.1002530.g005
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trajectories suggests that the major contributor to S20 flexibility is

helix 1 (Figure 9), which extends deeply into the rRNA. The N-

terminal portion of helix 1 bends and swings wildly during the MD

simulations. E. coli helix 1 bends near Arg24 and Thr30 and T.

thermophilus near Lys29.

Previous studies [60] have shown that the free S20 protein in

solution does not exhibit the high percentage of a-helical regions as

seen in the crystallized structure. The conformational variation

exhibited by S20 in the work here is consistent with this data, and

this flexibility coupled with the deep insertion of the protein into the

folds of RNA in the fully-assembled ribosome indicate that S20 is

stabilized primarily by its large number of contacts with the RNA.

The average RMSF trends (Table 3) for S20 contact residues

are generally in agreement with the results presented for S15 and

S17. For E. coli, the average RMSF for all residues is 8.82 Å and

for all contact residues is 9.14 Å. In T. thermophilus, the average

value for all residues is 6.96 Å and 7.62 Å for all contact residues.

These data show that the mean RMSF for all contacts is greater

than that for the whole structure, consistent with the results for

S15 and S17. Both E. coli and T. thermophilus S20 proteins show

positive enrichment of mobility in their contact residues (Table 3;

EF = 1.06 with p-value = 0.215 for E. coli; EF = 1.15 with p-

value = 0.057 for T. thermophilus). However, in this case, the p-

values are both greater than 0.05, a typical threshold used for

statistical significance test.

General trends based on Elastic Network Modeling
To rapidly assess the potential connection between contacting

residues and their mobilities, we use elastic network modeling which

compute RMSF values using only a fraction of the computational

resources required for the MD simulations. The elastic network

models have been applied previously to the ribosome by us

[25,40,45,61], and in general the dynamics calculated via the

Anisotropic Network Model [62–63] correlate reasonably well with

those from the MD simulations. For example, the correlation

coefficient between RMSF values calculated for E. coli S15 is 0.57,

for S17 is 0.63, and for S20 is 0.81. ANM and MD predict similar

patterns of mobility and stability, with most of the discrepancy at the

terminal residues and highly flexible regions (such as S20 a-helix 1

and S17 ß-hairpin loop). In fact, if the first two and last two residues

of E. coli S15 are excluded, the correlation factor increases to 0.67.

The MD simulations typically predict greater terminal residue

mobility (except for the highly mobile S20 helix 1) and the ANM

calculations consistently predict higher fluctuation values for

extended residues in the middle of the protein.

ANM mobility enrichment was calculated for all 19 r-proteins in

the two 30S X-ray structures and results are presented in Table 4.

Table 3. Average MD RMSF values (in Å; standard deviations
in parentheses) and enrichment factors EF.

All Residues All Contacts
Contact
EF P-value

E. coli S15 2.11 (1.24) 2.24 (1.27) 1.08 0.217

S17 1.85 (0.94) 2.28 (0.92) 1.10 0.199

S20 8.82 (3.17) 9.14 (3.34) 1.06 0.215

T.
thermophilus

S15 1.84 (1.29) 2.37 (1.66) 1.46 0.008

S17 4.68 (2.93) 5.74 (3.40) 1.40 0.008

S20 6.96 (2.94) 7.62 (2.80) 1.15 0.057

doi:10.1371/journal.pcbi.1002530.t003

Figure 6. RMSF values for S17. E. coli proteins are represented in red with squares indicating contact residues and T. thermophilus proteins are
colored blue with triangles for contacts. In these figures, the proteins have been sequentially aligned to demonstrate the behaviors of the conserved
structural elements. Aligned Residue Numbers, therefore, do not necessarily reflect the actual residue indices of the protein sequence.
doi:10.1371/journal.pcbi.1002530.g006
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Most r-proteins are significantly enriched for mobile residues at

the rRNA contact points at the 0.05 level. Contacting residues are

not only enriched, but they make up a subset of residues that is

near maximal enrichment, for a given structure. Proteins S2, S6,

S8, S18 and S19 do not show statistically significant enrichments

and are colored red in Table 4. As mentioned earlier, S2 and S6

differ from the rest of r-proteins in that they do not have a net

positive charge. Also S6 and S18 are known to form dimers in

solution. Hence calculation of their dynamics as monomers may

not reflect their true dynamics in solution. S8 is one of the primary

binding r-proteins and S19 is one of the secondary binding r-

proteins. At present, we do not know specific properties that may

make these two proteins differ from the rest. Although their EF

values are greater than one (rRNA contacts are more mobile),

their p-values do not reach the level of high statistical significance

(they are not a maximally enriched subset). In addition to those r-

Figure 7. S17 structural variations during MD simulation. Backbone snapshots of both proteins are in shades of green (E. coli light green; T.
thermophilus dark green). Backbone starting structures are shown in yellow.
doi:10.1371/journal.pcbi.1002530.g007

Figure 8. RMSF values for S20. E. coli proteins are represented in red with squares indicating contact residues and T. thermophilus proteins are
colored blue with triangles for contacts. In these figures, the proteins have been sequentially aligned to demonstrate the behaviors of the conserved
structural elements. Aligned Residue Numbers, therefore, do not necessarily reflect the actual residue indices of the protein sequence.
doi:10.1371/journal.pcbi.1002530.g008
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proteins, S14, S17 and S20 are not significantly enriched with

mobile residues for E. Coli, but are statistically significant enriched

for T. Thermophilus. On average, T. thermophilus proteins show a

slightly increased enrichment relative to E. coli; with average

enrichment factors of 1.51 and 1.46, respectively, with medians of

1.43 and 1.33. Of the 6 proteins categorized as being early by the

Harvey group [38], two E. coli and five T. thermophilus have mobility

enrichments significant at the 0.05 level. Of the six primary proteins

identified by Nomura [7], three E. coli and five T. thermophilus are

significant at the 0.05 level. Proteins involved later in assembly are

not differentially significant between the two species. This may

imply that thermophiles exhibit increased control over the

placement of mobile residues within proteins that bind to rRNA.

Conclusion
Several important conclusions can be reached based on the

above reported results. First, the positively charged residues on r-

proteins must play important roles in binding with 16S rRNA, as

noted earlier [10,46–47]. A significantly higher percentage of

contacts between r-proteins and rRNA are formed by these

positively charged and hydrogen bonding residues. We also see

that r-proteins from a thermophilic species (T. thermophilus) have

more positively charged residues than a mesophilic species (E. coli),

which correlates with the fact that thermophilic ribosomes must

maintain stronger (or a larger number of) interactions in order to

function at considerably higher temperatures. Second, as previ-

ously discussed [36], conformational changes of r-proteins could

take place during 16S rRNA binding. Our study clearly shows that

a-helix 1 of S20 is unstable in solution by itself and exhibits large

conformational changes. In contrast, S15 and S17 adopt stable

conformations in solution, which agrees with the earlier suggestion

[37] that ribosomal proteins do not undergo structural changes

during assembly. We attribute the differences in these behaviors to

the extent of solvent exposure the protein experiences within the

assembled subunit. In the ribosome, S15 and S17 are primarily

Figure 9. S20 structural variations during MD simulation. Backbone snapshots of both proteins are shown in shades of red (E. coli light red; T.
thermophilus dark red). Backbone starting structures are in yellow.
doi:10.1371/journal.pcbi.1002530.g009

Table 4. ANM enrichment factors and significance for 30S
proteins.

T. Thermophilus E. Coli

EF p-value EF p-value

S02 0.97 0.505 1.05 0.352

S03 2.22 0.001 2.07 ,0.001

S04 1.39 0.013 1.44 0.005

S05 1.78 0.004 1.62 0.012

S06 0.83 0.452 1.11 0.278

S07 2.76 ,0.001 1.85 0.041

S08 1.35 0.074 1.27 0.108

S09 2.15 ,0.001 1.73 ,0.001

S10 1.40 0.010 1.73 ,0.001

S11 1.69 0.008 3.20 ,0.001

S12 1.58 0.001 1.40 0.007

S13 1.43 0.002 1.48 ,0.001

S14 1.55 0.017 1.10 0.179

S15 1.36 0.005 1.23 0.038

S16 1.67 0.004 1.02 0.428

S17 1.48 0.005 1.33 0.063

S18 0.58 0.936 0.93 0.585

S19 1.09 0.125 0.88 0.166

S20 1.33 0.031 1.24 0.063

Note: EF is the enrichment factor, defined as the ratio of root mean square
fluctuations for contacting over non-contacting residues. The P-value is the
statistical significance computed with a permutation test. See text for details.
doi:10.1371/journal.pcbi.1002530.t004
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solvent exposed so their solution structures would be likely to more

closely resemble their bound structures, whereas S20 is deeply

embedded in the 16S RNA, and its association with its RNA

binding site stabilizes the flexible portion of a-helix 1. Third,

analyses of residue mobilities reveal that RMSF values for contact

residues are statistically higher than those for other residues. This

means that contacting regions are more enriched with mobile

residues than non-contacting regions, which supports previous

observations [37] that the flexible regions of ribosomal proteins are

usually the locations of RNA contacts. However, this does not

mean that all contact residues are located in the flexible loop

regions. It is important to point out that there are many contact

residues found in a-helices and b-sheets that exhibit low to

moderate RMSF values. The trend that contact residues being

enriched with mobile residues holds for most of 30S r-proteins,

with only a few distinct exceptions like S2, S6, S18. Their

exceptions however could be traced to peculiar known facts such

as dimerization between S6 and S18. The increased mobility of

contact residues could ensure more efficient binding and even aid

in the binding site preparation for later binding proteins by

actively associating with their 16S binding partners and helping to

fold and maintain the appropriate rRNA tertiary structure. The T.

thermophilus exhibited higher enrichment factors than the E. Coli,

which may point to a novel adaptation of thermophiles – the

increased control over the placement of highly mobile residues.

Methods

Analysis of contacts in the assembled 30S subunits
In the current study, we analyze the crystal structures of the 30S

subunits from the Escherichia coli (PDB [64] ID 2AVY [9]) and

Thermus thermophilus ribosomes (PDB ID 1J5E [10]). Structural and

sequence alignments of r-proteins found in the two species were

done with Molecular Operating Environment (MOE) software

(Chemical Computing Group). Contacts between r-proteins and

16S rRNA were analyzed using our own computer program. A

contact point was defined as any atom of a protein residue found

within a 3.5 Å cut-off distance from any 16S nucleotide atom.

That amino acid was labeled as a ‘‘contact’’ residue. The total

number of ‘‘contacts’’ between one r-protein and the 16S rRNA

may exceed the total number of contacting residues identified in

the protein because an amino acid may be within cutoff distance of

more than one nucleotide, thus counting as more than one

contact. The identity and position of these contact residues found

in the assembled 30S subunit were recorded and used for further

analysis.

Molecular Dynamics simulations
Molecular dynamics (MD) simulations were run using the

AMBER 10 software package [65] and the parmbsc0 force field

[66], an optimization of the Amber99 force field for nucleic acids

and proteins. The starting conformations of r-proteins for the MD

were obtained from the crystal structures of the 30S subunits (E.

coli 2AVY and T. thermophilus 1J5E). Counterions were added to

neutralize the charge of the protein, and an additional 10

potassium and 10 chloride ions were added to create a low salt

concentration. The protein systems were then solvated using a

rectangular box of TIP3P water [67]. The systems were subjected

to two minimization cycles: 1000 steps with the protein fixed and

5000 steps unrestrained. Afterward, a 100 ps warm-up MD

simulation was run at constant volume by increasing temperature

from 0 to 300 K, with the protein fixed using a restraint constant

of 10.0 kcal?mol21?Å22. The MD simulation then switched to the

NPT ensemble (p = 1.0 bar), using the Langevin thermostat with a

collision frequency of 1.0 ps21, to equilibrate the ions and water

density for 2 ns. The restraint force on the protein was then

removed and the production run began with the NPT ensemble

(p = 1.0 bar) using a time step of 2 fs. All simulations used the

SHAKE algorithm [68–69] to constrain covalently bonded

hydrogen atoms and the Particle Mesh Ewald (PME) method

[70] to calculate long-range electrostatic interactions, with a cutoff

distance of 10.0 Å. Histidines are represented as HIE (neutral

charge: hydrogenated Ne, aromatic Nd). Duplicate MD simula-

tions were performed to verify that the reported dynamic

behaviors of each protein are representative in the final MD runs.

MD production runs were performed for at least 200 ns, which

should be of sufficient length to establish the conformational

stabilities of proteins of this size.

Using Ptraj to monitor the overall structural changes in reference

to the starting structure, the root-mean-square deviation (RMSD)

for each protein was calculated as a function of production run time.

If the plot of the RMSD versus time forms a plateau, the protein

likely adopts a solution-stable conformation; however, a widely

fluctuating RMSD plot indicates a flexible protein in solution. To

quantify the mobility of each residue, root-mean-square fluctuations

(RMSF) were calculated using the average protein conformation as

the reference state. The RMSF values presented in this paper are

calculated from 10 ns to the end of each simulation (approximately

200 ns) to allow adequate time for the protein to fully adopt its

stable solvated conformation, if one was at all achieved. This ensures

that the RMSF plot differentiates flexible residues from stationary

residues during the time that the protein samples its solution-stable

conformations. In both RMSD and RMSF calculations, all atoms

were included.

The RMSF is related to the experimental B-factors reported by

crystallographers, through a simple relationship (B-factor = (8/

3)p2(RMSF)2), which could be compared with the experimental

measured B-factors reported in the PDB files of the 30S subunits.

However, the experimental B-factors for each r-protein found in

the 30S subunits were nearly featureless for individual proteins,

probably because the reported B factors reflect the mobility of the

atoms within the whole assembled subunit and are not represen-

tative of the individual r-proteins. Hence, we did not compare the

B-factors calculated from MD simulations with the experimental

B-factors.

Snapshots of each protein at various stages throughout the

simulations were visualized using Visual Molecular Dynamics [71]

(VMD) to identify the flexible and stable regions of the protein. All

images were made with VMD, which is developed with NIH

support by the Theoretical and Computational Biophysics group

at the Beckman Institute, University of Illinois at Urbana-

Champaign.

Elastic network modeling
Because the Molecular Dynamics simulations require significant

resources, we have also chosen to model the dynamics of the

complete set of 30S ribosomal proteins with the more computa-

tionally efficient elastic network model [72], using the Anisotropic

Network Model in particular [63,73], ANM models permit us to

investigate the dynamics of all of the 30S proteins more quickly but

with less detail in the observed dynamics than MD, but with

greater overall certainty about the large-scale motions of the

structures. ANM models are constructed using the crystallographic

Ca coordinates of each protein and a cutoff of 13 Å. Due to its

coarse-grained design, the ANM is subject to the ‘‘tip effect’’ [74–

75] in which highly extended points (Ca) experience exaggerated

motions, which would place disproportionate weight on the most

mobile residues. To compensate for this effect, we calculate the
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RMSF of each residue position in each structure and remove

extreme outliers from subsequent analyses. The ‘‘tip effect’’

residues removed in this study are Arg88 and Gly89 from T.

thermophilus S15, and Gly8, Val9, Val10, and Val11 from T.

thermophilus S17. We also use RMSF to make comparisons between

16S rRNA contacting residues and non-contacting or highly

conserved residues. The definition of contacting residues and

conserved residues is the same in both the ANM calculations and

the MD studies.

Statistical analysis of contact residue mobility
To statistically determine linkages between highly mobile and

contacting residues or conserved residues from both ANM

calculation and MD simulation, we calculate an enrichment

factor for each protein defined as the ratio of the average RMSF

for contacting over non-contacting residues. An enrichment factor

greater than 1 implies that the contacting residues are more

mobile than the non-contacting residues. However, an enrichment

factor less than 1 implies the reverse. The statistical significance (p-

value) of the enrichment factor is calculated based on the

permutation test explained as follows. For a protein of N residues,

C of which are contacting, we have an observation of the

enrichment of RMSF at the contacting residues relative to the

non-contacting residues. Let this ratio be O. We then randomly

select C residues from the protein and calculate the analogous

ratio between this random set and its compliment. Performing the

random selection 10,000 times, we construct a distribution of

enrichment values within random sets of C residues. The

significance (p-value) of our initial observation, O, is then the

proportion of random samples that have an enrichment greater

than O. A small p-value (e.g., p,0.01) implies that a random set of

C residues is unlikely to have an enrichment factor equal or

greater than the observed ratio O. This not only means that the

contacting residues are more mobile than the non-contacting

residues, but that there are very few subsets of size C exhibiting the

same magnitude of mobility.
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