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Artificial intelligence-aided clinical annotation
of a large multi-cancer genomic dataset
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To accelerate cancer research that correlates biomarkers with clinical endpoints, methods are

needed to ascertain outcomes from electronic health records at scale. Here, we train deep

natural language processing (NLP) models to extract outcomes for participants with any of

7 solid tumors in a precision oncology study. Outcomes are extracted from 305,151 imaging

reports for 13,130 patients and 233,517 oncologist notes for 13,511 patients, including patients

with 6 additional cancer types. NLP models recapitulate outcome annotation from these

documents, including the presence of cancer, progression/worsening, response/improve-

ment, and metastases, with excellent discrimination (AUROC > 0.90). Models generalize to

cancers excluded from training and yield outcomes correlated with survival. Among patients

receiving checkpoint inhibitors, we confirm that high tumor mutation burden is associated

with superior progression-free survival ascertained using NLP. Here, we show that deep NLP

can accelerate annotation of molecular cancer datasets with clinically meaningful endpoints

to facilitate discovery.
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Modern cancer research increasingly focuses on precision
oncology1, seeking to identify prognostic and predictive
biomarkers to guide drug discovery and selection of

optimal therapies for individual patients. Pursuing this objective,
particularly for uncommon cancers or rare biomarker patterns for
common malignancies, requires large datasets of tumors that
have undergone deep molecular characterization. Such datasets
are increasingly available2–5, but their utility has been limited
by the absence of scalable methods for gathering the clinical
outcomes data necessary to pursue patient-relevant research
questions. Basic outcomes, such as whether and when a cancer
progresses or responds to treatment, are generally not recorded
in a structured format outside of therapeutic clinical trials.
Extraction of such outcomes from electronic health records
has historically required resource-intensive manual medical
records review, which has been further limited by the absence of
a standardized data model for medical record annotation across
studies.

We have developed the structured Pathology, Radiology/
Imaging, Signs/Symptoms, Medical oncologist assessment, and
bioMarkers (PRISSMM) data model for extracting clnical out-
comes for linkage to genomic datasets in a structured and
reproducible manner6. PRISSMM provides a rubric for manual
abstraction of specific cancer outcomes from individual imaging
reports and medical oncologist notes. These outcomes include
the presence of cancer within specific documents and at specific
body sites; cancer progression/worsening; and cancer response/
improvement. Annotations of individual reports along the dis-
ease trajectory can then be analyzed to derive relevant end-
points, such as progression-free survival indexed from initiation
of a given treatment7.

The PRISSMM annotations generated for individual electronic
health record (EHR) documents can also be leveraged as labels to
train machine learning models to perform annotation auto-
matically. We previously demonstrated the feasibility of training
interpretable natural language processing (NLP) models to extract
outcomes from imaging reports8 and medical oncologist notes9

for patients with non-small cell lung cancer. The generalizability
of this approach to other types of cancer and its application to
create a linked clinico-genomic dataset have not been previously
described.

Here, we train such models using labeled data from patients
with multiple types of cancer; demonstrate their generalizability
to cancer types not seen in training; and evaluate associations
between NLP-derived clinical annotations and overall survival.
Finally, we create a large multi-cancer clinico-genomic dataset by
applying this technique to EHR data at scale, and we demonstrate
the utility of this type of dataset by exploring associations between
tumor mutation burden and progression-free survival on immune
checkpoint inhibitor therapy.

Results
Cohort. We identified patients with any of 13 common malignant
solid tumors whose tumor specimens underwent next generation
sequencing (NGS) through the PROFILE initiative at Dana-
Farber Cancer Institute (DFCI) from 2013 to 20214,10. Cancer
types included breast, colorectal, endometrial, gastric/esophageal,
head and neck, leiomyoscarcoma, non-small cell lung, melanoma,
high-grade serous ovarian, pancreatic, prostate, renal cell, and
urothelial cancers. The imaging report cohort included 13,130
patients with 304,160 reports (Table 1), and the oncologist
note cohort included 13,511 patients with 232,575 reports
(Table 2); most patients (n= 11,096) had both imaging reports
and oncologist notes. Manual medical record review per the
PRISSMM framework was performed for a subset of patients with

non-small cell lung, breast, colorectal, pancreatic, prostate, renal
cell, or urothelial cancer. This annotation included 2,830 patients
with 31,196 labeled imaging reports (Table 1) and 2,747 patients
with 32,311 labeled medical oncologist notes (Table 2). No
manual annotation was performed for patients with endometrial,
gastric/esophageal, head and neck, leiomyosarcoma, melanoma,
or high-grade serous ovarian cancers. Additional details about the
cohort, including the distribution of common somatic mutations
on NGS, are provided in Tables 1 and 2.

NLP model performance on a per-document basis. When
evaluated in the test subset, NLP models trained to extract out-
comes from all labeled training imaging reports yielded areas
under the receiver operating characteristic curve (AUROCs) of
0.98 for the any-cancer outcome, 0.95 for progression/worsening
cancer, and 0.97 for response/improving cancer. NLP models also
reliably ascertained the presence of cancer at specific metastatic
sites, with AUCs of 0.99 for brain, 0.99 for bone, 0.99 for adrenal,
0.99 for liver, 0.98 for lung, 0.98 for nodal, and 0.99 for peritoneal
metastasis (Table 3). The sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) of these
models at both the best F1 and best Youden cutoff thresholds are
provided in Supplementary Fig. 1A–J. Performance was con-
sistent (AUROCs > 0.90) across types of cancer, with the excep-
tion of peritoneal metastasis for urothelial carcinoma (AUROC
0.81). Model discrimination remained similar across individual
cancer types even when models were re-trained without data for
that cancer type (for example, AUROC range 0.95–0.98 for the
any-cancer outcome, 0.92–0.96 for the progression/worsening
outcome, and 0.94–0.98 for the response/improvement outcome;
Table 3).

Models trained to extract outcomes from all labeled training
medical oncologist notes yielded AUROCs of 0.93 for the any-
cancer outcome, 0.92 for the progression/worsening outcome, and
0.93 for the response/improving outcome (Table 4). The sensitivity,
specificity, PPV, and NPV of these models at the best F1 and best
Youden cutoff thresholds are provided in Supplementary Fig. 1K–M.
Performance was generally consistent (AUROCs > 0.90) across
cancer types, except for AUROCs of 0.78 for the any-cancer
outcome in pancreas cancer; 0.87 for cancer progression and
response in prostate cancer; 0.86 for progression and 0.89 for
response in renal cell carcinoma; and 0.78 for progression in
urothelial cancer (Table 4). As observed for the imaging reports,
performance for medical oncologist note evaluation was similar
when evaluated using labels from cancer types excluded from
training; Table 4.

Given variability by cancer type in model performance for
medical oncologist notes, we explored apparent incorrect model
predictions for the any-cancer outcome for pancreatic cancer. For
pancreatic cancer, there were 467 notes for 48 patients in the test
set. Of these, 45 notes for 7 patients were apparent false positives:
that is, the predicted probability of “any cancer” was above the
best F1 threshold, but the manual annotation indicated no cancer
in that note. Of the 45 notes, 28 notes belonged to one patient
who had a history of pancreatic cancer in remission but also had
metastatic breast cancer treated after the index pancreatic cancer.
Most of these notes corresponded to a time period when the
breast cancer was under active treatment but the pancreatic
cancer was in remission. Model predictions appeared to capture
this active (breast) cancer period, but manual annotations
indicated the absence of the specific index pancreatic cancer that
led to cohort eligibility for manual abstraction. If this single
patient’s notes had been removed from the full test set, the
calculated AUROC would have increased from 0.78 to 0.93.
Overall, this review of “false positives” indicates that apparent
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NLP model errors may consist of a mixture of outcomes truly
missed by trained models, and cases in which the models may
have captured the intended outcome but the manual annotations
used for evaluation did not.

In a sensitivity analysis performed to evaluate the general-
izability of these NLP models when applied for inference to future
time periods, models for imaging reports and oncologist notes
were re-trained using reports through 2017 but evaluated using
reports from 2018. AUROCs remained ≥0.90 for all endpoints
(Supplementary Table 1).

Associations between AI-curated endpoints and overall survi-
val. Among 4,953 patients in the imaging report cohort with any
of the 13 types of cancer in this study who received palliative-
intent systemic therapy, progression/worsening, treated as a time-
varying covariate, was associated with increased mortality
(Hazard ratio, HR, 2.03, 95% CI 1.87–2.20); and response/
improvement, treated as a time-varying covariate, was associated
with decreased mortality (HR 0.36, 95% CI 0.30–0.43). These
associations remained consistent in an analysis restricted to the
subgroup of 1,241 patients who had any of the 6 cancer types for

which no manually labeled documents were available (HR for
progression/worsening, 1.84, 95% CI 1.56–2.16; HR for response/
improvement, 0.27, 95% CI 0.18–0.41); Table 5. Among 5,064
patients in the medical oncologist note cohort with any of the 13
cancer types in this study who received palliative-intent systemic
therapy, progression/worsening was associated with increased
mortality (HR 4.34, 95% CI 4.02–4.70), and response/improve-
ment was associated with decreased mortality (HR 0.45, 95% CI
0.38–0.54). Again, these associations remained consistent in the
subgroup of 1,267 patients with any of the 6 cancer types for
which no manually labeled documents were available (HR for
progression/worsening, 4.68, 95% CI 3.99–5.48; HR for response/
improvement, 0.46, 95% CI 0.30–0.70); Table 5. Associations
between these outcomes and OS in individual cancer types are
also provided in Table 5.

Correlations between PRISSMM-derived progression-free sur-
vival (PFS) endpoints and OS. Progression-free survival, or the
time from an index event to the composite of cancer growth or
death, is commonly applied as an outcome in cancer research11. It
may be considered as a potential endpoint in certain contexts

Table 1 Characteristics of patients with radiology reports for analysis.

Total number of patients and
radiology reports

Number of patients with unlabeled
radiology reports and number of
unlabeled radiology reports

Number of patients with labeled
radiology reports and # of labeled
radiology reports

Patients N (%) Reports N (%) Patients N (%) Reports N (%) Patients N (%) Reports N (%)

Total cohort 13130 (100) 304160 (100) 10300 (100) 272964 (100) 2830 (100) 31196 (100)
Sex

Male 5621 (43) 105503 (35) 4055 (39) 89849 (33) 1566 (55) 15654 (50)
Female 7509 (57) 198657 (65) 6245 (61) 183115 (67) 1264 (45) 15542 (50)

Age at next generation genomic sequencing
<40 625 (5) 14439 (5) 488 (5) 12835 (5) 137 (5) 1604 (5)
40–49 1329 (10) 30868 (10) 999 (10) 26490 (10) 330 (12) 4378 (14)
50–59 3092 (24) 75681 (25) 2400 (23) 67920 (25) 692 (24) 7761 (25)
60–69 4172 (32) 99399 (33) 3295 (32) 90158 (33) 877 (31) 9241 (30)
70–79 2944 (22) 65229 (21) 2335 (23) 58700 (22) 609 (22) 6529 (21)
80+ 968 (7) 18544 (6) 783 (8) 16861 (6) 185 (7) 1683 (5)

Race as recorded in the electronic health record
Asian 424 (3) 10724 (4) 353 (3) 9716 (4) 71 (3) 1008 (3)
African-American 458 (3) 10649 (4) 348 (3) 9470 (3) 110 (4) 1179 (4)
Native American 11 (<1) 193 (<1) 10 (<1) 184 (<1) 1 (<1) 9 (<1)
Pacific Islander 4 (<1) 144 (<1) 4 (<1) 144 (<1) 0 (0) 0 (0)
White 11760 (90) 272156 (89) 9205 (89) 244173 (89) 2555 (90) 27983 (90)
More than one race 39 (<1) 729 (<1) 33 (<1) 652 (<1) 6 (<1) 77 (<1)
Other/unknown 434 (3) 9565 (3) 347 (3) 8625 (3) 87 (3) 940 (3)

Cancer type
Breast 2029 (15) 63789 (21) 1676 (16) 58209 (21) 352 (12) 5527 (18)
Colorectal 1958 (15) 37570 (12) 1493 (14) 32986 (12) 466 (16) 4588 (15)
Endometrial 482 (4) 9801 (3) 482 (5) 9801 (4) 0 (0) 0 (0)
Gastroesophageal 878 (7) 19794 (7) 878 (9) 19794 (7) 0 (0) 0 (0)
Head and neck 461 (4) 8796 (3) 460 (4) 8795 (3) 0 (0) 0 (0)
Leiomyosarcoma 144 (1) 6241 (2) 144 (1) 6241 (2) 0 (0) 0 (0)
Non-small cell lung 3378 (26) 82609 (27) 2763 (27) 73758 (27) 614 (22) 8838 (28)
Melanoma 733 (6) 20621 (7) 731 (7) 20591 (8) 0 (0) 0 (0)
Ovarian 646 (5) 22248 (7) 646 (6) 22248 (8) 0 (0) 0 (0)
Pancreatic 685 (5) 7854 (3) 295 (3) 4477 (2) 394 (14) 3450 (11)
Prostate 617 (5) 7506 (2) 164 (2) 2851 (1) 453 (16) 4676 (15)
Renal cell carcinoma 499 (4) 4737 (2) 84 (<1) 1721 (<1) 415 (15) 3016 (10)
Urothelial carcinoma 620 (5) 12594 (4) 484 (5) 11492 (4) 136 (5) 1101 (4)

Common tumor genomic variants
TP53 mutation 5330 (41) 124663 (41) 2486 (42) 112237 (41) 1044 (37) 12426 (40)
KRAS mutation 2785 (21) 53735 (18) 2012 (20) 45775 (17) 773 (27) 7960 (26)
PIK3CA mutation 1738 (13) 43168 (14) 1455 (14) 39788 (15) 283 (10) 3380 (11)
APC mutation 1215 (9) 24381 (8) 942 (9) 21627 (8) 273 (10) 2754 (9)
BRAF mutation 688 (5) 15938 (5) 587 (6) 14918 (5) 101 (4) 1020 (3)
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where prolonged survival is common, such that using an overall
survival endpoint may require prolonged follow-up to accrue an
adequate number of events; and when multiple lines of treatment
are common, such that associations between early lines of treat-
ment and outcomes may be masked by subsequent crossover to
other treatments. The utility of PFS as a surrogate for OS is
sometimes evaluated by measuring its correlation with OS either
on a treatment effect or per-patient basis7,12–14. Here, we mea-
sured the correlation between PFS endpoints derived using our
NLP models and OS on a per-patient basis among 5,481 patients
in the cohort who initiated palliative-intent therapy before
December 31, 2019.

Candidate PFS endpoints for this analysis included PFS-I, or
the time to first progression/worsening documented on imaging
report, or death; PFS-M, the time to first progression/worsening
documented on medical oncologist assessment, or death; PFS-I-
or-M, time to first indication of progression/worsening on
imaging report or medical oncologist assessment, or death,
whichever was earliest; and PFS-I-and-M, time from treatment
start to progression/worsening having been documented on both

an imaging report and a medical oncologist assessment, or death.
Correlations between each of these outcomes and OS were
calculated. The highest correlation was between PFS-I-and-M and
OS (rho= 0.75, 95% CI 0.73–0.76), which was similar to the
correlation we previously observed for manually labeled end-
points for non-small cell lung cancer and colorectal cancer7. The
correlation between PFS-I and OS was 0.64 (95% CI 0.62–0.66);
between PFS-M and OS, 0.59 (95% CI 0.56–0.61); and between
PFS-I-or-M and OS, 0.53 (95% CI 0.51–0.55). Kaplan–Meier
estimates for OS and each PFS outcome are depicted in
Supplementary Fig. 2.

Association between tumor mutation burden and PFS among
patients receiving immunotherapy. To demonstrate an appli-
cation of a clinico-genomic dataset in which clinical outcomes
were defined using our NLP models, we examined the association
between PFS and tumor mutation burden (TMB), which has
previously been characterized as a predictive biomarker for
patients receiving immunotherapy15–17, among 1,374 patients
who received 1,694 lines of palliative-intent systemic therapy

Table 2 Characteristics of patients with medical oncologist notes for analysis.

Total number of patients and
medical oncologist notes

Number of patients with unlabeled
medical oncology notes and number
of unlabeled medical
oncology notes

Number of patients with labeled
medical oncology notes and number
of labeled medical oncology notes

Patients N (%) Reports N (%) Patients N (%) Reports N (%) Patients N (%) Reports N (%)

Total cohort 13511 (100) 232575 (100) 10764 (100) 200264 (100) 2747 (100) 32311 (100)
Sex

Male 5561 (41) 88755 (38) 4088 (38) 71790 (36) 1473 (54) 16965 (53)
Female 7950 (59) 143820 (62) 6676 (62) 128474 (64) 1274 (46) 15346 (47)

Age at next generation tumor genomic sequencing
<40 733 (5) 13111 (6) 574 (5) 11226 (6) 159 (6) 1885 (6)
40–49 1477 (11) 26420 (11) 1139 (11) 21511 (11) 338 (12) 4909 (15)
50–59 3297 (24) 61142 (26) 2616 (24) 52618 (26) 681 (25) 8524 (26)
60–69 4277 (32) 74818 (32) 3432 (32) 65689 (33) 845 (31) 9129 (28)
70–79 2864 (21) 45914 (20) 2301 (21) 39553 (20) 563 (20) 6361 (20)
80+ 863 (6) 11170 (5) 702 (7) 9667 (5) 161 (6) 1503 (5)

Race as recorded in the electronic health record
Asian 439 (3) 7914 (3) 361 (3) 6902 (3) 78 (3) 1012 (3)
African-American 445 (3) 7785 (3) 344 (3) 6550 (3) 101 (4) 1235 (4)
Native American 13 (<1) 99 (<1) 11 (<1) 93 (<1) 2 (<1) 6 (<1)
Pacific Islander 4 (<1) 123 (<1) 4 (<1) 123 (<1) 0 (0) 0 (0)
White 12132 (90) 207897 (89) 9653 (90) 179147 (89) 2479 (90) 28750 (89)
More than one race 36 (<1) 738 (<1) 31 (<1) 655 (<1) 5 (<1) 83 (<1)
Other/unknown 442 (3) 8019 (3) 360 (3) 6794 (3) 82 (3) 1225 (4)

Cancer type
Breast 2382 (18) 47595 (20) 1972 (18) 41462 (21) 409 (15) 6105 (19)
Colorectal 2447 (18) 35459 (15) 1922 (18) 29451 (15) 526 (19) 6011 (19)
Endometrial 524 (4) 6754 (3) 524 (5) 6754 (3) 0 (0) 0 (0)
Gastroesophageal 1019 (8) 16363 (7) 1019 (9) 16363 (8) 0 (0) 0 (0)
Head and neck 447 (3) 10901 (5) 446 (4) 10898 (5) 0 (0) 0 (0)
Leiomyosarcoma 168 (1) 4581 (2) 168 (2) 4581 (2) 0 (0) 0 (0)
Non-small cell lung 2838 (21) 43360 (19) 2297 (21) 38090 (19) 540 (20) 5237 (16)
Melanoma 756 (6) 19100 (8) 754 (7) 19064 (10) 0 (0) 0 (0)
Ovarian 713 (5) 19885 (9) 713 (7) 19885 (10) 0 (0) 0 (0)
Pancreatic 878 (6) 9111 (4) 397 (4) 5016 (3) 485 (18) 4173 (13)
Prostate 549 (4) 7818 (3) 99 (<1) 1678 (8) 451 (16) 6167 (19)
Renal cell carcinoma 364 (3) 4434 (2) 93 (<1) 756 (<1) 271 (10) 3680 (11)
Urothelial carcinoma 426 (3) 7214 (3) 360 (3) 6266 (3) 65 (2) 938 (3)

Common tumor genomic variants
TP53 mutation 5780 (43) 99351 (43) 4675 (43) 87185 (44) 1105 (40) 12166 (38)
KRAS mutation 2993 (22) 39485 (17) 2161 (20) 31814 (16) 832 (30) 7671 (24)
PIK3CA mutation 1897 (14) 32896 (14) 1618 (15) 29345 (15) 279 (10) 3551 (11)
APC mutation 1457 (11) 22278 (10) 1147 (11) 18628 (9) 310 (11) 3650 (11)
BRAF mutation 727 (5) 13091 (6) 628 (6) 12071 (6) 99 (4) 1020 (3)

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27358-6

4 NATURE COMMUNICATIONS |         (2021) 12:7304 | https://doi.org/10.1038/s41467-021-27358-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


containing an immune checkpoint inhibitor. We defined PFS as
PFS-I-and-M, based on the results of the analysis of correlation
with OS above. The index time point was initiation of an
immunotherapy regimen. In a Cox model that treated TMB as a
continuous variable, with adjustment for cancer type and line of
therapy and accounting for repeated measures among patients,
there was a significant association between a higher TMB and
longer survival (HR 0.99, 95% CI 0.98–0.99, per mutation per
megabase; p < 0.001). This association persisted when TMB was
dichotomized into high (>=20 mutations/megabase) or low (<20
mutations/megabase)15 (HR for TMB-high, 0.64, 95% CI
0.53–0.78, p < 0.001), including among patients with any of the 5
cancer types for which no labeled data were available (HR for
TMB-high, 0.60, 95% CI 0.45–0.80, p < 0.001). Notably, PFS
events accrued more quickly than did mortality events in these
analyses. For example, the median PFS was 3.1 months for
patients with TMB-low tumors and 7.1 months for patients with
TMB-high tumors, whereas the median OS was 11.2 months for
patients with TMB-low tumors and 21.6 months for TMB-high
tumors, even after left truncation was performed for the OS
analyses to remove immortal time related to the requirement that
patients have genomic testing for cohort entry18. Unadjusted
Kaplan–Meier curves depicting associations between TMB and
PFS are provided in Fig. 1 and Supplementary Fig. 3.

Discussion
We deployed deep NLP “artificial intelligence” neural network
methods to extract clinical outcomes, including cancer response,
progression, and metastatic sites, for linkage to genomic data for a
large cohort of patients with common solid tumors. Models for
this study were trained and validated using labels based manual
review of approximately 21% of the overall cohort, but the models
were able to generalize to patients whose records had not been
reviewed and even to cancer types other than those included in
model training. Automatically extracted outcomes demonstrated

expected correlations with overall survival. We demonstrated the
utility of this approach for genomically-informed cancer research
by measuring the association between tumor mutation burden
and progression-free survival across cancer types.

These findings have implications for the conduct of both retro-
spective and prospective precision oncology research. In contexts
where large quantities of molecular data are available, including
academic cancer centers4,10,19,20 as well as linkages between com-
munity practice EHRs and genomic data15, limited clinical anno-
tation could be performed to train models that can annotate
remaining held-out records, substantially increasing statistical power
to understand rare response patterns and uncommon biomarkers.
This method could also inform application of electronic health
record annotation for ascertaining outcomes in prospective prag-
matic trials for which traditional radiographic response assessment
might be impractical or prohibitive.

Strengths of this analysis include its application of a structured
framework for medical record annotation to derive clinical out-
comes data across cancer types and its demonstration that NLP
models trained to extract outcomes from records for patients with
one type of cancer can generalize to outcome extraction for other
cancer types. Limitations include the requirement for at least some
manual annotation to train and validate initial models; practical
deployment in a prospective context would also require limited
periodic annotation to monitor model performance as annotation
expands to new cancer types and data distributions shift. The
reports selected for manual annotation essentially constituted a
convenience sample, since we gathered annotations from separate
clinical projects at DFCI that were ongoing using the same
PRISSMM framework. However, the generalizability of models
trained using this approach to cancer types excluded from training
may indicate that this convenience sampling is not prohibitive for
creation of a large dataset using NLP, which may be of benefit to
health systems seeking to deploy this approach using available
resources. Since this is a single-institution dataset, care that patients

Table 3 Areas under the receiver operating characteristic curve (AUROCs) for NLP models that interpret imaging report text to
ascertain clinical outcomes, as evaluated in the labeled test set.

Clinical outcome Models trained on imaging reports for patients with all listed cancer types

All
patients

Breast
cancer

Colorectal
cancer

NSCLC Pancreatic
cancer

Prostate
cancer

Renal cell
carcinoma

Urothelial
carcinoma

Any cancer 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.97
Progression 0.95 0.95 0.96 0.96 0.93 0.96 0.96 0.94
Response 0.97 0.98 0.99 0.96 0.97 0.94 0.97 0.99
Brain metastasis 0.99 0.97 1.0 0.99 1.0 0.98 0.97 *
Bone metastasis 0.99 0.98 0.99 0.98 0.99 0.98 0.99 0.99
Adrenal metastasis 0.99 0.99 0.99 1.0 1.0 * 0.95 0.99
Liver metastasis 0.99 1.0 0.99 1.0 0.97 0.98 1.0 1.0
Lung metastasis 0.98 0.99 0.99 0.97 0.98 0.97 0.98 0.99
Nodal metastasis 0.98 0.99 0.97 0.98 0.96 0.99 0.99 0.97
Peritoneal metastasis 0.99 0.99 0.99 1.0 0.96 1.0 * 0.81
Models trained on imaging reports for patients with all cancers except for the type under evaluation
Any cancer † 0.98 0.98 0.95 0.95 0.98 0.98 0.96
Progression † 0.94 0.96 0.96 0.92 0.96 0.95 0.94
Response † 0.98 0.99 0.96 0.97 0.94 0.96 0.99
Brain metastasis † 0.97 1.0 0.99 1.0 0.98 0.99 *
Bone metastasis † 0.97 0.98 0.98 0.99 0.98 0.99 1.0
Adrenal metastasis † 0.99 0.99 0.99 1.0 * 0.94 0.99
Liver metastasis † 1.0 0.99 0.99 0.96 0.98 1.0 1.0
Lung metastasis † 0.99 0.99 0.94 0.97 0.97 0.97 0.99
Nodal metastasis † 0.99 0.98 0.98 0.96 0.99 0.99 0.97
Peritoneal metastasis † 0.99 0.98 1.0 0.97 1.0 * 0.77

*Not enough variation in outcome label to evaluate AUROC
†Not applicable

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27358-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:7304 | https://doi.org/10.1038/s41467-021-27358-6 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


might receive outside of our health system might not be captured;
this is a problem common to any EHR-based analysis.

The NLP models trained in this analysis are probabilistic; they
generate continuous output scores that can be interpreted as the
predicted probability that a given outcome was present in an EHR
text document. No such model is perfect; false positive and false
negative predictions will occur at any given threshold probability.
Interestingly, when we examined apparent false positive predic-
tions for medical oncologist note models in a cancer type where
they appeared to underperform, we found that the apparent
model “errors” were a mixture of true errors and cases in which
the model predictions may in fact have been more accurate than
the manual annotations used to evaluate them. This demonstrates
the potential utility of this approach to ascertain clinical out-
comes even if those outcomes are to some degree subjective; given
a database of generally high-quality labels, useful models can be
trained even if the labels are occasionally erroneous or reflect true

clinical uncertainty. Such models could even be deployed to assist
with quality assurance in ongoing manual annotation efforts.

Further work is needed to evaluate the quantity of manually
annotated data necessary to train outcome extraction models with
acceptable performance, and to evaluate the generalizability of this
approach to other institutions and to clinico-genomic datasets
derived from multiple institutions or practices. Notably, however,
multi-institutional clinico-genomic data can be collected with this
approach via independent annotation and model deployment at
each site, without necessarily requiring that the models themselves
be shared or generalize across institutions. This may facilitate
derivation of such multi-site datasets despite regulatory barriers to
sharing protected health information (PHI), especially since there is
some concern that PHI might be encoded into neural network
model parameters through the training process21.

Finally, in a demonstration of clinico-genomic questions that
can be asked using a dataset created using AI, we found that

Table 4 Areas under the receiver operating characteristic curve (AUROCs) for NLP models that interpret medical oncologist
progress note text to ascertain clinical outcomes, as evaluated in the labeled test set.

Clinical
outcome

Models trained on all cancer types

All patients Breast cancer Colorectal cancer NSCLC Pancreatic cancer Prostate cancer Renal cell
carcinoma

Urothelial
carcinoma

Any cancer 0.93 0.98 0.98 0.95 0.78 0.91 0.91 0.95
Progression 0.92 0.97 0.91 0.96 0.92 0.87 0.86 0.78
Response 0.93 0.96 0.95 0.95 0.91 0.87 0.89 0.99
Models trained on all cancers except for the type under evaluation
Any cancer † 0.98 0.97 0.95 0.79 0.85 0.90 0.95
Progression † 0.96 0.90 0.95 0.91 0.84 0.84 0.78
Response † 0.94 0.94 0.94 0.88 0.83 0.88 1.0

†Not applicable

Table 5 Association between PRISSMM outcomes and overall survival among patients receiving palliative-intent systemic
therapy (Hazard ratio, 95% confidence interval).

Cohort PRISSMM imaging report annotations derived from
natural language processing models

PRISSMM medical oncologist note annotations
derived from natural language processing models

N Progression/
worsening

Response/
Improvement

N Progression/
worsening

Response/
Improvement

All patients* 4953 2.03 (1.87–2.20) 0.36 (0.30–0.43) 5064 4.34 (4.02–4.70) 0.45 (0.38–0.54)
All patients with labeled cancer types* 3712 2.10 (1.91–2.31) 0.39 (0.32–0.47) 3797 4.25 (3.88–4.64) 0.44 (0.37–0.55)
Breast cancer† 1058 2.19 (1.81–2.65) 0.44 (0.30–0.65) 1080 6.30 (5.23–7.58) 0.56 (0.36–0.87)
Colorectal cancer† 674 1.91 (1.54–2.37) 0.19 (0.10–0.36) 701 3.97 (3.24–4.87) 0.27 (0.14–0.55)
NSCLC† 1151 2.25 (1.92–2.64) 0.46 (0.34–0.62) 1141 3.53 (3.02–4.12) 0.37 (0.27–0.52)
Pancreatic cancer† 286 1.82 (1.34–2.47) 0.24 (0.11–0.51) 305 4.13 (3.13–5.45) 0.35 (0.18–0.70)
Prostate cancer† 197 1.74 (1.11–2.74) 0.87 (0.35–2.14) 211 3.41 (2.28–5.10) 0.61 (0.18–2.11)
Renal cell carcinoma† 161 1.91 (1.22–3.00) 0.69 (0.26–1.85) 173 2.95 (2.04–4.26) 0.68 (0.40–1.15)
Urothelial carcinoma† 185 2.04 (1.35–3.09) 0.23 (0.07–0.73) 186 3.85 (2.46–6.03) 0.57 (0.30–1.09)
All patients with unlabeled
cancer types*

1241 1.84 (1.56–2.16) 0.27 (0.18–0.41) 1267 4.68 (3.99–5.48) 0.46 (0.30–0.70)

Endometrial 107 1.52 (0.88–2.63) 0.21 (0.06–0.87) 107 6.47 (3.71–11.29) 0.68 (0.17–2.70)
Gastroesophageal cancer 364 2.05 (1.57–2.69) 0.14 (0.06–0.35) 368 5.71 (4.36–7.48) 0.22 (0.08–0.61)
Head and neck cancer 91 1.91 (1.06–3.49) 0.39 (0.13–1.24) 96 2.84 (1.68–4.80) 0.51 (0.16–1.61)
Leiomyosarcoma 72 1.09 (0.57–2.10) 0.14 (0.02–1.17) 72 ‡ ‡
Melanoma 289 3.58 (2.41–5.31) 0.60 (0.28–1.27) 303 5.69 (3.96–8.16) 0.85 (0.44–1.62)
Ovarian cancer 318 1.13 (0.82–1.55) 0.26 (0.12–0.60) 321 3.16 (2.34–4.27) 0.58 (0.24–1.41)

Hazard ratios derived from multivariable models including all PRISSMM imaging outcomes, which were treated as time-varying covariates. Hazard ratios therefore capture the differential mortality risks
associated with time periods following either cancer progression/worsening or cancer response/improvement. Only time following genomic testing was treated as at risk for mortality, since genomic
testing was a cohort eligibility criterion. Automated annotations were derived from NLP models using a cross-validation approach, such that inference for each patient was performed using models that
excluded that patient from training.
*Analysis also adjusted for cancer type.
†Labeled cancer type (labeled data for this individual cancer type were used to train NLP models).
‡Insufficient data for stable regression estimates.
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higher TMB was associated with superior PFS on immune
checkpoint inhibitor therapy in a cohort of patients with multiple
types of cancer, consistent with reports from studies that used
traditional radiographic progression assessment17,22. For clinical
purposes, TMB is just one biomarker of immunotherapy benefit;
these results do not necessarily imply that TMB is predictive for
each individual patient or cancer type within the cohort23.

In conclusion, we combined limited manual clinical annotation
with deep neural networks to complete clinical outcomes
extraction for a multi-cancer single-institution clinico-genomic
cohort. The resulting annotations reliably captured clinical out-
comes, even for cancer types with no labeled data available for
training. These outcomes further demonstrated expected patterns
of association with overall survival. Analysis of a multi-cancer
clinico-genomic dataset generated with this approach confirmed
an expected association between tumor mutation burden and
progression-free survival on immune checkpoint inhibitor ther-
apy. This approach reduces the barrier posed by clinical anno-
tation tasks to optimal utilization of genomic data to pursue
patient-relevant research questions.

Methods
Data sources. The cohort for this analysis consisted of patients with solid tumors
that had undergone next-generation sequencing at Brigham and Women’s Hospital
or Dana-Farber Cancer Institute with the in-house OncoPanel assay from January
1, 2013 to January 31, 2021, and who had at least one imaging report and/or

medical oncologist note in the electronic health record4,10. Cancer types were
selected a priori to focus on a variety of common solid tumors; primary tumor
types included breast, colorectal, endometrial, gastric/esophageal, head and neck,
leiomyoscarcoma, non-small cell lung, melanoma, high-grade serous ovarian,
pancreatic, prostate, renal cell, and urothelial carcinoma. Using the Oncology Data
Retrieval System24, structured and unstructured electronic health records data for
this cohort were obtained. Structured data included somatic genomic mutation
calls, including a derived tumor mutation burden; vital status obtained from
clinical records and linkage to the National Death Index; diagnosis codes; and
systemic therapy treatment plans, including intent of therapy as recorded by
treating oncologists. Unstuctured data included clinical progress notes and imaging
reports. The analysis was conducted under a waiver of informed consent from the
Dana-Farber/Harvard Cancer Center Institutional Review Board given the minimal
risk of this retrospective study.

Manual medical record annotation. The subset of patients whose records
underwent manual annotation was derived from separate retrospective cohort
studies at DFCI that used the PRISSMM annotation framework. For patients with
non-small cell lung, breast, colorectal, or prostate cancer, patients were selected for
annotation as part of the American Association for Cancer Research’s Genomics
Evidence Neoplasia Information Exchange (Project GENIE)25 Biopharmaceutical
Consortium. For patients with renal cell carcinoma or urothelial carcinoma,
records were annotated by the Dana-Farber Cancer Institute’s Division of Geni-
tourinary Malignancies. The annotation process and calculations of inter-rater
reliability have been described previously6–9. Briefly, for each imaging report and
medical oncologist note, annotators recorded the presence or absence of cancer in
that individual document. When cancer was determined to be present, annotators
further recorded whether the cancer burden was changing, including whether it
was improving/responding, worsening/progressing, stable, mixed, or indetermi-
nate. For purposes of this study, the improving/responding and worsening/pro-
gressing endpoints were each treated as two binary variables, such that a “mixed”
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Fig. 1 Example of a clinico-genomic analysis based on outcomes ascertained using natural language processing models: Association between TMB and
progression-free survival after initation of immunotherapy. High tumor mutational burden defined as >=20 mutations per megabase. Results in this
figure represent unadjusted Kaplan-Meier curves. Events were recorded using the “PFS-I-and-M” endpoint, defined as the earlier of death, or the time by
which both a medical oncologist note and an imaging report had described cancer progression/worsening. Progression/worsening was defined using
natural language processing models applied to imaging reports and medical oncologist notes. Survival curves were not adjusted for left truncation, since
progression events were possible prior to genomic testing and cohort eligibility.
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status was considered neither worsening nor improving. For imaging reports, when
cancer was determined to be present, annotators were asked to record specific sites
of disease, including brain, bone, adrenal, liver, lung, lymph node, and peritoneum.

NLP model training and evaluation. Manually labeled records were divided, at the
patient level, into training (80%), validation (10%), and test (10%) subsets. Training
and inference were performed on a per-document basis. The overall approach to
training has been described previously for patients with non-small cell lung
cancer8,9. Briefly, a convolutional neural network architecture was applied to the
text for each document. Distinct models were trained for each outcome; for ima-
ging reports, these included “any cancer,” progression/worsening, response/
improvement, and the presence of disease in brian, bone, adrenal liver, lung, lymph
node, or peritoneum. For medical oncologist notes, these included “any cancer”,
progression/worsening, and response/improvement. The “any cancer” model had a
single output, and all other models had two outputs, one for the presence of any
cancer, and the other for the specific output of interest. Cross-validation was
applied as follows. The training set was divided into 10 subsets, and each model
was trained repeatedly on 9 of the 10 subsets. For inference within the training set,
each patient’s records were annotated by the models that excluded that patient
from training. For inference within the validation and test sets of labeled data, and
for application to patients with no labeled data, an ensemble model was applied;
the ensemble was created for each outcome by mean-pooling the linear outputs
from each of the 10 trained models. The raw output of each model corresponded to
the log odds that a given outcome was present in a particular document. For
medical oncologist notes, an additional preprocessing step was applied to extract
the “assessment/plan” section from each note for input into the convolutional
neural network. This preprocessing step consisted of a recurrent neural network
trained to identify the words in each note that belonged to the assessment/plan
section using a rules-based labeling strategy, as previously described9.

To evaluate the generalizability of this approach to cancer types for which no
labeled data were available for training, the models for each outcome were
repeatedly re-trained after exclusion of patients with each specific type of cancer for
which we had labeled data. Inference was then performed, and models evaluated,
for the cancer type that had been excluded from training, simulating a situation in
which there were no labeled training data for that cancer type.

Models were evaluated initially and hyperparameters manually tuned in the
validation set. The primary evaluation metric was the area under the receiver
operating characteristic (AUROC) curve. After final models were trained,
performance was evaluated in the held-out test set for reporting. Areas under the
precision-recall curve and calibration curves were also calculated. Sensitivity,
specificity, positive predictive value, and negative predictive value at the best
F1 score and best Youden’s index26 thresholds for each outcome were also derived.
These evaluation metrics are presented in Supplementary Fig. 1A–M.

Models were trained and applied using Tensorflow27 version 2.4.1. Code for
model training and evaluation is available at github.com/prissmmnlp/
pan_cancer_outcomes.

Evaluation of associations between PRISSMM outcomes and overall survival
among patients receiving palliative-intent therapy. To evaluate the face validity
of NLP model-curated endpoints for capturing clinically important outcomes
associated with survival and further evaluate the generalizability of the endpoints to
cancer types in which no labeled data are available, associations were measured
between PRISSMM progression/worsening and response/improvement endpoints
and overall survival in the subset of the cohort with any palliative-intent systemic
therapy treatment plan on record. These analyses were conducted by treating
PRISSMM endpoints as time-varying covariates in a Cox proportional hazards
model with survival analysis performed using the counting process method28. NLP
endpoints were derived using cross-validation, such that inference for an individual
patient was always performed using models that were not trained on that patient.
PRISSMM endpoints were each transformed from continuous NLP model output
scores to binary variables by choosing an output threshold that yielded the best F1
(harmonic mean between precision and recall) score. The index date for survival
analysis was first palliative systemic therapy, but time intervals beginning prior to
genomic testing were not considered at risk, since genomic testing was an eligibility
criterion for this analysis and mortality events were therefore not possible prior to
testing. Separate multivariable Cox models were constructed to analyze associations
between imaging report annotations and OS, and between oncologist note anno-
tations and OS. The principal analyses included patients with all cancer types and
further adjusted for cancer type; analyses were also performed separately for
patients with each individual cancer type. Hazard ratios and 95% confidence
intervals (CIs) associated with progression/worsening and response/improvement
were calculated. Analyses were performed using R, version 4.0.3.

Evaluation of correlations between model-derived progression-free survival
endpoints and overall survival. For patients who initiated palliative-intent sys-
temic therapy prior to the end of survival follow-up on December 31, 2019,
progression-free survival (PFS) endpoints were derived as previously described7,
using model-derived progression defined using the best F1 threshold output.
Candidate endpoints included PFS-I, or the time to first worsening/progression

documented on imaging report, or death; PFS-M, the time to first worsening/
progression documented on medical oncologist assessment, or death; PFS-I-or-M,
time to first indication of worsening/progression on imaging report or medical
oncologist assessment, or death, whichever was earliest; and PFS-I-and-M, time
from treatment start to worsening/progression having been documented on both
an imaging report and a medical oncologist assessment, or death. Calculations were
performed using R (version 4.0.1) and the SurvCorr R package (version 1.0)29. Left
truncation at the time of genomic testing was not performed for these analyses,
since methods for calculating correlations between left-truncated time-to-event
endpoints are not well-characterized; however, in prior work we found that
restricting analyses to patients initiating therapy after genomic testing did not
change calculated correlation coefficients for manually-defined PFS endpoints for
patients with NSCLC or colorectal cancer7.

Association between tumor mutation burden and PFS among patients
receiving immunotherapy. We identified patients with any of our cancer types
who received palliative-intent immune checkpoint inhibitor systemic therapy
regimens, defined as treatment that included ipilimumab, nivolumab, pem-
brolizumamb, atezolizumab, durvalumab, and/or avelumab. Some patients received
more than one such regimen. We conducted a time-to-event analysis using Cox
proportional hazards modeling. Statistical tests were two-sided. The index time
corresponded to initiation of each immunotherapy regimen, and events were
defined as PFS-I-and-M, described above. Covariates in each model included
tumor mutation burden, derived for each patient using his/her first tumor sample
with NGS results30,31 and obtained from the Oncology Data Retrieval System at
DFCI24; cancer type; and line of therapy, accounting for clustering of observations
within patients who received more than one line of immunotherapy. Analyses were
performed in which TMB was treated as a continuous variable and in which it was
dichotomized into high (>=20 mutations/megabase) or low (<20 mutations/
megabase). Unadjusted Kaplan–Meier curves for patients with TMB-high tumors
and those with TMB-low tumors were also generated. Median PFS and OS in the
TMB-high and TMB-low groups were also calculated. For calculation of OS, since
genomic testing was a cohort eligibility criterion and mortality events prior to
genomic testing were therefore not possible, left truncation was performed at the
time of genomic testing using the counting process method18. Analyses were
performed using R, version 4.0.3.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The underlying EHR text reports used to train and evaluate NLP models for these
analyses constitute protected health information for DFCI patients and therefore cannot
be made publicly available. Researchers with DFCI appointments and Institutional
Review Board (IRB) approval can access the data on request. For external researchers,
access would require collaboration with the authors and eligibility for a DFCI
appointment per DFCI policies. A derived analytic dataset used to examine the
association between TMB and PFS among patients receiving immunotherapy has been
uploaded to the project Github page (https://github.com/prissmmnlp/
pan_cancer_outcomes)32. Deidentified genomic data are available for DFCI patients
through AACR’s Project GENIE. Deidentified clinical data corresponding to PRISSMM
annotations for DFCI patients will be made publicly available on cBioPortal through the
AACR Project GENIE Biopharmaceutical Consortium according to a predefined
staggered release schedule through the end of 2023.

Code availability
Code for model training and evaluation is available at github.com/prissmmnlp/
pan_cancer_outcomes32.
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