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A calibrated deep learning 
ensemble for abnormality 
detection in musculoskeletal 
radiographs
Minliang He1, Xuming Wang1 & Yijun Zhao  2*

Musculoskeletal disorders affect the locomotor system and are the leading contributor to disability 
worldwide. Patients suffer chronic pain and limitations in mobility, dexterity, and functional ability. 
Musculoskeletal (bone) X-ray is an essential tool in diagnosing the abnormalities. In recent years, deep 
learning algorithms have increasingly been applied in musculoskeletal radiology and have produced 
remarkable results. In our study, we introduce a new calibrated ensemble of deep learners for the 
task of identifying abnormal musculoskeletal radiographs. Our model leverages the strengths of 
three baseline deep neural networks (ConvNet, ResNet, and DenseNet), which are typically employed 
either directly or as the backbone architecture in the existing deep learning-based approaches in this 
domain. Experimental results based on the public MURA dataset demonstrate that our proposed 
model outperforms three individual models and a traditional ensemble learner, achieving an overall 
performance of (AUC: 0.93, Accuracy: 0.87, Precision: 0.93, Recall: 0.81, Cohen’s kappa: 0.74). The 
model also outperforms expert radiologists in three out of the seven upper extremity anatomical 
regions with a leading performance of (AUC: 0.97, Accuracy: 0.93, Precision: 0.90, Recall:0.97, 
Cohen’s kappa: 0.85) in the humerus region. We further apply the class activation map technique to 
highlight the areas essential to our model’s decision-making process. Given that the best radiologist 
performance is between 0.73 and 0.78 in Cohen’s kappa statistic, our study provides convincing 
results supporting the utility of a calibrated ensemble approach for assessing abnormalities in 
musculoskeletal X-rays.

Musculoskeletal disorders are injuries or pain in the human musculoskeletal system, including the joints, liga-
ments, muscles, nerves, tendons, and structures that support the limbs, neck, and back. They are the second 
leading cause of disability1, affecting more than 1.7 billion people worldwide and responsible for 30 million 
emergency department visits annually. Musculoskeletal conditions significantly limit mobility and dexterity, 
leading to early retirement from work, reduced accumulated wealth and reduced ability to participate in social 
roles. While the prevalence of musculoskeletal conditions increases with age, younger people are also affected, 
often during their peak income-earning years.

A musculoskeletal (bone) X-ray provides practitioners with clear images of the human skeletal system to help 
determine degenerative damage or injury in the bones and joints of the body. Although X-ray is widely used to 
assess bone injuries and joint abnormalities, confidence in reading musculoskeletal X-rays comes from years of 
experience and knowledge that requires extensive training. The best radiologist performance is between 0.73 to 
0.78 in Cohen’s kappa statistic2.

In recent years, deep learning3 (DL) has attracted a great amount of interest and has become a rapidly emerg-
ing field in artificial intelligence. In medical image analysis, deep neural networks have been extensively applied 
to radiology images, including X-rays, B-scans, and MRIs, to help provide even greater diagnostic and treatment 
capabilities. Facilitated by large datasets and powerful machines, deep learning models have achieved exceptional 
performance on various tasks such as detecting breast cancer on mammograms4, brain tumor segmentation5 
and classifying interstitial lung disease with high-resolution chest CT Scans6. In the musculoskeletal radiology 
domain, researchers have introduced many successful deep learning approaches, which we divide into catego-
ries based on the backbone architecture employed. Arguably, the most popular choices of the underlying model 
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structure are vanilla convolutional neural networks (ConvNet)7, residual neural networks (ResNet)8, and dense 
convolutional networks (DenseNet)9.

In this study, we present a new calibrated ensemble approach based on the aforementioned three deep neural 
networks for the task of detecting musculoskeletal abnormalities. Our model was motivated by the individual-
ized proficiencies the three models displayed during the model training phase. Specifically, the three baseline 
models tended to have similar predicative power on overall studies (i.e., scans of all body parts), however, their 
efficacies differed significantly depending on the target anatomical region. In practice, such information could 
be overlooked when the overarching goal is high overall performance. To capitalize on the advantages of each 
individual model, we propose a calibrated ensemble approach trained using different deep architectures for differ-
ent body parts. We compare the performance of our model to that of the three baseline models and a traditional 
meta-learner consisting of ResNet+DenseNet. Experimental results based on the MURA dataset2 demonstrate 
that our proposed model consistently outperforms all four models across five performance evaluation metrics. 
The model also outperforms expert radiologists in three out of the seven upper extremity anatomical regions.

Model interpretability has always been a limiting factor for DL-based approaches. In the medical domain, the 
transparency of a model’s decision making process is critical in validating the model, and is often a prerequisite 
before its clinical deployment. To facilitate our model’s interpretability, we resorted to the class activation map 
(CAM)10, a technique which can be used to visualize the regions used by the model in making its predictions. 
In the "Class activation map (CAM)" section, we illustrate effective localizations of abnormal musculoskeletal 
regions using CAMs.

Related work
Applying machine learning techniques to identify musculoskeletal disorders is an active area of research11–14. In 
earlier studies, Cao et al. presented a generalized bone fracture detection method using features extracted from 
bone X-ray images and a novel discriminative learning framework called the Stacked Random Forests Feature 
Fusion15. Their method is able to capture 81.2% of the fracture findings reported by radiologists. Boissoneault 
et al.16 investigated the correlations between brain abnormalities and chronic musculoskeletal pain conditions 
that can be used for illness classification. The authors applied machine learning techniques to separate brain 
MRI-based biomarkers of chronic pain patients from healthy controls with high accuracy (70–92%).

Recent advances in computer vision and the increased availability of large radiological datasets have ena-
bled deep learning models to achieve performance comparable to medical professionals in a wide variety of 
musculoskeletal diagnosis tasks. Existing DL-based approaches can be further classified into three categories 
depending on the type of backbone neural network adopted in the model architecture. The first category con-
sists of approaches based on vanilla convolutional neural networks (ConvNet)17–22. ConvNet is arguably the 
most popular underlying structure adopted by researchers, attributing to the highly successful VGG7 model 
best known for its proficiency in extracting image features. The other two categories are ResNet-based23–25 and 
DenseNet-based approaches2,23,26.

It is worth noting that most of the existing studies are extensions of the three aforementioned base deep 
learning structures. For example, Saif et al. proposed a capsule network addressing the limitations of ConvNet 
when aggregating large amounts of data is not possible21. Although some of these studies compared the per-
formance of models with different backbone networks, the studies are mostly limited to one or a few particular 
types of anatomical regions. For example, Mondol et al. compared the performance of ConvNet, ResNet, and 
some ensemble methods on four types (wrist, humerus, finger and elbow) of studies25. Tiulpin et al. applied a 
deep Siamese ConvNet to automatically score knee osteoarthritis severity according to the Kellgren-Lawrence 
grading scale22. In our study, we evaluate the performance of these three backbone deep neural networks on 
overall and seven standard upper extremity regions.

In addition to designing individual deep learning models, researchers have also explored the ensemble 
technique27 in search of more robust and superior performance25,28–30. In a recent study, Jones et al. introduced 
an effective deep-learning system to detect fractures across the musculoskeletal system using an ensemble of 
ten ConvNets28. Compared to Jones et al.’s study, our research bears a similar mission but is different in three 
aspects. First, our work is more comprehensive and challenging because the types of disorder in our study are 
not limited to fractures. The additional abnormalities present in our dataset include hardware, joint diseases, 
lesions, and subluxations2. Second, our model is a heterogeneous ensemble of different deep networks, whereas 
their system is a homogeneous ensemble of the same type of neural network, i.e., ConvNets. Last, we propose 
a new ensemble methodology that employs different learners for different body parts, whereas their algorithm 
is a traditional ensemble in which each learner is trained using the entire dataset. Performance-wise, depend-
ing on anatomical regions, Jones et al. report AUC scores ranging from 0.888 to 0.98. Our approach achieves 
comparable efficacy with AUC scores ranging from 0.87 to 0.97 in a more comprehensive study. We introduce 
our new calibrated ensemble learner in the "Methods" section.

Contributions
The main contribution of this work is a new ensemble learning approach that capitalizes the strength of indi-
vidual learners in building predictive models. In the clinical setting, the resulting models can be interpreted as 
experts, each of them specializes in a particular type of patient or abnormality. Our method can be applied to 
any dataset with distinct data subgroups.

Another contribution of our work is presenting a use case of the CAM technique to alleviates the “black box” 
limitation of neural network models. Our findings demonstrate the effectiveness of the CAM, which helps to 
build trust towards adopting DL-based automatic methods in clinical practices.
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Data and preprocessing
Dataset.  For our models’ training and evaluation, we used the MURA dataset2 provided by the Stanford 
ML Group. Our experimental data consists of 14,656 studies from 11,967 patients, with a total of 40,005 pub-
licly available multi-view radiographic images. Each image belongs to one of the seven standard upper extrem-
ity studies: Elbow, Finger, Forearm, Hand, Humerus, Shoulder, and Wrist. Table 1 presents the statistics of the 
number of positive (abnormal) and negative (normal) images in each type of study. Each image was manually 
labeled as normal or abnormal by board-certified radiologists from the Stanford Hospital at the time of the clini-
cal acquisition of the radiography2. The first row in Fig. 1 presents sample normal and abnormal images in the 
MURA dataset. 

In addition, the types of abnormalities present in the dataset were studied by reviewing the radiologist reports 
and manually labeling 100 abnormal images, with the following finding: 53 studies were labeled with fractures, 
48 with hardware, 35 with degenerative joint diseases, and 29 with other miscellaneous abnormalities, including 
lesions and subluxations2.

Data preprocessing.  The images in the MURA dataset are of different sizes. The width ranges from 89 to 
512, and the height ranges from 132 to 512. We resized them to standard 256 by 256 grayscale images to facilitate 
the training of our models. The input size was selected experimentally to preserve as much information as possi-

Table 1.   Number of images in each anatomical category. *Positive or negative represents abnormal or normal, 
respectively.

Train Validation Test Total

Positive* Negative* Positive Negative Positive Negative Positive Negative

Elbow 1734 2584 272 341 230 235 2236 3160

Finger 1710 2750 258 388 247 214 2215 3352

Forearm 583 1042 78 122 151 150 812 1314

Hand 1287 3549 197 510 189 271 1673 4330

Humerus 514 593 85 80 140 148 739 812

Shoulder 3627 3673 541 538 278 285 4446 4496

Wrist 3489 4993 498 772 295 364 4282 6129

Total
12,944 19,184 1929 2751 1530 1667 16,403 23,602

32,128 4680 3197 40,005

Figure 1.   Samples training images. The first row are original images from the MURA dataset. The second row 
presents images augmented in three sequential operations: a random horizontal flip, a random vertical flip, and 
a random rotation within − 30

◦ to 30◦.
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ble and simultaneously compensate for the large computational cost during the model training. We then applied 
standard min-max normalization31 to scale the pixel values from [0, 255] to [0, 1].

We applied three image augmentation techniques to boost the performance of our deep networks: horizontal 
flip, vertical flip, and rotation between −30◦ and 30◦ . A random sequence of one to three of these transformations 
was applied to each image in the training data. We experimented with other augmentation methods, including 
random brightness change, which turned out to be less effective. The second row in Fig. 1 presents samples of 
randomly augmented input images corresponding to the original images in the first row.

Results
We trained our deep learning models using the Adam optimizer with the hyper-parameters set experimentally 
at 0.9 for the exponential decay rate for the first moment estimates (i.e., β1 ), 0.999 for the exponential decay rate 
for the second moment estimates ( β2 ), and 0.001 for the learning rate (varying learning rates resulted in similar 
performance).

The large size of our training data (Table 1) makes it challenging to load the entire dataset in memory even 
with the most state-of-the-art system configuration. To this end, we employed a data generator32 to dynami-
cally generate the training batches and feed them to the model training procedures. The batch size was set to 32, 
except for DenseNet for which the batch size was set to 16 due to its large memory consumption during training.

We found it was sufficient to set the training epochs at 100 with an early stopping condition monitoring the 
convergence of the training loss. With the help of the ModelCheckpoint callback function from the Keras package, 
the best model was selected as the one with the highest validation set performance among all training epochs. 
Table 2 presents the total number of parameters for each model and the training time.

Evaluation metrics.  We evaluated the performance of our models using five metrics defined as follows:

•	 AUC score (of the ROC curve): A ROC curve33 displays the trade-off between the True Positive Rate (TPR, 
or Sensitivity) and the True Negative Rate (TNR, or Specificity) of a classification model at different threshold 
settings. AUC reveals the capability of a model to separate the positive and negative classes, i.e., the higher 
the AUC score, the more effective a model is at performing the classification.

•	 Accuracy: the fraction of correctly classified images in the test data.
•	 Precision: the fraction of correctly classified images among all positive (abnormal) predictions.
•	 Recall: the fraction of correctly classified images among all positive (abnormal) images in the test data.
•	  Cohen’s kappa coefficient ( κ ): measures inter-rater reliability for categorical items34. It is considered to be a 

more robust measure than a simple percent agreement calculation.

Performance comparison and analysis.  Because we applied image augmentation techniques ("Data 
preprocessing" section) to boost our models’ performance, each X-ray study contains a collection of multi-view 
images from different angles. We define the abnormality probability of an X-ray study to be the average predicted 
probabilities for the positive class of all images in the study. Final classification decisions are based on a threshold 
of 0.5 on the average predicted probabilities.

Figure 2 presents the AUC scores and the corresponding ROC curves of the five models outlined in the "Meth-
ods" section for the overall study. We observe that, except for ConvNet, the other four models have similar 
proficiencies in detecting abnormal scans. Furthermore, the two ensemble learners hold a marginal advantage 
over the individual models.

Table 3 presents the performance comparison between our five models on overall and individual studies. We 
group the comparisons by the five performance metrics (Column 1) described in the "Evaluation metrics" section. 
Each group displays its models’ overall and study-type specific performance on the test dataset. Using ConvNet 
as our baseline model, the numbers in parentheses indicate the percentage change ( � ) in a particular evaluation 
metric for model M over the baseline. Specifically, � = (PM − PConvNet)/PConvNet , where PM and PConvNet are 
performance scores of model M and ConvNet, respectively. We first examine the overall performance (Column 
3). The results are summarized as follows:

•	 The ResNet model outperforms ConvNet in all five measures with 5%, 4%, 5%, 8%, and 12% improvement 
in AUC, Accuracy, Precision, Recall, and κ respectively.

•	 The DenseNet model outperforms ConvNet in all five measures with 4%, 4%, 4%, 6%, and 10% improvement 
in AUC, Accuracy, Precision, Recall, and κ respectively.

Table 2.   Model training statistics. **Using Intel(R) Core(TM) i7-8750H CPU processor with 16GB Ram and 
NVIDIA GeForce GTX 1070 with Max-Q Design GPU.

Parameters Batch size Epochs Training time** (h)

ConvNet 18,894,578 32

100

12

ResNet 21,170,050 32 24

DenseNet 12,639,938 16 60
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•	 The Res+Dense model outperforms ConvNet in all five measures with 6%, 5%, 6%, 8%, and 13% improve-
ment in AUC, Accuracy, Precision, Recall, and κ respectively.

•	 The Calibrated model outperforms ConvNet in all five measures with 6%, 6%, 8%, 12%, and 17% improve-
ment in AUC, Accuracy, Precision, Recall, and κ respectively.

From Column 4–10 of Table 3, we can examine the models’ performance on images of various body parts. The 
results are summarized as follows:

•	 The last four models consistently outperform the baseline ConvNet across all evaluation metrics and specific 
body part studies.

•	 Among the three individual models, ResNet is the best at detecting abnormalities in the Humerus (AUC: 0.97, 
Accuracy: 0.92, Precision: 0.90, Recall: 0.94, κ : 0.84), Shoulder (AUC:0.90, Accuracy: 0.85, Precision: 0.86, 
Recall: 0.83, κ : 0.70), and Finger (AUC:0.92, Accuracy: 0.85, Precision: 0.89, Recall: 0.75, κ : 0.70 ) regions.

•	 Among the three individual models, DenseNet is the best at detecting injuries in the Elbow region (AUC: 
0.91, Accuracy: 0.90, Precision: 0.93, Recall: 0.82, κ : 0.79).

•	 ResNet and DenseNet have comparable performance at identifying abnormalities in Forearm, Hand and 
Wrist studies. However, the first two categories have significantly lower κ values compared to the last one. 
Both models excel at Wrist studies with (AUC: 0.97, Accuracy: 0.9, Precision: 0.94, Recall: 0.81,κ : 0.80) and 
(AUC: 0.95, Accuracy: 0.89, Precision: 0.92, Recall: 0.80, κ : 0.77), respectively.

•	 Res+Dense achieves comparable or superior AUC scores compared to those from the two individual models 
across all categories, suggesting that the ensemble model has more discriminative power and would be a 
more desirable model compared to individual learners.

•	 Our “Calibrated” model displays the highest performance across all categories and measures. For some studies 
(e.g., Hand, Forearm, and Finger), we observe significantly improved κ values over the other models.

•	 Our “Calibrated” model achieved κ values above 0.7 across all eight studies. Given that the best radiologist 
performance is between 73 and 78% depending on the parts of the body imaged2, our “Calibrated” model 
exhibits performance superior to human experts in Elbow, Humerus and Wrist studies.

Class activation map (CAM).  The Class Activation Map (CAM) is a technique that explicitly enables neu-
ral networks to have localization ability despite being trained on image level labels10. A CAM for a particular 
class indicates the discriminative region(s) used by the model to make the prediction. Thus, CAMs serve as 
another method to evaluate the efficacy of convolutional-based models.

By extracting the final Conv2D layer in our best performing calibrated model and mapping the corresponding 
output on each original image, we can highlight the region(s) of an image and visualize our model’s attention 
while making its prediction. Figure 3 presents the CAM regions identified by our model on sample images with 
high confidence positive scores. We observe that our model correctly pinpointed the problematic regions in all 
cases with high confidence in its positive prediction.

Figure 2.   ROC curves of five models.
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Discussion
In this study, we evaluated five deep learning approaches for the task of detecting abnormalities using musculo-
skeletal radiographs. Our experimental results suggest that ResNet and DenseNet have similar advantages over 
ConvNet in the overall study, however, their performance on different anatomical regions varied significantly. 
Furthermore, both ensemble approaches are more effective compared to the individual models. The calibrated 
ensemble approach consistently outperforms the other four models across all five evaluation metrics. For three 
out of seven specific anatomical regions (i.e., Elbow, Humerus, and Wrist), the calibrated model achieved per-
formance superior to expert radiologists.

Two factors could have contributed to the success of our CE algorithm. The first one is the implicit i.i.d. 
assumption made by all machine learning algorithms, i.e., training and test samples are drawn independently 
from an identical distribution. This assumption is better enforced when we restrict our data to images from 
specific anatomical regions, thereby allowing greater potential for success. The second factor is that different 
deep neural networks can be most effective for different regions due to their customized architectures. The CE 
algorithm exploited the individual strength of each learner by observing their behavior in the validation data. 
Our proposed approach can be extended to other applications where unique subgroups are present in the data. 
Unlike traditional ensemble approaches in which each learner is trained using the entire dataset, the calibrated 
ensemble would designate a desired learner for each idiosyncratic data component.

One limitation of our approach is the requirement of a pre-defined partition of data subgroups. In our study, 
there is an unambiguous effective division of data using anatomical regions. In practice, not all datasets exhibit 
straightforward distinctive data clusters. For future work, we foresee a potential integration with unsupervised 
clustering algorithms to help discover the underlying subgroups of the data with similar characteristics.

Lastly, we applied the CAM technique to highlight the region(s) essential to the network’s decision making 
process. Such information alleviates the “black box” limitation of DL-based approaches and makes a model’s 
decision process transparent to practitioners. Our findings demonstrate the effectiveness of the CAM, which 
helps to build trust towards adopting DL-based automatic methods in clinical practices.

Table 3.   Performance comparison of five models—overall and across different parts of body. Bold numbers 
indicate the highest performing model(s) for each evaluation metric across eight studies. The numbers in 
parenthesis indicate the percentage change (PM − PConvNet)/PConvNet in a particular evaluation metric for a 
model M over the baseline ConvNet model. “Res+Dense” is a meta-learner which makes its predictions based 
on the average of the output probabilities from the ResNet and DenseNet models. “Calibrated” is our proposed 
ensemble model which trains a designated deep learner for each anatomical region.

Metric Model Overall Elbow Finger Forearm Hand Humerus Shoulder Wrist

AUC​

ConvNet 0.88 0.89 0.87 0.88 0.84 0.90 0.83 0.93

ResNet 0.92 (5%) 0.89 0.92 0.89 0.85 0.97 0.90 0.97

DenseNet 0.91 (4%) 0.91 0.91 0.90 0.88 0.94 0.86 0.95

Res+Dense 0.93 (6%) 0.91 0.93 0.90 0.89 0.97 0.90 0.97

Calibrated 0.93 (6%) 0.91 0.93 0.91 0.87 0.97 0.90 0.97

Accuracy

ConvNet 0.82 0.87 0.80 0.80 0.78 0.84 0.77 0.89

ResNet 0.86 (4%) 0.83 0.85 0.83 0.81 0.92 0.85 0.90

DenseNet 0.85 (4%) 0.90 0.83 0.84 0.81 0.87 0.81 0.89

Res+Dense 0.86 (5%) 0.89 0.84 0.83 0.81 0.90 0.83 0.92

Calibrated 0.87 (6%) 0.90 0.86 0.86 0.87 0.93 0.85 0.92

Precision

ConvNet 0.86 0.83 0.87 0.85 0.89 0.88 0.78 0.92

ResNet 0.91 (5%) 0.93 0.89 0.90 0.92 0.90 0.86 0.94

DenseNet 0.90 (4%) 0.93 0.89 0.90 0.91 0.88 0.84 0.92

Res+Dense 0.91 (6%) 0.95 0.90 0.95 0.89 0.89 0.85 0.95

Calibrated 0.93 (8%) 0.96 0.93 0.96 0.93 0.90 0.86 0.96

Recall

ConvNet 0.72 0.71 0.72 0.71 0.60 0.78 0.75 0.75

ResNet 0.78 (8%) 0.74 0.75 0.72 0.61 0.94 0.83 0.81

DenseNet 0.76 (6%) 0.82 0.75 0.70 0.59 0.87 0.76 0.80

Res+Dense 0.77 (8%) 0.79 0.75 0.72 0.56 0.93 0.81 0.82

Calibrated 0.81 (12%) 0.82 0.94 0.80 0.75 0.97 0.83 0.87

Cohen’s kappa ( κ)

ConvNet 0.63 0.72 0.59 0.59 0.51 0.67 0.55 0.76

ResNet 0.71 (12%) 0.64 0.70 0.65 0.59 0.84 0.70 0.80

DenseNet 0.70 (10%) 0.79 0.67 0.68 0.59 0.75 0.63 0.77

Res+Dense 0.72 (13%) 0.77 0.68 0.65 0.57 0.81 0.66 0.82

Calibrated 0.74 (17%) 0.79 0.73 0.71 0.72 0.85 0.70 0.82
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Methods
In this section we introduce the five deep learning methods we employed to conduct our experiments. The first 
three (ConvNet, ResNet, and DenseNet) are models that have been widely adopted by researchers. The other 
two are meta-learner Res+Dense and our proposed calibrated ensemble learner. We elaborate our method of 
addressing the data imbalance issue in the “Customized loss function" section.

Convolutional neural network (ConvNet).  ConvNet is a class of deep neural networks designed to ana-
lyze visual images. A ConvNet model consists of multiple convolutional layers which serve the roles of extracting 
image features, ranging from simple patterns (e.g., edges, curves, etc.) to complex figures (e.g., hands, elbows, 
shoulders, etc.). The subsampling (e.g., maxpooling) layers control the intermediate feature map sizes between 
the consecutive convolutions. While the convolutional layers act as feature detectors, the fully connected (FC) 
layers perform classification based on the features extracted by the convolutional layers.

Table 4 illustrates the architecture of our ConvNet model. Our model is a modified version of the popular 
VGGNet [2] architecture. We adjusted the sizes of some convolutional and FC layers in the original VGG model. 
These customizations were motivated by the large discrepancy between the training and test performance based 
on the VGG-16 model, which indicated potential overfitting. We further applied batch normalization (BN) after 
each convolutional layer.

Residual neural network (ResNet).  ResNet35 attracted a great amount of attention after it won all five 
main tracks of ILSVRC36 and CoCo37 image detection, localization, and segmentation competitions in 2015. In 
the ILSVRC classification competition, ResNet achieved 3.6% top 5 error (i.e., correct answer not present among 
top 5 predictions), a performance comparable, if not superior, to human ability.

The most noticeable characteristic of ResNet is its “ultra deep” architecture. Due to the vanishing/exploding 
gradients problem38, a deep learning model is often limited in the total number of convolution layers. ResNet 
addresses this issue by introducing the “ResNet block” with skip-connections to feed the activation function 
directly into layers much deeper into the model. As illustrated in Fig. 4a, instead of learning y = M(x) , ResNet 
is designed to learn the residual function F(x), where M(x) = F(x)+ x . Figure 4b presents another type of 
“ResNet block”8 capable of accommodating for the desired number of feature maps in each layer. Furthermore, 
blocks in Fig. 4 adopt the “full pre-activation” design illustrated by He et al.8, in which batch normalization 
(BN) and activation (ReLU) proceed each convolution (Conv2D) layer. Our ResNet consists of a mixture of 25 
convolutional blocks of both types.

Dense convolutional network (DenseNet).  DenseNet was first introduced in 20179. It extended the 
idea of skip-connections in ResNet to dense connections. In particular, for each layer, the feature maps of all 
preceding layers are used as inputs, and its own feature maps are fed into all subsequent layers. Since each 

Figure 3.   Sample class activation maps.
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Table 4.   ConvNet architecture.

Filter Size Stride # of Filters

Convolutional layer 1 3 × 3 (1,1) 16

Convolutional layer 2 3 × 3 (1,1) 16

Max pooling 2 × 2

Convolutional layer 3 3 × 3 (1,1) 32

Convolutional layer 4 3 × 3 (1,1) 32

Max pooling 2 × 2

Convolutional layer 5 3 × 3 (1,1) 64

Convolutional layer 6 3 × 3 (1,1) 64

Max pooling 2 × 2

Convolutional layer 7 3 × 3 (1,1) 128

Convolutional layer 8 3 × 3 (1,1) 128

Max pooling 2 × 2

Convolutional layer 9 3 × 3 (1,1) 256

Convolutional layer 10 3 × 3 (1,1) 256

Max pooling 2 × 2

Convolutional layer 11 3 × 3 (1,1) 512

Convolutional layer 12 3 × 3 (1,1) 512

Max pooling 2 × 2

Convolutional layer 13 3 × 3 (1,1) 1024

Convolutional layer 14 3 × 3 (1,1) 1024

Max pooling
2 × 2

Flatten

FC 1 512

FC 2 256

Figure 4.   Two types of residual blocks.
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layer receives feature maps from all preceding layers, DenseNets strengthen feature propagation, encourage 
feature reuse, and substantially reduce the number of parameters. We trained our DenseNet model using the 
pre-implemented DenseNet169 structure provided with the Tensorflow Keras package39, which consists of 169 
convolutional layers.

Ensemble of ResNet and DenseNet (Res+Dense).  Ensemble learning has been proven to produce 
improved and more robust performance than a single model27. To further evaluate the performance of our 
proposed model, we compare its performance to a traditional meta-learner Res+Dense which is constructed 
by combining the outcomes from these two baseline models. Our experimental findings suggest that including 
ConvNet will not further improve the ensemble model’s performance. The Res+Dense learner makes its predic-
tions based on the average of the output probabilistic scores from the ResNet and DenseNet models. Formally,

where ŷ is the predicted label for instance xi . pr and pd are the predicted abnormality probabilities for instance 
xi from the ResNet and DenseNet, respectively. Our meta-learner outperforms standalone classifiers in overall 
performance across all five evaluation metrics outlined in the "Evaluation metrics" section.

Calibrated ensemble model.  In training our deep learning models, we found that different classifiers 
excel at analyzing studies of different parts of the body. Table 5 presents the performance of three individual 
models on the validation data evaluated using AUC, accuracy, and Cohen’s κ . We observe that the overall per-
formance of ResNet and DenseNet were highly similar, and both models outperformed the ConvNet. However, 
if we examine the specific anatomical regions, DenseNet showed a noticeable advantage over the ResNet for 
the Elbow study across all three performance measures, especially in Cohen’s κ (ResNet: 0.67; DenseNet: 0.80). 
Similarly, DenseNet outperformed ResNet for the Forearm region. On the other hand, ResNet was more adept 
in classifying Humerus and Shoulder images compared to the DenseNet, with Cohen’s κ values at (ResNet:0.85; 
DenseNet: 0.75) and (ResNet: 0.71; DenseNet: 0.63) , respectively.

Leveraging these findings, we trained a customized ensemble model that would designate a deep learner for 
each specific type of study. Specifically, for each anatomical region, we selected the desired learner with the best 
validation performance in at least two out of the three metrics as presented in Table 5. As a result, DenseNet was 
selected for Elbow and Forearm studies, and ResNet for the remaining categories.

We calibrated our ensemble model by fine-tuning each learner with its corresponding subset of training 
images. Each model’s weights were initialized using the pre-trained weights of its overall model. Experimental 
results on the test data (Table 3) demonstrate our calibrated model not only achieves the highest performance on 
individual studies but also leads the performance in the “Overall” category. Furthermore, the model’s advantage 
is consistent across all five evaluation metrics.

Customized  loss function.  We select cross-entropy (CE) as the loss function for training our models. 
However, from Table 1, we observe that the number of positive and negative instances is imbalanced in the 
majority of the seven body parts studies. Applying standard machine learning algorithms to an imbalanced data-
set often leads to unsatisfactory performance on the minority class, which is the more interesting and important 
class in our task. To address this issue, we modified the standard CE loss function to be a weighted cross-entropy 
loss such that the weight for class i ∈ {positive, negative} is inversely proportional to the number of instances in 
class i. For example, when training for a binary classification model for the “Elbow” studies, we have 1,734 and 
2,584 instances in the positive and negative classes (Table 1), respectively. As a result, the respective weights for 
the positive and negative classes are set to be 2584/(2584+1734) and 1734/(2584+1734) in the weighted loss 
function. Formally,

ŷ(xi) =

{

1 if (pr + pd) ≥ 1
0 otherwise

Table 5.   Validation dataset performance of baseline models—overall and across different parts of body. Bold 
numbers indicate the highest performing model for each evaluation metric across eight studies. DenseNet is 
the designated learner for the Elbow and Forearm studies and ResNet for the remaining ones.

Metric Model Overall Elbow Finger Forearm Hand Humerus Shoulder Wrist

AUC​

ConvNet 0.89 0.90 0.90 0.85 0.84 0.91 0.84 0.92

ResNet 0.91 0.91 0.93 0.88 0.86 0.96 0.89 0.96

DenseNet 0.91 0.93 0.92 0.90 0.85 0.95 0.86 0.95

Accuracy

ConvNet 0.84 0.85 0.83 0.84 0.78 0.83 0.79 0.87

ResNet 0.86 0.84 0.87 0.85 0.82 0.90 0.84 0.91

DenseNet 0.85 0.88 0.84 0.86 0.82 0.88 0.82 0.89

Cohen’s kappa ( κ)

ConvNet 0.64 0.73 0.64 0.64 0.52 0.68 0.58 0.77

ResNet 0.72 0.67 0.68 0.67 0.60 0.85 0.71 0.80

DenseNet 0.71 0.80 0.65 0.70 0.59 0.75 0.63 0.77
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where

•	 X = {x1, x1, . . . , xN } are the training instances
•	 Y = {y1, y2, . . . yN } are the ground truth labels for the corresponding instances in X
•	 p(yi = v|xi) is the predictive probability for yi ∈ {0, 1} given instance xi
•	 T = {Elbow, Finger, Forearm,Hand,Humerus, Shoulder,Wrist} contains the study types
•	 |Nt | is the number of normal images of study type t ∈ T
•	 |At | is the number of abnormal images of study type t ∈ T
•	 wt

0 = |At |/(|Nt | + |At |) is the weight for all normal instances of study type t ∈ T
•	 wt

1 = |Nt |/(|Nt | + |At |) is the weight for all abnormal instances of study type t ∈ T .

Data availability
This study is based on the publicly available MURA dataset provided by the Stanford ML Group (reference2).
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