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Simple Summary: Cancer genomes can undergo major restructurings involving many chromosomal
locations at key stages in tumor development. This restructuring process has been designated
“genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may
be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of
these processes in various cancers reveals a degree of specificity that indicates genome restructuring
may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to
more lethal forms.

Abstract: Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome
restructuring at key steps in this evolution has been called “genome chaos.” To answer whether
widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and
molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of
DNA changes that result from activity of those systems, and (iii) examines two cases where genome
restructuring is determined to a significant degree by cell type or viral infection. The conclusion
is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the
cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for
therapies to inhibit tumor progression to greater aggressiveness.

Keywords: DNA break repair; alternative end-joining (alt-EJ); chromothripsis; chromoplexy; chro-
moanasynthesis; retrotransposition; target-primed reverse transcription (TPRT); immunoglobulin
VDJ joining; class switch recombination (CSR); human papillomavirus (HPV)

1. Introduction

There is growing recognition that cancer progression is fundamentally an evolutionary
process [1–3]. Like cellular and organismal evolution, cancer evolution occurs largely
in a punctuated, “macroevolutionary” manner, with major genome changes frequently
occurring at key transition stages (e.g., initiation, tumor organoid formation, transition
from benign to malignant, metastasis, acquiring resistance to anti-tumor therapies) [1,4],

Our 21st Century understanding of cell and organism evolution is based in part on
well-documented examples of ecologically triggered action by a wide variety of infective
and intracellular “natural genetic engineering” (NGE) systems, such as many classes of
mobile DNA elements and viruses that integrate into and modify host cell genomes [5–7].
Such genome change operators allow the organisms/cells to survive ecological stress and
reconstruct their genomes to adapt to novel circumstances. In many cases, we can trace
the action of specific classes of NGE agents in major evolutionary innovations, such as
viviparous reproduction in mammals [8]. Can we find evidence for the operation of such
NGE systems in cancers and recognize patterns that may lead to possible therapeutic
interventions?

Heng and colleagues have characterized the rapid genome restructuring episodes
leading to tumor cells with novel adaptive capabilities [9] as “Genome Chaos” [1,10].
Although intended to signify a process of genome reorganization under crisis with a high
degree of heterogeneity, the word “chaos” suggests unpredictable and disorganized rapid
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genome modification at moments when cancer cells experience extreme stress. Cancer
genomics is in the early stages of examining how stress-driven restructuring occurs. It
seems logical, therefore, to pose the question that is the title of this article: how chaotic is
“Genome Chaos”? Do cancer genomes change in a random and stochastic manner, or is
there evidence for more well-characterized and predictable genome restructuring processes
at work in these complex episodes?

As a microbial geneticist relatively new to cancer genomics, it seems to me that
“Genome Chaos” is probably less chaotic than its name implies. Just as organismal evolu-
tion utilizes a broad but not unlimited repertoire of natural genetic engineering capabilities,
it may well prove to be the same for cancer evolution. Organisms have continually needed
to evolve reliable genome repair and change processes to be able to meet the demands of
changing conditions, and the same applies to tumors. There are at least three non-random
aspects of oncogenesis I have encountered in my non-specialist review of tumor genomics
that I believe point towards highly diverse but still organized, not chaotic, restructuring
processes in cancer genome evolution:

1. A limited number of distinct, well-defined and highly evolved genome repair and
restructuring processes that generate characteristic and recurring molecular signatures
in many cancers.

2. A recurring spectrum of recognizable major genome restructuring signatures which
vary from cancer to cancer [11].

3. The importance that cell type or virus infection history plays in stimulating characteris-
tic types of genome change in specific cancers by regulating the genome restructuring
processes that operate in those tumor cells.

Let us look at these three points in more detail. It is fortunate that a large number
of papers relevant to this topic have recently emerged from the Pan-Cancer Analysis
of Whole Genomes, comprising detailed sequence analysis of over 2600 whole cancer.
genomes [12–14]. The results in those and earlier papers provide specific examples of how
a limited number of highly evolved genome repair and restructuring systems can quickly
produce the enormous variety of large-scale genome changes observed in both cancer and
organismal evolution. As one author puts it, cancer is “evolution within a lifetime” [15].

2. Published Results on Genome Structural Changes in Cancer
2.1. A Limited Number of Distinct Highly Evolved Genome Repair and Restructuring Processes
Operate in Many Cancers

Human cells possess a reasonably well-defined set of replication, repair and mobile
DNA systems that carry out the great majority of complex genome restructuring events
found in cancer.

(a) Three distinct DNA repair networks capable of joining together and rearranging
broken chromosomes are found among eukaryotes from Saccharomyces to plants and
animals [16–18]. These networks carry out homology-dependent repair (homolo-
gous recombination = HR and single-strand annealing = SSA), non-homologous
end-joining (NHEJ), and an alternative end-joining (alt-EJ) process involving DNA
replication that has received various designations in the literature over the years, in-
cluding “microhomology-mediated break-induced replication” (MMBIR) and “Theta-
mediated end-joining” (TMEJ) [19–24].

• HR generally leads to error-free recombinational break repair templated on the
undamaged homologous chromosome or sister chromatid, except that HR and
SSA can lead to deletions and translocations when sequence homologies are
repeated at different chromosomal locations, producing “non-allelic homologous
recombination” (NAHR) [18,25].

• NHEJ processes and joins broken chromosome ends with limited changes at the
two breakpoints [26,27]. Thus, for breaks on a single chromosome, NHEJ tends
to introduce only localized sequence variation, but when multiple chromosomes
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are broken, NHEJ can form translocations and other rearrangements without
copy number increases.

• Alt-EJ requires the activity of the multi-functional DNA polymerase Theta (Pol
θ), involves DNA synthesis with microhomology-mediated template switching
as well as untemplated synthesis, and can introduce localized copy number
variation (CNV) plus complex intra- and inter-chromosomal rearrangements into
the repair junctions [23,24,28,29].

(b) In addition to these three basic cellular DS break repair systems, human cells contain
two additional DNA joining systems:

• In the human genome, the only normally active mobile DNA elements are the
“long interspersed nucleotide elements” (LINE1s), which encode the reverse
transcriptase and endonuclease activities needed for “target-primed reverse
transcription” (TPRT) and integration at new genomic locations [30,31]. LINE1-
encoded activities also function to mobilize “short interspersed nucleotide el-
ements,” (SINEs), which do not have protein-coding capacity. In the human
genome, the major SINE element is Alu (>1,500,000 copies), but another signifi-
cant hominid-specific somatically active SINE group is the family of composite
elements that go by the designation SVA (SINE/variable number of tandem re-
peats/Alu) (>2762 copies) [32]. LINE1-mediated TPRT involves two DNA-joining
events: (i) endonuclease cleavage and polymerization from the exposed 3’-OH
group at the target site to initiate cDNA synthesis (the “target priming” step) and
(ii) ligation of the 3’-OH at the end of the cDNA strand to a 5’-PO4 group exposed
in a target DNA DS break to terminate reverse transcription [33]. These two
steps are followed by synthesis of the missing complementary strand to complete
insertion of retrotransposed DNA between the initiation and termination sites.
When these events occur at closely spaced endonuclease cleavage sites on target
DNA, the result is an insertion flanked by a short 5 bp “target site duplication”
(TSD). However, the two ligations may also occur at more distant sites on the
target DNA or the 3’ cDNA insertion in an endonuclease-independent man-
ner at the end of a pre-existing DNA break site [34]. When TPRT utilizes such
exceptional distant target ligation sites to initiate and terminate reverse transcrip-
tion, chromosomal structural variations can occur, in particular deletions and
translocations, inversions, duplications and chromosome fusions [34–36]. The
vast majority of these structural changes carry a signature of L1 TPRT in the form
of retrotransposed polynucleotides bridging the rearrangement breakpoints.

• Adaptive immune system DNA changes. Restricted to lymphatic tissues and
their cancers, where B cell lymphoma accounts for 95% of all lymphomas [37],
these dedicated natural genetic engineering activities have evolved to generate
antibody diversity by VDJ joining, antibody affinity maturation by somatic hy-
permutation (SH), and targeting of high affinity antibodies to different tissues by
heavy chain class switch recombination (CSR) [38–44]. In VDJ joining to construct
the variable region exons encoding the amino-terminal portion of antibody light
and heavy chains are assembled by controlled chromosome breakage and joining
reactions in primary B cells. The RAG1 plus RAG2 proteins making the breaks
(with characteristic hairpin ends) evolved from a DNA transposase [41,42]. They
cleave variable region-coding chromosomal DNA in a precise order at specific
“recombination signal sequences” (RSSs) on the boundaries of V, D, and J coding
cassettes so that the broken ends can be joined to form VJ light chain exons and
VDJ heavy chain exons. Later in B cell development, antigen-activated B cells
undergo SH in the germinal center by targeted action of “activation-induced
cytosine deaminase” (AID) at the variable region exons for both heavy and light
chains [45–48]. Subsequent selection of cells producing more tightly binding
antibodies results in “affinity maturation” of the antibody response. Still later in
B cell development, mostly outside the germinal center [49], an AID-dependent
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process of cytokine-targeted chromosome breakage occurs at an Sµ “switch re-
gion” upstream of the heavy chain germline Cµ region exon and also at one of
the switch regions upstream of the Cγ, Cα, and Cε exons. After NHEJ or alt-EJ
ligation of the two S region breaks, the “class-switch recombination” (CSR) is
complete, and the new C region of the high-affinity antibody’s heavy chains
targets it to an appropriate tissue in the body [50].

(c) In addition to the distinct biochemical complexes that carry out widespread DNA
restructuring in cancer evolution, at least two higher-level cell biological routines that
have been identified as regular programmed responses to genome damage and stress.

• Mitotic errors lead to micronucleus formation around lagging chromosomes
or their breakage products [51,52]. Micronuclear inclusion in a daughter cell
from such an incomplete mitotic division leads to chromosome fragmentation
and MMBIR/alt-EJ replication in G2/M phases of the following cell cycle, with
unequal distribution of the resulting partially amplified fragments to the grand-
daughter cells [51–53]. Reconstruction of a heritable linear or circular chromo-
some from alt-EJ joining of these fragments produces major scrambling of seg-
ments from the micronuclear chromosome with multiple copy number variations
(CNVs) [54]. Cited by Heng and colleagues as a source of genome chaos [10],
micronuclei are found in plants as well as animals and are associated with
the DNA damage response and chromothripsis, indicating a deep evolution-
ary history for micronucleus formation and chromosome fragmentation among
eukaryotes [55,56].

• Cell fusions [57], physical injury and wound-healing, or reproductive stress
can all lead to the formation of non-mitosing, endoreplicating giant polyploid
cells [58–60]. Polyploids have an old evolutionary history [61], are found in
all major eukaryotic groups (plants, animals and protists), are important in
plant and animal organogenesis [62] and constitute a general stress response in
plants [63,64]. However, polyploidy also leads to major genomic instability [65].
The polyploid response connection to cancer has been known for over a century,
at least since the pioneering cytologist Theodor Boveri linked it to human skin
malignancies localized at scars and burn sites in 1914 [66]. In cancer, there
are “polyploid giant cancer cells” (PGCCs), which form in response to stresses
such as radiation [67], senescence [68], telomere crisis [69,70] and anticancer
chemotherapy [71]. After formation and a lengthy period with DNA replication
but no cell division, PGCCs ultimately undergo multipolar amitotic divisions
to generate cells with smaller, dramatically restructured genomes. Some of the
PGCC progeny cells have pseudo-diploid genomes and proliferate. Among
these are new cancer cells with chromosome reorganizations and major steps
in cancer progression, including acquisition of stem cell-like properties and
immortality [72–76].

2.2. A Recurring Spectrum of Recognizable Major Genome Restructuring Signatures Which Vary
from Cancer to Cancer

One of the key indicators that genome reorganization in cancer progression is not a
chaotic process is that specific genome structural variation (SV) “signatures” are found in
individual cancers, and these characteristic signatures are sufficiently distinct to rule out a
fully chaotic or stochastic process [11,77]. We understand the mechanisms and cell biology
events behind a few of these restructuring signatures.

2.2.1. Chromothripsis

Chromothripsis (meaning “chromosome shattering”) involves multiple breakage-
rejoining and copy-number variations (CNVs) on a single chromosome, chromosome
region, or small set of chromosomes [78–80]. Experimental evidence links the process of
chromosome shattering to mitotic errors resulting in formation of “lagging” chromosomes
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at mitosis, where they are encapsulated in a micronucleus envelope [52,54,81]. A micronu-
cleus chromosome is distributed to one daughter cell at the completion of mitosis and
undergoes fragmentation into actively replicating segments during the mitotic phase of
the subsequent cell division cycle [20,54,82]. Later these unevenly amplified fragments can
be found assembled into a scrambled chromothripsis product. The sequences in a chro-
mothripsis structure include tandem short template jumps (TSTs) characteristic of alt-EJ
repair processes [54]. As these results would lead us to expect, chromothripsis occurs inde-
pendently of NHEJ [83] The visible result of chromothripsis is a set of many tightly nested
intrachromosomal rearrangements on a particular chromosome (Figure S2 of [78]). Chro-
mothripsis is also associated with mitotic errors due to “hyperploidy” or telomere damage
in laboratory cell cultures and in primary medulloblastoma cancer genomes in vivo [84].

2.2.2. Chromoplexy

Chromoplexy (meaning “chromosome weaving”) is found “in nearly 63% of all
prostate cancer samples and 30% of all bladder cancer samples” [85]. In comparison
to chromothripsis, chromoplexy involves a completely different but equally non-random
rearrangement signature [86–88]. In chromoplexy, a small subset of chromosomes from
the full karyotype undergo multiple connected or “chained” exchanges to produce translo-
cations and other nested rearrangements without copy number variation [20]. Besides
multiple exchanges being limited to a small subset of the genome (e.g., 3–5/23 chromo-
somes in Figure 4 of [78]), 50% of all breakpoints in a chain are closer to another breakpoint
on the same chromosome than would occur by chance [86]. This spatial clustering suggests
that chromoplexy involves proximity of chromosome domains. These domains appear to
be determined by patterns of genome expression because there is a correlation between
breakpoint sites on different chromosomes and regions known to be spatially linked in
transcription factory “topologically associated domains” (TADs) [89,90]. In other words,
the 3D organization of the genome in TADs for expression during interphase appears
to play a role in setting up different chromosomes for rearrangement chains in chromo-
plexy events. From these parameters, we can deduce that chromoplexy occurs during
interphase, far earlier in the cell cycle than chromothripsis, and involves non-replicative
end-joining, probably NHEJ [20]. Again, the limited number of chromosomes involved and
the restricted timing during the cell cycle in chromoplexy argue against a chaotic genome
restructuring process.

2.2.3. Chromoanasynthesis

Chromoanasynthesis (meaning “chromosome restitution” or “chromosome building
up”) is a process that produces a series of clustered, amplified and rearranged chromosome
segments inserted into one or a few discrete loci on a single chromosome. These “focal
CNVs” arise from broken replication forks by MMBIR/alt-EJ repair or a related process at
gapped replication sites known as “fork stalling and template switching” (FoSTeS): “When
the replication fork stalls or pauses in stressed cells, the lagging strand can serially disen-
gage and switch to another nearby active replication forks, leading to the template driven
joining of several sequences from different genomic regions, before the resumption of the
replication on the original template” [91]. In both cases, the same regions can undergo
replication several times and form palindromic repeats due to foldback templating. Chro-
moanasynthesis has been found to account for CNV of oncogenic loci in breast cancer [92],
B-cell lymphoma [93], mouse brain tumors [94], and on three separate chromosomes, 6,
7 and 12 in a renal leiomyosarcoma [95]. There are also examples of congenital germline
chromoanasynthesis on human chromosomes 1 [96] and 21 [97] without obvious pathology
but deleterious effects on chromosome 9 [98], 11 [99], 13 [100], 14 [101], and 18 [102].

A special form of chromoanasynthesis occurs in triple-negative breast cancer and
in ovarian, endometrial, and liver cancers that originate from individuals with a genetic
defect affecting the homologous recombination protein BRCA1, or in clones that have
lost BRCA1 and TP53 by mutation. In these TP53-BRCA1-deficient cells, sequencing has
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identified the tandem duplicator phenotype (TDP) characterized by an enrichment of
head-to-tail segmental tandem duplications (TDs) distributed across the genome [103–105].
Most of the tandem duplications fall into two normally distributed size classes, 1.6–51 kb
(mean = 11 kb) and 51–622 kb (mean = 221 kb), with opposite effects on expression of
the duplicated segments: the shorter TDs disrupt and inactivate expression of tumor
suppressor loci, while the longer TDs duplicate oncogene loci or their transcriptional
regulatory sequences to enhance expression [104,106]. The difference between the two size
classes is activation of the CCNE1/cyclin E1 pathway in tumors with the longer TDs. [106]

In cells lacking BRCA1 and TP53, broken chromosome ends at stalled replication
forks appear to be replicated and joined by an alt-EJ process that involves DNA poly-
merase θ rather than by canonical NHEJ [29,106–108]. Pol θ has helicase activity as well as
microhomology-directed polymerase template switching and terminal transferase activi-
ties that insert extra nucleotides, sometimes untemplated, to leave characteristic “scars”
between the tandemly joined sequences [23,109,110]. The role of Pol θ in forming TDs by
error-prone alt-EJ has been confirmed by knockout studies in cancer tissue cultures [111]
and supported by congruent results in the genetically tractable nematode worm, C. ele-
gans [112,113].

2.2.4. Double Minute Chromosomes/Extrachromosomal Circular ecDNAs

Sometimes chromothriptic fragments reassemble into extrachromosomal circular “ecD-
NAs” or “Double minute” (DM) chromosomes, generally lacking centromeres [114,115].
Recently “signatures of chromothripsis in 36% of circular amplicons . . . and half of circular
amplicon cases” across multiple cancers were reported, confirming “recent observations
that chromothripsis can result in ecDNA formation” [52,54,116,117].

Lacking centromeres, ecDNA/DMs are subject to unequal distribution at cell division.
Consequently, ecDNAs can amplify tumor-promoting “oncogenes” in cancer cells for at
least three reasons: (i) MMBIR/alt-EJ produced extra copies during the original chromoth-
ripsis event, (ii) they carry sequences permitting episomal replication, and/or (iii) they
accumulate in particular lineages of progeny cells as a result of biased segregation. Copy-
number increase by biased distribution at cell division also leads to tumor heterogeneity,
as frequently observed in aggressive late-stage tumors.

If more than one chromosome undergoes chromothripsis, ecDNAs can form contain-
ing segments from two or more chromosomes with junctional microhomologies indicating
assembly by alt-EJ mechanisms [116–118]. ecDNAs can also recombine to produce tan-
dem intramolecular amplifications and reintegrate into multiple chromosomal locations
to form what are called “homogeneous staining regions” when visualized with oncogene
in situ hybridization probes [114,118,119]. An alternative origin for ecDNAs/DMs con-
taining sequences from more than one chromosome involves recombination, fusion and
rearrangements between different ecDNAs, each arising from a distinct chromosome [120].

Almost half of late stage tumors contain amplified oncogenes on ecDNA, which
contain the most common focal amplifications in cancer [121]. The presence of ecDNA in
tumors is often an indicator of an advanced stage in cancer evolution and a poor clinical
prognosis [116]. Oncogenes on ecDNA are more actively transcribed than they are from
chromosomal amplifications in part because ecDNA chromatin is more open than normal
chromatin and “ecDNA is shown to have a significantly greater number of ultra-long-range
interactions with active chromatin” [115,122].

2.2.5. LINE1-Mediated Retrotransductions and Large-Scale Genome Rearrangements

LINE1 retrotransposition occurs regularly in human pluripotent stem cells and nervous
system development [123,124]. There are >850,000 copies of LINE1 elements in the human
genome (~17% of total DNA), but only ~100–150 are actively mobile, and about 20 “hot
L1s” carry out the vast majority of retrotransposition events [125–127]. Recurrent LINE1
insertions into the APC locus are thought to initiate colorectal tumor development [128].
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In addition to LINE and SINE mobilization, LINE1-encoded TPRT requires only a 3’
poly-An tail on the template RNA [129]. That almost complete lack of sequence specificity
allows TPRT to mediate genome insertion of cDNAs from several classes of RNA:

• TPRT mobilizes read-through 3’ transcripts downstream from the original LINE1
element (“L1 transduction”) and provides a molecular mechanism for exon shuffling
in the human genome [130]. “The 3’ transductions disseminated genes, exons, and
regulatory elements to new locations, most often to heterochromatic regions of the
genome” [131]. A recent report states that 24% of all retrotransposition events in
cancer contain a 3’ transduced segment [128].

• A parallel process mobilizes 5’ read-through transcripts upstream of SVA SINE ele-
ments [132,133].

• LINE1 TPRT can insert cDNAs from spliced mRNAs and some stable RNAs, such
as U6snRNA, into the genome and generate “processed pseudogenes” or “retro-
genes” [134–136]. These processed pseudogenes are often expressed and can play a
role in oncogene amplification during cancer [137].

• There are reports of 20 deletions containing insertions of Alu and SVA SINE elements
in human germline, somatic and cancer breakpoint junctions [138–140], Further, the
Pan-Cancer Genome Study has recently published a detailed analysis of exactly such
LINE1-mediated genome restructuring in “2954 cancer genomes from 38 histological
cancer subtypes“ [141]. Intriguingly, the distribution of LINE1-mediated TPRT events
is far from randomly distributed among different cancers. While ~50% of tumors show
some evidence of LINE1 retrotransposition, only four cancer types predominately
displayed >10 events per genome: esophageal adenocarcinoma (~75% of samples),
head squamous cell carcinoma (~35%), lung squamous cell carcinoma (~55%) and
colorectal adenocarcinoma (~40%). Altogether these four tumor types contained 70%
(13,373/19,166) of all TPRT events among the entire PCAWG dataset but constituted
just 9% (266/2954) of the samples. In esophageal adenocarcinoma, 27% of the samples
contain more than 100 separate TPRT events, which are the most frequent type of
structural variation in this cancer. TPRT generates the second-most frequent type
of structural variants in head-and-neck squamous cell and colorectal adenocarcino-
mas. Of the remaining cancer types showing >10 TPRT events in some fraction of
tumor genomes, 9 were classified as adenocarcinomas and 1 each as squamous cell
carcinoma, chronic lymphocytic leukemia, pancreatic endocrine cancer and hepatocel-
lular carcinoma. The PCAWG dataset includes the following signature features and
rearrangements attributable to LINE1 TPRT-mediated SVs:

• A 244-fold enrichment of target site selection for those containing close homology to
the preferred consensus sequence (5′-TTTT/A-3′) for L1 endonuclease cleavage and
polyA tail hybridization [141].

• An 8.9-fold preference for insertion into late-replicating regions of the genome near
the end of S phase in the cell cycle, in agreement with earlier work [142].

• Five hot LINE1 elements account for 50% of all transductions. LINE1-mediated
chromosome deletions account for −1 CNVs observed adjacent to 5′ TPRT insertion
sites. Evidence for the TPRT mechanism includes the presence of retrotransposed
sequences bridging deletion breakpoints and homology to the L1 endonuclease target
preference at the 3’ end of the insertion/deletion event in the cancer cells. Similar
insertion/deletions occur in healthy human brains [143]. Intrachromosomal deletions
range in size from 0.1 kb up to ~80 Mb. Notable examples include an esophageal tumor
with a 45.5-Mb interstitial deletion of chromosome 1 flanked by TPRT signatures and
a lung tumor with an L1-mediated deletion of 51.1 Mb from chromosome X, including
the centromere [141].

• Inter-chromosomal translocations connected by TPRT-generated bridging sequences [141].
• Terminal deletions and isochromosome fusions leading to breakage-fusion-bridge

(BFB) cycles, as first described by McClintock, leading to multiple CNVs [144]. The
terminal fusions would occur by a TPRT bridge initiating at a sub-telomeric site on
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one sister chromatid and terminating at a break site on the same arm of the other
chromatid. This sequence of post-replication events on Chromosome 11 led to loss
of 50 Mb of the telomere end of 11q in a lung cancer and loss of 53 Mb of the same
chromosome arm in an esophageal adenocarcinoma, combined in both cases with
amplification of the CCND1 oncogene encoding cyclin D [141].

• A tandem 22.6 Mb duplication on the long arm of Chromosome 6 in the same
esophageal adenocarcinoma increased the copy number of the CCNC locus encoding
cyclin C, also a putative oncogenic protein [141]. A fold-back inverted 79.6 Mb dupli-
cation formed by end-to-end joining of sister chromatids on Chromosome 14 occurred
in a lung tumor [141].

3. The Importance of Cell Type or Virus Infection History in Characteristic Types of
Genome Change in Specific Cancers
3.1. B Cell Lymphomas and Leukemias

One of the most striking pieces of evidence for questioning the chaotic nature of
genome restructuring in cancer are the observations that cancers derived from B lympho-
cytes frequently contain rearrangements involving proteins and DNA substrates used for
immunoglobulin synthesis and maturation. The involvement of the immunoglobulin loci
IGH on chromosome 14, IGK on chromosome 2, and IGL on chromosome 22 as hotspots
for recurring translocations activating different oncogenes has been evident for many
years [145,146] Genetic experiments in mice provided evidence that the RAG2 subunit
of the VDJ recombinase is required for oncogenic translocations [147]. A recent paper
characterized the frequency and locations of inter-chromosomal oncogenic rearrangements
involving IGH, IgK and IgL in different B cell-derived tumors: 6.5% for chronic lympho-
cytic leukemia (CLL), 98% for mantle cell lymphoma (MCL), 50% for multiple myeloma
(MM), and 47% for diffuse large B cell lymphoma (DLBCL) [44]. Many of the following
rearrangements were recurring both at the genetic locus target level and across tumor types:

• 7 examples of IGH-BCL2 in CLL;
• 62 examples of CCND1-IGH in MCL;
• 7 examples of CCND1-IGH, 4 of MYC-IG), and 2 of NSD2- IGH in MM;
• 22 IGH-BCL2 and 5 BCL6-IGH in DLBCL.

The recurrences reflect both the repeated action of the immune recombination system
as well as the positively selective oncogenic effects of the resulting genetic fusions [148]. In
particular, the IGH locus has several strong 3’ enhancer sites that would elevate expression
of fusion oncogenes [149].

Sequence analysis has also detected deletions outside the IG loci that involved break-
point sequences with significant homology to the RSS signals for VDJ joining [150,151].
About 25% of acute lymphocytic leukemias (ALLs) carry a particular genetic fusion (ETV6-
RUNX1) acquired in utero, and they display ongoing and recurring deletions at multiple ge-
nomic locations that join RSS homologues throughout the course of the disease [39]. These
deletions remove functions for normal B-lymphocyte development and differentiation to
exacerbate the leukemia. As the authors of this ALL study wrote, “The RAG-mediated
signature is unparalleled among cancer-associated mutational processes for its specificity
in inactivating the very genes that would usually promote normal cellular differentiation.”

There are also cases where the AID-dependent CSR joining system played a role in
mediating translocations [152,153]. The genetic hallmark of Burkitt’s lymphoma (BL) is
a MYC-IGH fusion resulting from translocations between chromosomes 8 (Myc) and 14
(IGH) [154]. Most of these fusions occur at heavy chain class switch recombination (CSR)
sites rather than VDJ joining positions. In one study, 77% of the recurring translocations on
chromosome 8 occurred at two Myc clusters 560 bp and 779 bp in length within a 4555 bp
breakpoint region. Intriguingly, where the Myc breakpoint occurred correlated significantly
with which of the eight CSR “switch region” sites was involved: translocations at one
of four IGH Sγ regions occurred largely in the 5’ 560 bp cluster, the two IGH Sα regions
connected largely to the 3’ 779 bp cluster, while the Sµ germline region joined with a
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modest 5’ bias across the entire 4.5 kb Myc breakpoint region. Transcription across the eight
different IGH switch regions is regulated to incorporate signals from the infection response
in determining which class of antibody to produce. Therefore, it is likely that some feature
of the regulatory status of each lymphoma’s B cell progenitor influenced the accessibility
of the two Myc clusters to CSR beakage and joining. The same Myc breakpoint region on
chromosome 8 is also a recurring hotspot of MYC-IGH fusions in DLBCL lymphomas [155].

Many B cell tumors also showed evidence of ectopic AID-induced somatic hypermu-
tation [156–159]. Many of the hypermutated regions do not encode proteins but include
altered regulatory sites that stimulate expression of putative oncogenic loci in DLBCL
tumors [160,161]. It was known from work on immunoglobulin SHM that AID activity
was targeted specifically to V region exons in the producing cells by special “diversity acti-
vation” (DIVAC) enhancer elements at each IG locus [162]. It has recently been discovered
that these DIVAC enhancers target AID activity to execute SHM at non- IG sites in specific
inter-chromosomal TADs in the activated B cell nucleus [163]. Moving a DIVAC element to
a TAD where SHM does not normally occur activates AID in that TAD.

3.2. Virus-Mediated Oncogenesis and Genome Restructuring

Many different kinds of viruses have oncogenic potential, as first discovered in poultry
by Peyton Rous in 1910 [164]. The Rous Sarcoma Virus (RSV) turned out to be a retrovirus
capable of inserting into the chicken genome and expressing the Src oncogene [165,166].
Many other “tumor viruses” have since been discovered, and some of them have been
shown to integrate into the human genome and directly participate in oncogenic structural
variations. By so doing, they introduce genome elements not present in uninfected cells,
which can be foci of genome restructuring leading to cancer development. The best-
documented of these genome-modifying tumor viruses are the human papillomaviruses
(HPVs) present in over 99% of cervical cancers, and integrated into the chromosomes of at
least 82% of cervical tumors and 70% of oropharyngeal squamous cell carcinomas [167,168].
The integration events occur throughout both the human and HPV genomes guided by
microhomologies [169]. Many of these cancers also carry non-integrated circular “episomal”
copies of replication-competent HPV genomes as well as replicating hybrid episomes
containing both host and viral sequences [170].

Integrated and episomal HPVs influence tumor development and genome restructur-
ing in at least four different ways:

1. HPVs encode two regulatory factors, E6 and E7, which act as “oncoproteins” to
stimulate cancer cell growth: “The HPV-infected cells maintain their proliferative
potential and remain uncoupled from differentiation through the inactivation of key
cell cycle regulators, including members of the pRb family of proteins, pRb, p107
and p130. The HPV E7 proteins interact with these essential cell cycle regulators,
leading to the release and activation of E2F transcription factors that regulate S
phase genes . . . E6 proteins have evolved to target p53 for proteasomal-mediated
degradation . . . This cooperative action of the high-risk E6 and E7 oncoproteins
abrogates multiple cell cycle checkpoints, thereby allowing genome amplification
whilst ensuring the continued survival of the infected cell . . . E6 induces the hTERT
promoter via interactions with c-Myc and NFX-1 proteins and contributes to cellular
immortalization . . . ” [171].

2. The disruptions of cell cycle control by E6 and E7 proteins lead to mitotic errors and
activate cellular DNA repair functions, whose expression is necessary to enable viral
replication [171–176]. HPV replication specifically requires the homologous recom-
bination functions RAD51 and BRCA1 [177,178], even though it has been reported
that E6 and E7 “impair the homologous recombination pathway” [179]. E7 oncopro-
tein binds the host Rb protein to suppress canonical nonhomologous end-joining
(NHEJ) and promote error-prone alt-EJ [169,180]. These changes modify the pattern
of genome structural variations and facilitate viral insertion into the host cell genome.
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3. HPV genomic and sub-genomic sequences participate directly in generating “focal”
structural variations of human chromosomes clustered near the original insertion
site. Analysis of individual clones from a particular HPV-positive cervical or head-
and-neck tumor indicated that viral CNVs occurred following an initial insertion
event [181]. Sequence analysis of regions up to 3 MB long displaying host genome
CNVs found that the additional copies of human DNA were invariably flanked
by HPV sequences, whether they were deletions or amplifications. Similarly, chro-
mosome rearrangements contained amplified HPV sequences at the breakpoints:
“Statistical analysis confirmed a strong association between HPV insertional break-
points and genomic structural variation in eight of nine cases, including chromosomal
translocations, deletions, inversions, and/or intrachromosomal rearrangements (Bon-
ferroni adjusted binomial test, all p < 10−9) . . . Moreover, such enrichment occurred
at focal hyperamplification sites in six of nine samples (local ploidy >8 N, Bonferroni
adjusted binomial test, all p < 10−10)” [181]. Apparently, the HPV sequences provide
a first site for chromosome breakage initiating excision and replication of hybrid
host-viral segments that can then be reintegrated adjacent to the original insertion
(in the case of local CNVs) or at a new genomic site (in the case of larger scale SVs).
Many chromosome regions with local CNVs contain several interspersed HPV-host
segments, indicating the clustered occurrence of multiple excision-reinsertion events.

4. Using HPV replication proteins E1 and E2, integrated HPV fragments act as initiation
sites for focal bidirectional “onion skin” amplifications and CNVs of surrounding
chromosomal DNA [182]. The products of this in situ replication may be joined
together to create local tandem repeats, but they can also be joined with fragments
from other chromosomes to form hybrid viral-multi-chromosomal fusions, frequently
found as episomal ecDNA replicating in cervical cancer samples [170]. Both tandem
repeat and episomal fusion structures have been found to serve as the basis for
oncogene amplification. In addition, integrated HPV fragments can multimerize
enhancer elements to produce super-enhancers that drive high levels of viral oncogene
transcription [183].

4. Discussion

Rapid multi-site genome restructuring marks many stages in cancer develop-
ment [1,78,184]. These episodes of abrupt genomic transformations have been dubbed
“genome chaos” to denote the breakdown of normal controls on genome stability and
the complexity of many SVs in the new genomic configuration [1,10]. The term suggests
a random process of change. However, a closer look at the cellular processes that lead to
cancer cell genome restructuring reveals a number of strikingly non-random unchaotic
properties that indicate the operation of defined DNA rearrangement functionalities,
many with long evolutionary histories in eukaryotic biology [68,185].

First among the non-random features of episodic cancer genome transformations are
the signature structural differences discussed in the previous section. These signatures
result from the operation of specific DNA restructuring systems, some of which alter
chromosomes at quite different times during the cell cycle: chromoplexy in interphase [20],
LINE1 TPRT in late S phase [142], and chromothripsis in late mitosis [54].

Next is the long-recognized impact of the history of viral infections on genome changes
in cancer [186]. As we have seen in the best-studied case of HPV, for example, the virus pro-
vides both regulatory proteins directing DNA repair systems to mutagenic microhomology-
mediated events as well as DNA substrates for episomal replication, focal rearrangements
and CNVs [168,169,181].

Finally, there is the tumor type- and tissue-specificity of genome restructuring pro-
cesses. This is most obvious in the case of lymphoid tumors derived from B cells that
virtually uniquely utilize adaptive immune system DNA restructuring functions to pro-
duce oncogenic rearrangements and introduce SHM changes into particular sites in the
evolving cancer genome. Although lymphomas and leukemias are unique with respect to
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immune system activities, all genome restructuring processes show major differences in
frequencies between cancers from different tissues. The fact that only four out of 38 tumor
types examined by the PCAWG Consortium contain 70% of the LINE1 TPRT events while
many other cancers contain ≤ 1 is similar to what has been found for chromothripsis and
chromoplexy [14,141].

5. Conclusions

In summary, the genomic signatures in different tumors indicate that identifiable
cellular and molecular processes are responsible for major hereditary variation in the course
of cancer development. Delineating the unchaotic, non-random features of cancer genome
restructuring is more than an academic exercise. There may well be practical therapeutic
utility in identifying these functionalities for specific cancers because punctuated genome
change often accompanies the most dangerous transitions of tumors towards malignancy,
metastasis, and chemotherapy resistance [2,86,187]. It would therefore be beneficial to
discover and apply therapies designed to inhibit such transitions. A major advantage in
looking at cancer as an evolutionary process of active self-modification rather than a series
of stochastic accidents could be the ability to anticipate and prevent the conversion of a
tolerable disease into a lethal malignancy.
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