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A B S T R A C T

Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. 
However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer 
patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to 
assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic 
methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug- 
induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian 
target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular 
mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR 
is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling 
pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable 
prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the 
present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP 
response in tumor cells.

1. Introduction

Recent progresses in immunotherapy, radiotherapy, chemotherapy, and surgery have significantly improved the survival of cancer 
patients; however, there is still a high rate of therapeutic failure in these patients [1–3]. Cisplatin (CDDP) as one of the anticancer drugs 
triggers the DNA damage that suppresses tumor cell proliferation while induces apoptosis [4]. However, CDDP resistance is a frequent 
therapeutic challenge that reduces prognosis in cancer patients [5]. Regarding the CDDP side effects in normal tissues, it is required to 
assess the molecular mechanisms associated with CDDP resistance. Multiple processes including provoked drug efflux, detoxifying 
systems, DNA repair mechanisms, drug-induced apoptosis, and reduced drug uptake are involved in multidrug resistance in 
CDDP-resistant tumor cells [6–8]. Mammalian target of rapamycin (mTOR), as a serine/threonine protein kinase plays a pivotal role in 
various cellular mechanisms, such as ferroptosis, autophagy, metabolism, and cell proliferation through regulating nutrient status and 
growth factors [9–11]. mTOR activation by PI3K/Akt axis modulates its downstream targets such as elongation initiation factor 4E 
(eIF4E), binding protein-1 (4EBP1), and p70S6 kinase (S6K) that accelerate cell proliferation and protein synthesis [12–14]. 
PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers, indicating their 
potential to be targeted in cancer therapy [15–17]. The rapamycin/sirolimus (Wyeth) and its analogues, such as AP23573 (Ariad), 
CCI-779/temsirolimus (Wyeth), and RAD001/everolimus (Novartis) are mTOR inhibitors which are used as anti-cancer drugs in 
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numerous cancers. The mTOR inhibitors are antiprolifrative agents that can arrest cancer cells in G1 phase; however, they are not 
enough for tumor eradication. Inhibition of mTOR induces the efficacy of various chemo cytotoxic drugs, such as docetaxel, mitox-
antrone, carboplatin, paclitaxel, doxorubicin, cisplatin, dexamethasone in different human cancers [18–21]. Over-stimulated mTOR 
also increases the drug resistance in tumor cells [22,23]. Therefore, all of the molecular mechanisms associated with mTOR regulation 
can be involved in CDDP response of tumor cells. MicroRNAs (MiRNAs) are involved in regulation of cell proliferation, invasion, and 
drug resistance [24,25]. MiR-100 and miR-497 reduced CDDP resistance by mTOR targeting in chondrosarcoma, lung, gastric, and 
ovarian tumor cells [26–29]. Regarding the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular 
mechanisms that regulate mTOR function during CDDP response in tumor cells (Table 1)

1.1. mTOR-mediated CDDP response by regulation of apoptosis, DNA repair, and ferroptosis

It has been shown that mTOR has a key role in CDDP response by rergulation of apoptosis, ferroptosis, and DNA repair mechanisms 
(Fig. 1). Mcl-1 preserves cells from a variety of proapoptotic activators that stimulate the mitochondrial apoptotic pathway and 
subsequent drug resistance [30]. AKT pathway positively regulates Mcl-1 via CREB [31]. In contrast to MAPK pathway inhibitors, AKT 
inhibitors notably enhanced the cisplatin and temozolomide sensitivity. A combination of the rapamycin (mTOR inhibitor) and 
LY294002 (PI3K inhibitor) with the cisplatin or temozolomide increased apoptosis while inhibited tumor growth in melanoma which 
was associated with Mcl-1 inhibition as an antiapoptotic protein. Therefore, combinations of chemotherapeutic drugs and AKT in-
hibitors promoted apoptosis in melanoma cells through suppression of Mcl-1 by mTOR-modulated protein synthesis suppression [32]. 
Heat shock leads to the aggregation and unfolding of proteins in tumor cells. It also destroys nuclear DNA, cell cytoskeleton, and 
membrane and impairs lysosomes, mitochondria, ER, and the Golgi system [33,34]. Cisplatin is a well-known drug combined with 
hyperthermia (HT) in the therapeutic plan of numerous cancers [35]. This combination strategy decreased the p70s6k, mTOR, and Akt 
phosphorylation in prostate tumor cells. It also accelerated apoptosis of prostate tumor cells via synergistically suppressing the 
antiapoptotic IAP and Bcl-2 proteins and Akt-mTOR-p70s6k pathway [36]. MiR-1271 reduced the growth while promoted apoptosis in 
CDDP-treated CRC cells. There were also caspase-3 and Bax up regulations in CDDP-treated cells. MiR-1271 increased CDDP sensitivity 
of CRC cells via mTOR targeting [37]. IL-17 is the proinflammatory cytokine of Th17 cells that has a crucial role in inflammatory 
diseases including rheumatoid arthritis [38], inflammatory bowel disease [39], and development of cancers including thyroid cancer 
[40] and lung cancer [41]. It has crucial roles in cancer initiation and development [42–47]. IL-17 induced cell proliferation while 
suppressed apoptosis in CDDP treated CRC cells. IL-17 suppression and CDDP treatment acted synergistically to induce apoptosis. It 
also increased chemoresistance through activation of PI3K-Akt-mTOR and inhibition of Bcl-2 [48]. The endocannabinoid system (ECS) 
is implicated in a variety of normal cellular processes such as inflammation, pain, appetite, memory, and learning [49–51]. ECS 
operates via the crosstalk between the two G protein-coupled receptors (cannabinoid receptor 1 (CB1) and CB2) and cannabinoids. 
Tumor suppressive function of CB2 has been reported in numerous cancers [52–55]. CB2 attenuated the growth while enhanced 
apoptosis in BC cells via the Akt/mTOR targeting. CB2 also inhibited the p-mTOR and p-Akt, followed by Bcl2 downregulation and Bax 
upregulation in BC cells. Moreover, CB2 increased CDDP sensitivity in BC cells [56]. Ghrelin is a ligand for growth hormone secre-
tagogue receptor (GHSR) that has a vital function in the differentiation and progression of various solid tumors [57]. Acylated ghrelin 
(AG) as the most active form of circulatory ghrelin operates via triggering secretagogue receptor type 1a (GHS-R1a). However, 
unacylated gherlin (UAG) form is less active and GHS-R1a-independent [58]. It has been indicated that AG induced the cell growth and 
CDDP-resistance in OC cells via GHS-R1a as well as some other processes including activation of PI3K/Akt, mTOR, NF-κB and inhi-
bition of PUMA and p53. CDDP increased cell death by up regulation of p53, PUMA, and cleaved caspase-3 in OC cells that was 
associated with inhibition of PI3K/Akt/p-mTOR. AG was found to impair Cis-induced cell apoptosis in OC cells via the PI3K/Akt 
triggering and its sequential effectors NF-κB and mTOR as it prompts the expression levels of the nuclear NF-κB P65, p-mTOR, p-Akt, as 
well as p-PI3K [59]. E3 identified by differential display (EDD) is an E3 ubiquitin ligase that regulates cell growth and development 
[60,61]. EDD immunostaining was increased in low-grade and high-grade breast tumors compared to the benign breast tissues and 
ductal carcinoma. There was an inverse correlation between the levels of EDD expression and survival in BC patients. Loss of EDD 
enhanced apoptosis and impeded the survival of breast tumor cells. There was also a close correlation between these processes and the 
expression of proapoptotic proteins (Bax, Bak, and Bim), MOAP-1 (Bax stimulator and translocator), and caspase-7 fragmentation. 
Additionally, EDD inhibition up regulated MOAP-1, Bax, and BIM to induce apoptosis in BCa cells. EDD suppression restrained drug 
resistance via positively regulating pro-apoptotic proteins. EDD stimulated TORC1 signaling by 4EBP1 phosphorylation, fostering 
translation in BCa cells [62]. There was significant linc-ROR up regulation in A549/DDP cells. Linc-ROR inhibition significantly down 
regulated bcl-2 while up regulated BAX. Linc-ROR negatively modulated PI3K/Akt/mTOR axis. Therefore, Linc-ROR inhibition or 
PI3K/Akt/mTOR axis suppression enhanced CDDP sensitivity in NSCLC which suppressed cell proliferation and invasion while 
induced apoptosis [63].

Nucleotide excision repair (NER) is the essential pathway, which removes CDDP-induced damaged DNA [64]. Xeroderma pig-
mentosum complementation group C (XPC) is involved in the detection of DNA damage [65]. Inhibition of XPC induces apoptosis via 
the up regulation of matrix metalloproteinase-1 (MMP1) and p53 transcription [66]. XPC suppression significantly increased apoptosis 
and decreased A549/DDP cell proliferation. XPC also activated PI3K/Akt/mTOR axis through the regulation of the essential proteins 
involved in this pathway. XPC up regulation was observed in CDDP-resistant A549 cells compared to parental cells. XPC inhibition 
down regulated p-Akt and p-mTOR to induce CDDP sensitivity [67]. NEIL3 is a class of DNA glycosylases that play a key role in DNA 
repair via DNA base excision repair [68]. NEIL3 preserves genomic integrity by reconstructing telomeric damage and mitotic chro-
mosomal segregation [69]. There was an NEIL3 up regulation in NSCLC tissues, which was correlated with poor prognosis. NEIL3 
increased NSCLC cell growth, migration, and CDDP sensitivity via modulating the PI3K/AKT/mTOR axis [70].
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Table 1 
Molecular mechanisms of mTOR during CDDP response in tumor cells.

Study Year Tumor Type Samples mTOR regulator

Xu [26] 2017 Gastric cancer 30T 30Na

MGC-803, AGS, SGC-7901, and BGC- 
823 cell lines 
Xenograft model

miR-7 reduced CDDP resistance via suppressing mTOR

Xu [27] 2015 Ovarian cancer 41T 41N 
TCGA DATASET 
A2780, A2780/CP, SKOV3, and 
SKOV3/CP cell lines 
Xenograft model

miR-497 reduced CDDP resistance of by mTOR 
inhibition

Zhu [28] 2014 Chondrosarcoma CHON-001 and C-28/l2 cell lines miR-100 reduced CDDP resistance by downregulating 
mTOR

Gou [29] 2016 Epithelial ovarian cancer SKOV3 cell line 
Xenograft model

miR-100 reduced CDDP resistance via suppressing 
mTOR

Yao [37] 2019 Colorectal cancer 30T 30N 
CRC SW480 cell line

miR-1271 reduced CDDP resistance via inhibiting mTOR

Sui [48] 2019 Colorectal cancer 37T 37N 
CRC HCT116 cell line

IL-17 induced CDDP resistance via activating the PI3K- 
Akt-mTOR axis

Song [56] 2023 Breast cancer 139T 139N 
MDA-MB-231 and MCF-7 cell lines 
Xenograft model

CB2 reduced CDDP resistance via suppressing the PI3K/ 
Akt/mTOR pathway

El-Kott [59] 2019 Ovarian cancer A2780 cell line Acylated Ghrelin induced CDDP resistance via 
Activation of the PI3K/Akt/mTOR Pathway

MacDonald [62] 2019 Breast cancer 56T 14N 
MCF-7, T47D, SKBR3, MDA-MB-231, 
and MDA-MB-436 cell lines 
Xenograft model

EDD induced CDDP resistance via stimulating TORC1 
signaling

Teng [67] 2019 Lung adenocarcinoma A549 and A549/DDP cell lines Downregulation of XPC reduced CDDP resistance via 
inhibiting AKT/mTOR axis

Huang [70] 2022 Non-small cell lung cancer 4T 4N 
TCGA DATASET dataset 
SPC-A-1, SK-MES-1, A549, and H1299 
cell lines

NEIL3 induced CDDP resistance via activating the PI3K/ 
AKT/mTOR signaling pathway

Jiang [74] 2023 Cervical cancer HeLa and CaSki cell lines 
Xenograft model

DHODH inhibition reduced CDDP resistance via 
downregulating the mTOR activity

Jin [83] 2012 Non-small cell lung cancer H1299 and A549 and A549/DDP cell 
lines

Suppressing Twist1 reduced CDDP resistance via 
inhibiting mTOR/S6K1

Chen [84] 2016 Lung adenocarcinoma 34T 34N 
A549, H1299 cell lines 
Xenograft model

miR-206 induced CDDP resistance via MET/PI3K/AKT/ 
mTOR axis activation

Deng [85] 2019 Ovarian cancer A2780 and A2780-cis EOC cell lines BEZ235 reduced CDDP resistance via Inhibition of PI3K/ 
Akt/mTOR

Harhaji- 
Trajkovic 
[100]

2009 Glioma, Fibrosarcoma U251 glioma, rat C6 glioma and mouse 
L929 fibrosarcoma cell lines

AMPK induced CDDP resistance by mTOR pathway

Zhu [101] 2021 Lung adenocarcinoma 131T 131N 
A549, HCC827, NCI-H460, NCI- 
H1299, NCI-H1915, and H1650 cell 
lines

UBE2T induced CDDP resistance via the p53/AMPK/ 
mTOR pathway

Wu [102] 2015 Lung adenocarcinoma A549 and A549/DDP cell lines Autophagy induced CDDP resistance by AMPK/mTOR 
signaling pathway activating

Liu [104] 2018 Non-small cell lung cancer 6T 6N 
A549/DDP cell line

miR-181 reduced CDDP resistance via suppressing the 
PTEN/PI3K/AKT pathway

He [106] 2022 Non-small cell lung cancer H1299, H460, and A549 and A549/ 
DDP cell lines 
Xenograft model

TRIM25 induced CDDP resistance via AKT/mTOR 
pathway activation

Gao [107] 2020 Laryngeal squamous cell 
carcinoma

107T 107N 
FD-LSC-1 and Tu 177 cell lines 
Xenograft model

circPARD3 induced CDDP resistance via PRKCI-Akt- 
mTOR pathway

Meng [108] 2020 Osteosarcoma MG63, U2OS, Saos2 and OS9901 cell 
lines 
Xenograft model

miR-22 reduced CDDP resistance via inhibiting the 
PI3K/Akt/mTOR pathway

Qi [114] 2021 Ovarian cancer 20T 11N 
GEO DATASET 
CAOV3 and OV90 
Xenograft model

TTK silencing reduced CDDP resistance by activating 
mTOR

Liu [117] 2023 Ovarian cancer 92T 92N 
SKOV3 and A2780 cell lines 
Xenograft model

LDLR induced CDDP resistance via activating PI3K/ 
AKT/mTOR signaling pathway

(continued on next page)
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Ferroptosis is an iron-related programmed cell death that is triggered by reactive oxygen species (ROS) and lipid peroxidation [71]. 
Dihydroorotate dehydrogenase (DHODH) is a vital modulator of the de novo pyrimidine synthesis positioned in the inner membrane of 
mitochondria. DHODH represses ferroptosis via inhibition of ubiquinone to ubiquinol in a GPX4 or FSP1 independent manner. DHODH 
depletion hinders intracellular pyrimidine nucleotide reservoirs, followed by cell cycle arrest and chemosensitivity in tumor cells [72,
73]. Inhibition of DHODH negatively regulated the cell proliferation while increased ferroptosis-induced cell death in cervical cancer. 
Additionally, DHODH suppression promoted cisplatin sensitivity of cervical cancer (CC) cells via ferroptosis. There was a significant 
downregulation of mTOR pathway which induced ferroptosis in CC cells upon cisplatin and DHODH inhibition combined therapy [74].

Table 1 (continued )

Study Year Tumor Type Samples mTOR regulator

Lu [121] 2019 Gastric cancer KATO-III cell line 
Xenograft model

Suppression of CD133 reduced CDDP resistance via 
Inhibiting PI3K/AKT/mTOR pathway

Gong [130] 2018 Non-small cell lung cancer H1299 and A549 and A549/DDP cell 
lines

Knockdown of KLF5 reduced CDDP resistance via 
inactivation of the PI3K/Akt/mTOR pathway

Sun [131] 2021 Non-small cell lung cancer A549 and A549/DDP cell lines miR-21 induced CDDP resistance via inhibiting the 
PI3K/AKT/mTOR/HIF-1a signaling pathway

Ren [133] 2020 Osteosarcoma 30T 30N 
GEO DATASET 
SaOS-2 and MG63 cell lines

Repressing CLEC3A reduced CDDP resistance by 
inhibiting the AKT1/mTOR/HIF1α pathway

Wang [141] 2019 Esophageal adenocarcinoma 48T 48N 
OE19 and OE33 cell lines

EMX2 reduced CDDP resistance via inhibiting AKT/ 
mTOR/S6K axis

Liu [143] 2021 Ovarian cancer TCGA DATASET 
A2780 and SKOV3 cell lines 
Xenograft model

ELF3 induced CDDP resistance via activating the mTOR 
pathway

Jiang [144] 2018 Non-small cell lung cancer A549 and A549/DDP cell lines Knockdown of SALL4 reduced CDDP resistance via 
inhibiting AKT/mTOR signaling pathway

Morelli [149] 2021 Lung cancer A549 and A549/DDP cell lines STAT3 induced CDDP resistance via mTOR signaling 
activation

Wu [150] 2021 Gastric cancer BGC-823, MKN28, MGC803, MKN45, 
AGS cell lines 
Xenograft model

FOXD1-AS1 induced CDDP resistance via activating the 
PI3K/AKT/mTOR pathway

Wang [152] 2022 Ovarian cancer 76T 76N 
18S 
CAOV3/ES2 cell line 
Xenograft model

miR-18-5p reduced CDDP resistance via inhibition of 
AKT/mTOR pathway 
NACC1 induced CDDP resistance via AKT/mTOR 
pathway activation

Yang [160] 2022 Colorectal cancer HCT-116 and LOVO cell lines CRNDE reduced CDDP resistance by inhibiting the Akt/ 
mTORC1-mediated Warburg effect

Zhu [163] 2016 Cervical cancer 17R 19Sb

C4-1 and HeLa cell lines
PKM2 reduced CDDP resistance via mTOR signaling

Jiang [166] 2022 Tongue squamous cell 
carcinoma

42T 42N 
CAL27 and SCC15 cell lines 
Xenograft model

SNHG26 induced CDDP resistance via mTOR signaling 
activation

Zhao [178] 2021 Epithelial Ovarian Cancer 61T 15N 
HEK293T, OVCAR3, SK-OV-3, and 
A2780 cell lines 
Xenograft model

Suppression of Exo70 reduced CDDP resistance by 
downregulating mTOR

Jiang [185] 2021 Gastric cancer SGC-7901, MGC-803, and HEK 293 T 
cell lines

miR-107 reduced CDDP resistance via inhibiting 
HMGA2/mTOR/P-gp pathway

Li [186] 2017 Cholangiocarcinoma RBE and GBC-SD cell lines miR-199a-3p reduced CDDP resistance via inhibiting 
mTOR pathway

Song [196] 2017 Osteosarcoma 40T 40N 
MG-63 and SaOS-2 cell lines 
Xenograft model

LPAATβ induced CDDP resistance via activating PI3K/ 
Akt/mTOR signaling pathway

Lin [202] 2020 Nasopharyngeal Carcinoma 96T 96N 
C666-1 and HNE1 cell lines 
Xenograft model

Silencing HOXA11-AS/miR-454-3p axis reduced CDDP 
resistance via inhibiting the c-Met/Akt/mTOR pathway

Wang [204] 2022 Ovarian cancer 30T 30N 
SKOV3 and A2780 cell lines 
Xenograft model

PTPRZ1 reduced CDDP resistance via inhibiting PI3K/ 
AKT/mTOR pathway

Li [212] 2016 Head and neck squamous cell 
carcinoma

Cal 27/UM-SCC25/UMSCC1/JHU- 
O28 cell lines

IKK/NF-kB induced CDDP resistance via upregulating 
EGFR/Akt/mTORC1 axis

Song [216] 2022 Breast cancer MCF-7, MDA-MB-231, and MDA-MB- 
436 cell lines 
Xenograft model

RBM8A knockdown reduced CDDP resistance via 
inhibiting the AKT/mTOR axis

Zeng [224] 2016 Bladder cancer T24 and 5637 cell lines miR-222 induced CDDP resistance by activating the 
PPP2R2A/Akt/mTOR axis

Ye [232] 2019 Non-small cell lung cancer 25T 25N 
A549 and H1299 cell lines

TM4SF1 induced CDDP resistance via the DDR1/Akt/ 
ERK-mTOR axis

a Tumor (T) tissues and Normal (N) margins.
b Resistant (R) patients and Sensitive (S) patients to CDDP.
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1.2. mTOR-mediated CDDP response by regulation of EMT process

Epithelial-to-mesenchymal transition (EMT) is a cellular mechanism in which epithelial cells acquire mesenchymal features during 
embryogenesis and tumor progression. This mechanism is featured by promoting migration ability, attenuating cell–cell adhesion, and 
decreasing cell polarity [75]. There is a correlation between drug resistance and EMT-like cancer cells [76,77]. A close interaction has 
been detected between EMT mechanism and PI3K/AKT/mTOR axis [78]. It has been reported that mTOR has a key role in CDDP 
response by regulation of EMT process (Fig. 1). Downregulation of the epithelial molecules E-cadherin and upregulation of mesen-
chymal markers including zinc-finger E-box binding homeobox 1 (ZEB1), Vimentin, Slug/Snai2, and Snail/Snai1 elevates cell invasion, 
motility, and chemoresistance [79]. Zinc-finger proteins (e.g., Zebs/SIP1, Zeb1, Slug, and Snail) and basic helix-loop-helix factors (E47 
and Twist) can modulate the EMT process [80]. Twist promotes EMT through overexpression of mesenchymal markers (vimentin, 
N-cadherin, and fibronectin) and epithelial cell marker (E-cadherin) downregulation, followed by tumor metastasis and aggressiveness 
[81,82]. Inhibition of Twist1 increased cisplatin sensitivity in lung cancer cells via restraining ATP that activated AMPK, suppressed 
mTOR/S6K1, and down regulated Mcl-1 [83]. There were reduced levels of miR-206 in resistant lung cancer cell lines. MiR-206 
sensitized cisplatin-resistant cells and restrained the mesenchymal characteristics by MET targeting. In addition, suppression of 

Fig. 1. mTOR is involved in CDDP response via regulation of apoptosis, ferroptosis, EMT, DNA repair, drug efflux, and structural proteins. (Created 
with BioRender.com).
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miR-206 increased CDDP resistance and EMT morphology via MET/PI3K/AKT/mTOR axis activation, and subsequent overexpression 
of Snail, ZEB1, and MDR1 in CDDP-resistant cells [84]. There was a significant association between triggering the PI3K/Akt/mTOR 
axis and promoting EMT and CSC markers in chemoresistant EOC cells. E-cadherin downregulation and N-cadherin/Vimentin upre-
gulation were discovered in cisplatin-resistant EOC cells. BEZ235 alone or combination treatment significantly restrained EMT and 
repressed CSC markers via inhibition of PI3K/Akt/mTOR signaling in cisplatin-resistant EOC cells compared with cisplatin alone or 
control. Combination therapy ameliorated apoptosis, proposing that BEZ235 sensitized cisplatin-resistant cells by PI3K/Akt/mTOR 
signaling suppression [85].

1.3. mTOR-mediated CDDP response by regulation of autophagy

Autophagy is a cellular mechanism in which lysosomes destroy damaged organelles and macromolecules in eukaryotic cells. It has a 
critical role in normal cells by regulation of organelle renewal and cell metabolism [86,87]. Autophagy has a critical role in che-
moresistance as it removes destructed parts of the cells within autophagosomes, maintaining homeostasis of cells. It preserves cell 
balance during the production, destruction, and subsequent recycling of crucial molecules upon nutrient deprivation [88,89]. Auto-
phagy is stimulated in response to different therapies in solid tumors, and is involved in metabolic adaptation pathways such as 
repressing drug-mediated apoptosis and preserving the viability of tumor cells [90,91]. Autophagy is a critical regulator of 
CDDP-resistance in tumor cells [92,93]. mTOR is a pivotal serine/threonine kinase that is involved in CDDP response by regulation of 
autophagy (Fig. 2). AMPK/mTOR pathway critically regulates cellular autophagy [94]. Oxidative stress, endoplasmic reticulum (ER), 

Fig. 2. mTOR is involved in CDDP response via regulation of autophagy and transcription factors. (Created with BioRender.com).
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stress hypoxia, and starvation induce autophagy following nutrient energy sensor AMP kinase (AMPK) stimulation and mTOR sup-
pressing [95,96]. AMPK facilitates the autophagy process as it is a pivotal energy sensor of cells [97]. Cellular and environmental stress 
conditions trigger AMPK following an intensified AMP/ATP ratio that suppresses ATP-requiring processes, while initiating 
ATP-generating degradative pathways [98]. AMPK promotes autophagy by inhibiting the mTOR as an important autophagy repressor 
[99]. CDDP trigerred the autophagy in glioma cells via the AMPK/mTOR axis. AMPK also interrupted the CDDP-mediated Bax/Bcl-2 
ratio elevation in these cells. Additionally, AMPK reinforced the expression of beclin-1 to induce autophagy in CDDP-treated fibro-
sarcoma and glioma cells. There was a correlation between CDDP-induced AMPK activation and reduced phosphorylation of S6K. 
Therefore, CDDP ameliorated autophagy via mTOR inhibition in glioma cells [100]. Ubiquitin-conjugating enzyme E2T (UBE2T) 
promoted autophagy in NSCLCs via regulation of p53/AMPK/mTOR pathway. Additionally, the multigene panel including autophagy 
genes and UBE2T effectively predicted drug sensitivity and prognosis in NSCLC patients [101]. AMPK/mTOR pathway induced 
CDDP-mediated autophagy in lung tumor cells. Increased AMPK phosphorylation, upregulated Beclin-1 and LC3B, and decreased 
mTOR phosphorylation were observed in CDDP-treated lung tumor cells [102].

PTEN activates autophagy by reversing the inhibitory impact of PI3K/PKB on autophagy [103]. There was downregulation of 
miR-181 in cisplatin-resistant NSCLC compared with normal patients which was followed by LC3 and ATG5 inhibition in 
CDDP-resistant NSCLC cells. MiR-181 also suppressed tumor spread and cell growth while increased apoptosis and autophagy via 
targeting the PTEN/PI3K/AKT/mTOR axis in CDDP-resistant NSCLC cells [104]. PTEN as an inhibitor of PI3K/AKT/mTOR pathway 
can be degraded by the NEDD4-1 induced polyubiquitination [105]. A crosstalk between TRIM25 and PTEN has been reported that 
orchestrated the K63-related polyubiquitination of TRIM25, leading to AKT/mTOR activation. Additionally, suppression of 
TRIM25-induced PTEN ubiquitination increased the chemosensitivity in NSCLC cells [106]. CircPARD3 functioned as an autophagy 
inhibitor that was upregulated in LSCC tissues. CircPARD3 induced cell proliferation and chemoresistance in LSCC cells by suppressing 
autophagy. CircPARD3 suppressed autophagy via miR-145-5p/PRKCI axis that triggered Akt-mTOR pathway [107]. MiR-22 increased 
CDDP-sensitivity in MG63 and MG63/CDDP cells via inhibiting autophagy. MiR-22 and CDDP down regulated the PI3K, Akt, and 
mTOR. Consequently, miR-22 reduced chemoresistance and suppressed CDDP-mediated autophagy through the PI3K/Akt/mTOR 
signalling pathway [108].

TTK protein kinase (TTK) serves as a dual specificity serine/threonine kinase is involved in regulation of spindle assembly 
checkpoint (SAC) [109–111]. SAC is a surveillance mechanism during mitosis that ensures the accurate segregation of chromosomes 
thus preserving genome stability [112]. Additionally, TTK regulates DNA repair, cytokinesis, chromosomal alignment, and mitotic 
checkpoint production [113]. There was a significant TTK upregulation in HGSOC and CDDP-resistant ovarian tumor cells. Inhibition 
of TTK promoted the cisplatin cytotoxicity via mTOR/autophagy axis. The loss of TTK also suppressed the autophagy pathway fol-
lowed by decreasing tumor growth while enhancing cisplatin sensitivity. Therefore, TTK repressing mitigated ovarian cancer devel-
opment via suppressing autophagy and triggering mTOR [114]. Low-density lipoprotein receptor (LDLR) attaches with LDL and 
translocates it into cells via endocytosis as a membrane mosaic molecule [115,116]. There was LDLR up regulation in OC cells and its 
downregulation inhibited cell proliferation and autophagy via PI3K/AKT/mTOR pathway. LDLR was up regulated and autophagy was 
induced in CDDP-resistant OC cells [117]. Conventional chemotherapy and radiotherapy are usually unable to ablate the CSCs and 
subsequent tumor recurrence due to the ability of highly expressing extrusion pumps and DNA repair mechanisms in CSCs [118,119]. 
CD133/p85 interaction triggeres the PI3K/AKT pathway and promoted tumorigenesis in glioma stem cells [120]. CD133 has been 
indicated to accelerate cell proliferation and autophagy while decreased apoptosis and cisplatin efficiency. Additionally, 
PI3K/AKT/mTOR pathway and apoptosis-related protein increased CD133-induced cisplatin resistance. Hence, CD133 increased the 
cisplatin resistance of GC cells via PI3K/AKT/mTOR pathway [121]. PDZ-binding kinase (PBK) is a mitogen-activated protein kinase 
kinase (MAPKK) family member that facilitated autophagy in ovarian cancer (OC) cells via mTOR pathway triggering following 
ERK1/2 phosphorylation. There was a correlation between PBK expression and cisplatin resistance, metastasis, and unfavorable 
prognosis in high-grade serous ovarian carcinoma (HGSOC) patients. PBK decreased the sensitivity of OC cells to cisplatin and induced 
autophagy by the ERK/mTOR axis. EVI1 up regulated the PBK to induce CDDP resistance in HGSOC cells via autophagy induction 
[122].

1.4. Transcription factors associated with mTOR-mediated CDDP response

Tumors have different strategies to develop drug resistance including providing an acidic microenvironment to increase tumor 
proliferation and aerobic glycolysis to supply energy [123]. Hypoxia is a well-known mechanism that is involved in numerous tumoral 
processes, such as drug resistance, angiogenesis, apoptosis, and growth [124]. Hypoxia-induced chemoresistance is a critical issue in 
tumor therapy [125]. Transcription factors have a key role in CDDP reponse by regulation of AKT/mTOR axis (Fig. 2). 
Hypoxia-inducible factor-1α (HIF-1α) regulates cell proliferation, apoptosis, and glycolysis upon hypoxic condition [126]. 
HIF-1α-mediated glycolysis critically increased the chemoresistant of NSCLC cells [127]. Krüppel-like factor 5 (KLF5) plays a core part 
in different processes in human cancers, such as cell growth, differentiation, death, and tumor progression [128]. KLF5 functioned as 
an upstream effector of HIF-1α in hypoxic tumors [129]. KLF5 developed hypoxia-mediated cisplatin resistance via triggering the 
PI3K/Akt/mTOR axis in NSCLC cells. The loss of KLF5 inhibited hypoxia-mediated cisplatin resistance via suppressing 
HIF-1α-associated glycolysis by PI3K/Akt/mTOR inhibition [130]. PI3K/AKT axis served as an intermediate factor in tumor cells, as it 
modulates the Myc and HIF-1α or is regulated by the Ras and Src. MiR-21 suppressed the PI3K/AKT/mTOR/HIF-1α axis, followed by 
LDHA and PKM2 inhibition, and subsequently decreased glycolysis in CDDP resistant NSCLC cells [131]. The c-type lectins belong to 
the c-type lectin receptors (CLR) family, which is involved in cell migration and differentiation. CLRs have the c-type lectin-like 
domains which can recognize specific carbohydrates and can detect and bind to lipids, carbohydrates, and proteins [132]. There 
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was CLEC3A up regulation in OS tissues that was correlated with lymph node invasion and TNM stage. CLEC3A inhibition also 
suppressed OS cell proliferation while induced their CDDP sensitivity via the AKT1/mTOR/HIF1α axis. CLEC3A inhibition significantly 
down regulated HIF-1α and reduced its nuclear transportation [133].

Empty spiracles homeobox 2 (EMX2) belongs to the Homeobox gene family, that participates in cell growth and differentiation 
[134]. EMX2 exerts regulatory functions in mammalian reproduction, the stereociliary array positioning of sensory hair cells, hair cell 
maturation, neurogenesis, and cortical development [135–140]. EMX2 downregulation has been identified to be correlated with EMT 
in EAC, and EMX2 inhibited EMT by targeting AKT in the AKT/mTOR/S6K axis. Additionally, EMX2 inhibition was associated with 
p-S6K1, p-mTOR, and p-AKT upregulation in the tumor tissues. Therefore, EMX2 increased the CDDP sensitivity of EAC cell lines 
[141]. ELF3 is a member of the ETS family of transcription factors [142]. ELF3 levels were increased in OC, which was correlated with 
a poor overall survival rate. ELF3 decreased chemosensitivity and induced OC progression via the up regulation of mTOR axis [143]. 
Sall4 as a developmental transcription factor preserves the self-renewal. Inhibition of Sall4 reduced cell growth while promoted 
CDDP-mediated apoptosis via AKT/mTOR suppression in NSCLC cells [144]. STAT3 is a transcription factor which regulates cell 
survival and angiogenesis [145]. STAT3 is activated by various protein kinases, cytokines, and growth factors [146] and constitutive 
activation of STAT3 maintains malignant behavior in various cancers [147]. STAT3 activation by the mTOR allows its maximal 
activation [148]. The up regulation of mTOR pathway has been associated with chemotherapy resistance in A549 lung cancer tumor 
cells. STAT3 promoted EMT and increased CDDP resistance. Therefore, the combination of STAT3 inhibitors, cisplatin, and rapamycin 
was suggested as an effective strategy in the treatment of lung cancer [149]. FOXD1-AS1 up regulated PI3K/AKT/mTOR axis via 
miR-466 sponging and subsequent release of PIK3CA, which led to 4E-BP1 activation via hyperphosphorylation. 4E-BP1 activation 
increased eIF4E and eIF4G interaction and up regulated FOXD1 protein, which increased CDDP resistance. FOXD1-AS1 induced CDDP 
resistance via the regulation of the FOXD1 protein translation [150]. Nucleus accumbens-associated protein 1 (NACC1) is involved in 
cancer-related mechanisms, including chemoresistance, cytokinesis, and stemness [151]. hMSC-EVs contained miR-18a-5p suppressed 
cell migration in OC cells by NACC1 targeting. AKT/mTOR axis had a negative and positive association with miR-18-5p and NACC1, 
respectively. NACC1 activated the AKT/mTOR pathway in OC. hMSC-Evs derived miR-18a-5p mitigated OC cell growth, migration, 
aggressiveness, CDDP-resistance, and tumorigenesis in OC cells [152].

1.5. mTOR-mediated CDDP response by regulation of glycolysis

Glucose oxidation is the essential cellular energy production pathway in normal cells. Glucose undergoes glycolysis to produce 
pyruvate, which enters mitochondria to produces ATP via the tricarboxylic acid cycle [153]. However, pyruvate does not enter into the 
mitochondria and is converted to lactic acid in tumor cells [153]. Although, Glycolysis produces less ATP compared to oxidative 
phosphorylation, glycolysis intermediates supply the required energy for rapid cell proliferation [154]. Lactic acid increases the 
extracellular matrix acidity, a major component of the tumor microenvironments (TME) [155]. Acidic TME induces radiotherapy 
resistance and tumor metastasis [156,157]. Moreover, the swift conversion of pyruvate into lactate, followed by its release from the 
cell, has the potential to hinder the immune, thereby promoting tumor progression [158,159]. Suppression of CRNDE reduced lactic 
acid, ATP and HK2, LDHA, PKM2 and GLUT1 expression in HCT-116 cells. Suppression of CRNDE also induced apoptosis and CDDP 
sensitivity in HCT-116 cells while inhibited their proliferation, which may be related to inhibition of the Warburg effect. Suppression of 
CRNDE down regulated p-mTOR, p-Ak, p-S6K, and p-S6 while up regulated EIF-4E and p-4EBP-1. CRNDE increased lactic acid and ATP 
and glucose uptake which mTOR and Akt suppression counteracts, showing that CRNDE promoted the Warburg effect in HCT-116 cells 
via the Akt/mTORC1 axis [160]. Pyruvate kinase M2 (PKM2) is a pivotal regulator of Warburg effect in cancer metabolism. The 
required energy for cell growth in highly glycolytic tumor cells is provided by the Pyruvate to ATP and lactic acid transformation in 
oxidative conditions [161]. PKM2 upregulation has been found in numerous cancers and was critical for tumor proliferation [162]. It 
has also participated in metabolic reprogramming as well as chemotherapy response. mTOR induced the PKM2 expression by upre-
gulating the c-Myc. Although, the overexpression of PKM2, c-Myc, HIF-1α, and mTOR were correlated with a positive CDDP-based 
NACT response, there was down regulation of these molecules in treated cervical cancer tissues compared with non-treated ones. 
Inhibition of PKM2 decreased the CDDP-sensitivity in cervical tumor cells, implicating the critical role of PKM2 in enhancing the 
CDDP-sensitivity. Additionally, suppression of mTOR reduced PKM2 expression. PKM2 inhibition down regulated p-AKT, p-S6K, and 
mTOR. HIF-1α up regulation was significantly correlated with good chemotherapy response in cervical cancer and there was a sig-
nificant response to CDDP in highly glycolytic tumor cells [163]. PGK1 is an essential enzyme in the glycolysis which is implicated in 
initiation of DNA replication and autophagy [164]. PGK1 has a crucial role in chemoresistance [165]. There was significant SHNG26 
up regulation in TSCC tissues in comparison with normal margins that was associated with poor prognosis. SNHG26 induced TSCC cell 
proliferation, EMT, and CDDP resistance. SNHG26 promoted Akt/mTOR axis via binding to PGK1 and suppression of its ubiquitination 
[166].

1.6. mTOR-mediated CDDP response by regulation of cisplatin efflux

Drug efflux is considered as one of the main cellular processes that can be regulated by mTOR to maintan the tumor cells toward 
CDDP treatment (Fig. 1). Up regulation of drug efflux pumps reduce drug concentration to promote platinum resistance [167–169]. 
Although, the exact molecular mechanism of cisplatin-loaded lysosome exocytosis has not been indicated, lysosomal exocytosis ac-
celerates the lysosome-accumulated platinum [170]. Exocyst regulates the secretory vesicles binding to the plasma membrane via the 
interaction of PIP2 in the plasma membrane and the Exo70 part of the exocyst [171,172]. Exo70 also increases cell spread and 
polarized lysosome release at the immune synapse in various cancers [173–177]. There was an increased cisplatin resistance in EOC 
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cells following exocytosis-induced cisplatin efflux by Exo70. Phosphorylation of AMPK and mTOR dephosphorylation is mediated by 
cisplatin increased autophagy-lysosome destruction of Exo70 in EOC cells. Therefore, rapamycin as a common stimulator of autophagy 
suppressed mTOR phosphorylation to induce Exo70 degradation that decreased cisplatin resistance in EOC cells [178]. CDDP-me-
diated lysosomal biogenesis and mitophagy form a mitochondrial-lysosomal interaction to promote CDDP resistance in HCC cells. 
CDDP and PI3K/mTOR inhibitor combinational therapy depleted CDDP-mediated mitochondrial-lysosomal interaction, which 
resulted in increased CDDP sensitivity in HCC cells [179]. Multidrug resistance protein 1 (MDR1) is an ATP-binding cassette (ABC) 
transporter protein that has a pivotal role in resistance to chemotherapeutic drugs through drug efflux mechanism [180]. The mTOR 
modulated drug resistance of tumor cells via MDR1 [181–183]. AT-hook structure of HMGA2 attaches to the chromatin-enriched AT 
sequences to regulate DNA conformation, related proteins, and gene transcription [184]. Exosomal miR-107 decreased drug resistance 
in GC cells by HMGA2/mTOR/MDR1 axis [185]. MiR-199a-3p enhanced CDDP sensitivity via suppression of mTOR pathway and 
down regulation of MDR1 in cholangiocarcinoma cells [186]. MUC1 belongs to the transmembrane heterodimer glycoproteins family 
that is found in normal prostate, breast, and lung. MUC1 glycosylation and upregulation was also observed in many tumors that were 
correlated with unfavorable prognosis [187]. The two subunits of MUC1 including the extracellular N-terminal subunit (MUC1-N) and 
transmembrane C-terminal subunit (MUC1-C) are formed via autocleavage that provide a stable heterogenous dimer at the cell 
membrane. It has been found that the cytoplasmic domain of MUC1-C is separated and exerts an oncogenic role [188]. MUC1-C 
triggers the ERK and PI3K/AKT pathways and is translocated to the nucleus through β-catenin [189]. There was a notable associa-
tion between MUC1-C expression and unfavorable prognosis in CDDP-treated UC patients. MUC1-C stabilized the xCT protein 
expression and upregulated ABCB1/MDR1 in long-term-exposure CDDP-resistant UC cells. MUC1-C was up regulated in CR cells and 
phosphorylated the AKT-mTOR-S6K1 pathway. Therefore, PI3K-AKT-mTOR regulated the MDR1 expression via MUC1-C targeting in 
urothelial tumor cells [190]. Lysophosphatidic acid acyltransferase β (LPAATβ) is a transmembrane protein that modulates osteo-
sarcoma cell proliferation [191,192]. LPAATβ converts the lysophosphatidic acid (LPA) into phosphatidic acids (PA) including the 
Raf-1 and mTOR pathways [193–195]. There was LPAATβ overexpression in CDDP-treated osteosarcoma patients. Downregulation of 
LPAATβ reduced the expression levels of MDR1, GST, and MRP1. Inhibition of LPAATβ stimulated the PI3K/Akt/mTOR signaling axis 
in CDDP-resistant cells. Therefore, LPAATβ decreased the CDDP sensitivity via stimulating PI3K/Akt/mTOR in osteosarcoma cells 
[196].

1.7. Structural proteins

Apart from the mentioned cellular processes that regulate mTOR-mediated CDDP response, various structural and membrane 
receptors are also involved in this process (Fig. 1). Receptor tyrosine kinases (RTKs) including vascular endothelial growth factor 
receptors (VEGF) and epidermal growth factor receptors (EGFR) have pivotal functions in tumor development by promotion of PI3K/ 
AKT/mTOR axis [197]. C-Met is a RTK that stimulates the PI3K/AKT/mTOR/MDM2 axis while restraining GSK3β and BAD, thus 
inducing cell proliferation [198,199]. The c-Met/AKT/mTOR pathway repression sensitizes resistant nasopharyngeal carcinoma cells 
to DDP via downregulating MDR1 [200,201]. The c-Met inhibition reduced bortezomib resistance of myeloma cells through 
Akt/mTOR inhibition and triggering apoptosis. HOXA11-AS modulated the cisplatin resistance of NPC by targeting the 
miR-454-3p/c-Met. HOXA11-AS inhibition also downregulated the c-Met/Akt/mTOR axis by miR-454-3p up regulation that enhanced 
apoptosis and DDP-sensitivity in NPC cells [202]. PTPRZ1 exerts the oncogenic role via integration with MET proto-oncogene [203]. 
There was PTPRZ1 down regulation in OC tissues and DDP-resistant cell lines. PTPRZ1 reduced the mTOR and AKT phosphorylation, 
indicating the regulatory role of PTPRZ1 in the cisplatin resistance of OC cells via the PI3K/AKT/mTOR axis [204]. mTORC1 is the 
main AKT target that promotes RNA translation by 4E-BP1 and S6K phosphorylations [205,206]. NF-κB is activated by its upstream 
kinase that contains IKKα, IKKβ, and IKKγ/NEMO subunits. IKKs phosphorylate IκBα for its degradation, causing NF-κB nuclear 
translocation to regulate target gene expression [207–211]. EGFR/Akt regulated mTORC1 activation of IKK/NF-κB that up regulated 
the EGFR is a positive feedback. IKK/NFκB was involved in cell proliferation and CDDP resistance in which IKK inhibition improved 
CDDP sensitivity in HNSCC cells [212].

RNA-binding motif protein 8A (RBM8A) belongs to the RNA-binding motif protein family which not only modulates cell growth, 
metastasis, and death but also participates in different signaling pathways and plays a pivotal role in tumor initiation and progression 
[91,213–215]. RBM8A enhanced CDDP resistance and cell proliferation in breast cancer (BC). RBM8A expression was correlated with 
LNM and TNM stages in BC patients. Suppression of RBM8A inhibited the AKT/mTOR axis in breast tumor cells [216]. PPP2R2A is a 
PP2A regulatory subunit B family member that is implicated in intracellular mechanisms, such as cell cycle, cell signaling, protein 
synthesis, apoptosis, and metabolism [217–219]. Akt is a subunit of PP2A that is correlated with miR-222-induced suppression of 
PPP2R2A [220–223]. MiR-222 increased the cell growth and mitigated CDDP-mediated cell death via the PPP2R2A/Akt/mTOR 
pathway in bladder tumor cells [224]. Integrin alpha-5 (ITGA5) and ITGB1 are structural proteins that regulate cellular adhesion 
through MAPK, AKT, and FAK signaling pathways [225]. ITGA5 induced LSCC tumor development via ephrin-B2 (EFNB2). Moreover, 
there was a significant stimulation of mTORC1-ITGA5-EFNB2 in LSCC, which was associated with poor prognosis. ITGA5 suppression 
also increased the CDDP sensitivity in LSCC cells. Therefore, dysregulated mTORC1 critically regulated the initiation of LSCC, and the 
ITGA5-EFNB2 axis had a great potential to be a therapeutic target in mTORC1-related LSCC patients [226].

Transmembrane-4 L-six family member-1 (TM4SF1) belongs to the small plasma membrane glycoproteins that modulate cell 
mobility and growth [227]. TM4SF1 has a close cross talk with discoidin domain receptor 1 (DDR1) during metastasis of pancreatic 
cancer and breast cancer [228,229]. DDR1 is an important effector of the AKT/mTOR pathway that is implicated in the chemo-
resistance of numerous tumors [230,231]. TM4SF1 modulated chemosensitivity and apoptosis via the DDR1-regulated AKT/mTOR. 
There was TM4SF1 upregulation in lung cancer tissues and cell lines that was correlated with unfavorable prognosis. Loss of TM4SF1 
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sensitized NSCLC cells to paclitaxel and cisplatin. Inhibition of TM4SF1 negatively regulated DDR1 to reduce Akt and ERK phos-
phorylation. Therefore, the interaction of TM4SF1 and ERK/Akt-mTOR and DDR1 promoted the chemosensitivity in NSCLC cells 
[232].

2. Conclusions

CDDP is a widely used chemotherapeutic drug in different cancers. However, CDDP resistance is frequently observed in cancer 
patients that results in poor prognosis. Therefore, it is required to assess the molecular mechanisms associated with CDDP reponse in 
tumor cells to improve prognosis among cancer patients. mTOR is a hub protein kinase in several signaling pathways that has key roles 
in CDDP response. Therefore, in the present review we discussed the molecular mechanisms associated with mTOR mediated CDDP 
response in tumor cells. mTOR has been reported to be associated with CDDP resistance and poor prognosis in different cancers. mTOR 
mediated CDDP response was also regulated by non-coding RNAs, MAPK signaling, transcription factors, and structural proteins. In 
this regard, various cellular processes such as apoptosis, autophagy, and drug efflux were regulated by mTOR during the CDDP 
response in tumor cells. This review highlights the mTOR as a key regulator of CDDP response and therapeutic target in cancer biology.
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A. Wenners, I. Alkatout, W. Klapper, C. Röcken, P. Bronsert, E. Stickeler, A. Staebler, M. Bauer, N. Arnold, J. Soriano, M. Pérez-Martínez, D. Megías, G. Moreno- 
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