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Abstract
Resting-state functional brain imaging studies of network connectivity have long assumed

that functional connections are stationary on the timescale of a typical scan. Interest in mov-

ing beyond this simplifying assumption has emerged only recently. The great hope is that

training the right lens on time-varying properties of whole-brain network connectivity will

shed additional light on previously concealed brain activation patterns characteristic of seri-

ous neurological or psychiatric disorders. We present evidence that multiple explicitly

dynamical properties of time-varying whole-brain network connectivity are strongly associ-

ated with schizophrenia, a complex mental illness whose symptomatic presentation can

vary enormously across subjects. As with so much brain-imaging research, a central chal-

lenge for dynamic network connectivity lies in determining transformations of the data that

both reduce its dimensionality and expose features that are strongly predictive of important

population characteristics. Our paper introduces an elegant, simple method of reducing and

organizing data around which a large constellation of mutually informative and intuitive

dynamical analyses can be performed. This framework combines a discrete multidimen-

sional data-driven representation of connectivity space with four core dynamism measures

computed from large-scale properties of each subject’s trajectory, ie., properties not identifi-

able with any specific moment in time and therefore reasonable to employ in settings lacking

inter-subject time-alignment, such as resting-state functional imaging studies. Our analysis

exposes pronounced differences between schizophrenia patients (Nsz = 151) and healthy

controls (Nhc = 163). Time-varying whole-brain network connectivity patterns are found to

be markedly less dynamically active in schizophrenia patients, an effect that is even more

pronounced in patients with high levels of hallucinatory behavior. To the best of our
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knowledge this is the first demonstration that high-level dynamic properties of whole-brain

connectivity, generic enough to be commensurable under many decompositions of time-

varying connectivity data, exhibit robust and systematic differences between schizophrenia

patients and healthy controls.

Introduction
Many neurological, cognitive and psychiatric disorders have been shown to affect connectivity
between functional brain networks [1–24] even in so-called "resting" conditions where subjects
are not engaged in a task. Network connectivity is typically assessed as a stationary feature of
the data, inferred from the correlation or mutual information between pairs of network activa-
tion timecourses that extend through the duration of the scan. Although a useful simplification,
there is no a priori reason to believe that network correlations are stationary, especially in the
resting brain. In fact, one might expect cross-network connections to vary and evolve as sub-
jects experience different thoughts, degrees of drowsiness, memories and emotional states. Far
from being canonical, scan duration is simply one of the unavoidably fixed features of any
functional imaging study. Thus, averaging evidence of connectivity over an entire resting fMRI
scan puts researchers at risk of obscuring distinct, meaningful connectivity regimes that sub-
jects are passing through (Fig 1A and 1B). Recent investigations of dynamic connectivity have
in fact shown not only that connections are varying through time [25–36], but that this varia-
tion takes different forms in different demographic [35] and diagnostic [16, 26, 30, 32, 33, 37–
39] groups

Most work on dynamic functional network connectivity (dFNC) to date has been focused on
computing and statistically summarizing cross-network correlations evaluated separately on
successive sliding windows through the original scan-length network timecourses [16, 25, 26,
30, 32, 33, 35, 37, 38, 40, 41]. The resulting window-indexed correlation matrices, called win-
dowed functional network connectivitymatrices (wFNC), record snapshots of network connec-

tivity evolving in time. The collection of wFNCs for a given subject yields NðN�1Þ
2

length-T

timeseries, one for each of network-pair correlation, where T is the number of windows and N
the number of networks. The very first investigations [25, 26] of dynamic FNC used clustering

as a dimensionality reduction tool, collapsing a d ¼ NðN�1Þ
N

> 1000 dimensional connectivity

space to just one dimension (ie., replacing an over 1000-dimensional object with the index i 2
{1,2,. . .,k} of the cluster to which it belongs). Although some interesting results have emerged
from this initial work, collapsing connectivity space onto a single dimension is the crudest pos-
sible dimension-reduction. A reduction of this magnitude inevitably obscures and distorts
important features of dynamical network-coupling behavior (Fig 1C, 1D and 1E) that might
characterize clinically or demographically defined groups

Our approach models windowed FNCs as weighted sums of maximally independent con-
nectivity patterns (CPs) (Fig 2C and 2D), Fig 3A and 3B). Each wFNC is recast as a discretized
vector of CP weights, called ameta-state (Fig 2(A), Fig 3(C)). This specific approach was moti-
vated by a desire to understand network connectivity dynamics in terms of (not necessarily
observable) patterns of signed network pair correlations that “pipe in” and fade out of observed
wFNCs in a relatively independent manner. We introduce a set of simple dynamism measures
easily calculated from subject trajectories through the induced discrete five-dimensional state-
space, finding consistent, significant and replicable differences in connectivity dynamics
between schizophrenia patients and healthy controls (Fig 2B and 2D). While the temporal
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Fig 1. Dynamic Connectivity, Single and Higher Dimensional Representations (A) Example of two
network timecourses whose correlation evaluated over their entire duration is 0.4; (B) One of the many
different ways that a pair of long timecourses can have correlation coefficient of 0.4 is to pass through the two
distinct, identifiable connectivity regimes shown here. The existence of the two connectivity regimes and the
transitions between them are completely obscured by looking at correlation on a longer timescale; (C and D)
Too crude a dimensionality-reduction of the state space can create serious distortions of the dynamics being
analyzed. Dynamically active and mobile trajectories (C) can appear constant under the reduction, while
those barely moving from their starting position (D) can seem highly dynamic; (E) Shifting up one dimension
and characterizing the same trajectories by vectors reflecting their position In a discrete 2-dimensional state
space yields much better qualitative agreement between the geometric trajectories and their symbolic
representations.

doi:10.1371/journal.pone.0149849.g001
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behavior of specific network-pair correlations might be of interest in certain narrowly tailored
questions, it seems natural to address complex brain diseases that encompass diverse categories
and combinations of symptoms at a more aggregated level, examining how patterns or aggre-
gates of network-pair correlations evolve en masse in afflicted populations. Schizophrenia is
such a disease, and at the whole-brain level, we find very robust evidence of reduced dynamic
fluidity and range in network correlation structure for patients suffering from this varied and
complex disorder. The simultaneous weighted contributions, calledmeta-states, of whole-brain
patterns of connectivity to subject wFNCs change less often, and shift between a smaller num-
ber of more similar meta-states in schizophrenia patients than in healthy controls (Fig 2(D)).
Supporting a meta-state approach is the fact that this finding holds for sets of whole-brain net-
work connectivity patterns, generally quite different from each other, derived using various
data-driven approaches, including temporal independent component analysis (ICA), spatial
ICA, principal component analysis (PCA) and k-means.

Methods and Materials

Sample and Data Acquisition
Resting state functional magnetic resonance imaging data (162 volumes of echo planar imaging
BOLD fMRI, TR = 2 sec.) [26, 37] was collected from 163 healthy controls (117 males, 46
females; mean age 36.9) and 151 age and gender matched patients with schizophrenia (114
males, 37 females; mean age 37.8) during eyes closed condition at 7 different sites across the
United States (Table 1). Inclusion criteria for the patients were a schizophrenia diagnosis based
on the structured clinical interview for DSM-IV-TR axis I disorders (SCID-I/P) [42]. All
patients were clinically stable on antipsychotic medication for at least 2 months, and had an ill-
ness duration of minimally one year. Clinical assessments for the patients included the positive
and negative syndrome scale (PANSS) [43]. Written informed consent was obtained from all

Fig 2. Meta-State Dynamic FNC: High Level Schematics (A) Schematic showing connectivity
decomposed into, for simplicity, binary weighted sums of connectivity patterns, yielding meta-states in {0,1}
s4; (B) Histograms of maximal uninterrupted periods spent in any fixed meta-state for patients (red) and
controls (blue) (C) A connectivity pattern in which network-pair connections are signed and non-binary (for
example, given by correlations) and in graph (right) and matrix (left) forms; (D) Schematic illustration of
differences in dynamical patterns of network connectivity between schizophrenia patients and healthy
controls. Controls exhibit more, and more diverse, connectivity states changing from one connectivity pattern
to another more often than patients.

doi:10.1371/journal.pone.0149849.g002
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study participants, including permission to share de-identified data between the centers and
with the wider research community. This analysis of existing data was approved by the institu-
tional review board at the University of New Mexico.

Fig 3. Temporal ICA Schematic with Examples of Single WindowWeighted CPs and Discretized Time-Varying CPWeights (A) Schematic displaying
stages involved in producing CPs; top row illustrates the initial decomposition of fMRI data into network spatial maps and corresponding timecourses using
group spatial ICA (GICA); bottom row shows decomposition of window-indexed correlation matrices computed on sliding windows through the network
timecourses (left-hand side of equation) produced by spatial ICA on fMRI data summarized in the top row into temporally independent CPs (matrix W on right
hand side of equation) using temporal ICA; (B) Example of an observed wFNC expressed as weighted sum of the five displayed tICA CPs; (C) One subject's
CP timecourses (top left) transformed into the signed quartile discretization (top right) with times at which each discretized timecourse changes from one level
to another (bottom and example of one time-indexed 5-vector of timecourse values converted into ameta-state of signed quartile values (bottom right).

doi:10.1371/journal.pone.0149849.g003
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Data Preprocessing
A combination of toolboxes (AFNI1, SPM2, GIFT3) and custom code written in Matlab were
employed in the pre-processing pipeline. Rigid body motion correction was performed with
the INRIAlign [44] toolbox in SPM to correct for subject head motion, followed by slice-timing
correction to account for timing differences in slice acquisition. Data was then despiked using
AFNI3s 3dDespike algorithm to mitigate the impact of outliers and despiked fMRI data was
subsequently warped to a Montreal Neurological Institute (MNI) template, then resampled to
3 mm3 isotropic voxels. Instead of Gaussian smoothing, we smoothed the data to 6 mm full
width at half maximum (FWHM) using AFNI3s BlurToFWHM algorithm which performs
smoothing by a conservative finite difference approximation to the diffusion equation. This
approach has been shown to reduce scanner specific variability in smoothness providing
“smoothness equivalence” to data across sites [45]. Finally, prior to performing group indepen-
dent component analysis, each voxel time course was variance normalized as this approach has
been shown to yield better decompositions of subcortical and cortical sources.

Decomposition into Functional Networks
After preprocessing, the functional imaging data from all subjects was decomposed into a set of
100 statistically independent spatial regions with common time course profile using group
independent component analysis (GICA), implemented by the GIFT toolbox (http://mialab.
mrn.org/software/gift). Of these 100 components, 47 were identified as intrinsic connectivity
networks (ICNs) using the procedures described in our earlier work [26, 37]. Subject-specific
spatial maps and time courses were obtained using spatio-temporal regression. The subject
ICN time courses were detrended, orthogonalized with respect to motion parameters, despiked
by replacing outlier time points with 3rd order spline fit to cleaner neighboring points, and fil-
tered using a 5th order Butterworth filter with a passband of 0.01 to 0.15 Hz.

Windowed Functional Network Connectivity Matrices (wFNCs)
Windowed functional network connectivity (wFNC) is evaluated by computing pairwise corre-
lations between windowed segments of ICN timecourses using a tapered rectangular window
of length of 22 TRs (44 seconds), advancing 1 TR at each step. To improve correlation esti-
mates on timecourses of shorter length, we impose an L1 constraint on the inverse covariance
matrix using the G-LASSO framework [45], with regularization parameter optimized subject-
wise by evaluating the log-likelihood of each subject’s unseen data in a cross-validation
framework.

Basis Correlation Patterns (CPs)
Recent work [16, 25, 26, 37, 46] on functional network connectivity dynamics has used cluster-
ing algorithms to identify a small set of prototype connectivity “states”. Observed wFNCs are
replaced by the prototype states they most resemble, allowing connectivity dynamics to be

Table 1. Demographic Information.

Subject Demographic Information

Schizophrenia Patient (SZ) 151 Healthy Control (HC) 162

Male 231 (SZ = 114) Female 83 (SZ = 37)

Ages 18–30 108 (SZ = 52) Ages 31–60 206 (SZ = 99)

doi:10.1371/journal.pone.0149849.t001
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described as a process of moving from one to another of these summary states. In this work, we
present a flexible, intuitive framework for studying network connectivity dynamics. The model
order of five, used in all decompositions presented here, was chosen in an effort to balance trac-
tability of complex linearly additive effects with a desire for richly featured basis correlation
pattern sets. To assess the sensitivity of our results to perturbation of this parameter, we also
performed our analysis on model orders ranging from three to seven, and found overall results
to be consistent with the model order chosen as the focus of this paper, providing additional
confidence in the robustness of the framework and the main dynamical metrics presented here.

Temporally Independent Connectivity Patterns. Our objective is to express time-varying
wFNCs as weighted sums of correlation patterns whose contributions change independently of
each other in time (see Fig 3(A) and 3(B)), allowing us to develop a richer picture of the inter-
play between connectivity patterns that are strongly present in the data. This objective explic-
itly permits collections of basis connectivity patterns featuring:

• Two or more patterns in which some subset of network-pairs share the same correlation
strength.

• Individual patterns that do not strongly resemble empirically observed wFNCs.

To achieve this goal we apply group temporal independent component analysis (tICA) (Fig 3
(A)) [30] to wFNCmatrices concatenated along the subject×time dimension, decomposing this
concatenated 1081 network-pair correlations × 136 time windows × 314 subject structure into five
maximally mutually independent timecourses (because we are performing this analysis at the
group level, these are in fact length 136�314 = 42,704 subject×time “courses”), each with an associ-
ated 47×47 connectivity pattern (a modular component of the mixing matrix) that is shared
across subjects (Fig 3(A)). In the text above, for convenience, we will refer to the connectivity pat-
terns as components, even though it is the subject×timecourses that are being estimated by tICA.
In this decomposition, individual wFNCs are specified as weighted sums of the five CPs, yielding
a 5-dimensional characterization of each subject’s 1081-dimensional connectivity structure in
each time window. The dynamical object of investigation is now a set of 136 time-indexed five-
vectors per subject that representing the contributions of five 1081-dimensional CPs to the
observed wFNCs. The tICA decomposition of wFNC data produces CPs whose weights in each
time-indexed five-vector are maximally mutually independent [28–30]. These tICA CPs are thus
patterns whose additive contributions to observed wFNCs “pipe in” and fade out in a relatively
independent manner. Although the window-wise CP weights in the tICA decomposition are as
independent as possible, intrinsic dependencies within the data ensure that the weights are not

formally independent, i.e. Pða1 � w1 � b1; . . . ; a5 � w5 � b5Þ 6¼
Q5

k¼1

Pðak � wk � bkÞ. The five-
vectors thus hold information not available by analyzing elements separately, but maximizing
temporal independence keeps the state-space from collapsing onto a lower-dimensional space,
ie. if CP #1 and CP #2 are systematically mutually dependent then only one is necessary and the
state space becomes four-dimensional. Reducing the systematic dependencies between CPs
ensures we are taking maximal advantage of the dimensionality in which the dynamics have
been defined.

Although we have chosen to focus on maximally temporally independent correlation pat-
terns produced by applying temporal ICA to the windowed FNCs (Fig 3(A)), we were inter-
ested in understanding how sensitive the results obtained might be to our choice of method for
extracting correlation patterns from the windowed FNCs. Thus we performed the same analy-
sis on correlation patterns obtained from three other commonly utilized data-driven methods:
spatial independent component analysis (sICA), principal component analysis (PCA) and
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kmeans clustering. We also explored the role of model order within the temporal ICA frame-
work by repeating our analysis for temporal ICAs producing 2, 3, 6 and 7 (small perturbations
of the featured 5 correlation pattern case).

Alternative Decompositions into CPs: Spatial ICA, Principal Components and K-means
Cluster Centroids. We perform a group (spatial) independent component analysis (GICA)
on the wFNC data using protocols directly analogous those employed for higher-dimensional
fMRI data [39, 43]. The basis correlation patterns obtained by group sICA are maximally spa-
tially (cell-wise) independent, but neither mutually orthogonal nor informative about the way
dFNC variance is organized (Fig 4 (A, Row 2)). For a set of mutually orthogonal basis patterns
whose structure explicitly reflects dominant directions of data variance, we use the first five
components of a PCA along the subject×time dimension of the concatenated wFNC data (Fig
4 (A, Row 3)). The timecourses for sICA (resp. PCA) correlation patterns are obtained by
regressing each subject's wFNC data at each time window on the set of sICA (resp. PCA) corre-
lation patterns.

In addition to ICA and PCA techniques, we also apply k-means clustering to the windowed
FNCs. UsingMatlab’s implementation of k-means clustering with the squared Euclidean distance,
500 iterates and 150 replicates, we partition the set of wFNCs into five clusters whose centroids
are treated as basis correlation patterns (Fig 4 (A, Row 4)). We investigate the time-varying joint
contributions of these CPs using two forms of weighted k-means timecourses. The first, directly
analogous to the sICA and PCA timecourses, is a linearly additive weighting obtained by regress-
ing wFNC data on the kmeans CPs. The second characterizes each wFNC by a five-vector with
weights based on the L2 distances of the wFNCs from each kmeans CP. Specifically, for subject k's

time t wFNC, F(k)(t), we have the five vectorwðkÞðtÞ ¼ ðwðkÞ
1 ðtÞ;wðkÞ

2 ðtÞ;wðkÞ
3 ðtÞ;wðkÞ

4 ðtÞ;wðkÞ
5 ðtÞÞ

whose ith element wðkÞ
i ¼ 1� kFðkÞðtÞ�Cik2P5

j¼1
kFðkÞðtÞ�Cjk2

, where Cj is the j
th kmeans CP. For consistency with

the other decompositions we report the results from regressing wFNC data on k-means CPs, but
results using the alternative weighting system presented the same directionality and significance.

Timecourse Discretization
We convert the original real-valued weight vectors to discretemeta-states (Fig 3(C)) by replac-
ing each CP weight with a value in ±{1,2,3,4} according to its signed quartile: the vector

wðkÞðtÞ ¼ ðwðkÞ
1 ðtÞ;wðkÞ

2 ðtÞ;wðkÞ
3 ðtÞ;wðkÞ

4 ðtÞ;wðkÞ
5 ðtÞÞ of subject k's time t component weights is

converted to lðkÞðtÞ ¼ ðlðkÞ
1 ðtÞ; lðkÞ2 ðtÞ; lðkÞ3 ðtÞ; lðkÞ4 ðtÞ; lðkÞ

5 ðtÞÞ where lðkÞi 2 f�1;�2;�3;�4g
indicating the quartile of the (same-sign) weights each wi

(k) falls into. When lðkÞi ¼ ‘ 2
f�1;�2;�3;�4g, component i is said to be occupied at level ‘. The length-five vectors

ðlðkÞ1 ðtÞ; lðkÞ2 ðtÞ; lðkÞ
3 ðtÞ; lðkÞ

4 ðtÞ; lðkÞ5 ðtÞÞ are referred to asmeta-states. Discretization of sICA,
principal component and weighted k-means timecourses follows the tICA procedure exactly.

2.9 Diagnosis Effects
We employ a linear model, y = β0 + βageXage + βgenderXgender + βdiagnosisXdiagnosis + ε to esti-

mate the effect of diagnosis on the various measures investigated here. The diagnosis variable is
binary, with SZ coded as '1' and HC as '0', so βdiagnosis > 0 indicates a positive correlation with
SZ and βdiagnosis < 0 shows a negative correlation with SZ. We generally report or display the
value of βdiagnosis when its false discovery rate (FDR) corrected p-value is less than 0.05.

Results
Our meta-state dynamical framework exposes important features of whole-brain connectivity
dynamics that seem to emerge specifically at this level of analysis; network timecourses [1],

Time-Varying Network Connectivity Dynamism Reduced in Schizophrenia
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Fig 4. Correlation Patterns Produced by Different Algorithms and by Temporal ICA at Different Model Orders (A) Different data-driven
decompositions of the wFNCs yield different sets of correlation patterns; correlation patterns produced, from top to bottom, by tICA, sICA, PCA, K-means, all
with model order five; (B) Different model-orders of tICA applied to the wFNCs yield growing collections of correlation patters with two recurring patterns (Row
1, Columnss 1 and 3); tICA correlation patterns, from top to bottom, for model orders three through seven.

doi:10.1371/journal.pone.0149849.g004
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windowed network timecourses, and even individual network-pair wFNC values, for example,
exhibit more high-frequency power in schizophrenia patients than in controls, a phenomenon
that dissolves the whole brain meta-state level (see Discussion section). The persistence of our
findings across a variety of approaches to identifying individual states from the data suggests
we are observing robust phenomena at this particular scale of analysis. To gauge the robustness
of our findings, we applied the meta-state analytical framework to tICA decompositions with
smaller (model orders = 3, 4) and larger (model orders = 6, 7) sets of CPs, and also to collec-
tions of five CPs produced using group spatial ICA (GICA), PCA and k-means clustering (Fig
4(A)).

Broad Reduction of Dynamic Fluidity and Range in Schizophrenia
Patients
The state space X induced by our discretized five-dimensional characterization of connectivity
is a five-dimensional lattice with a set of five mutually orthogonal co-dimension one hyper-
planes through the origin removed (Fig 5).

Each removed hyperplane is the zero set of one of the dimensions (these hyperplanes are
not part of X because the range of our signed-quartile discretization is {±1,2,3,4}. The space
contains C� 85 = 32,768 distinct points (meta-states), of which cR = 14,025 are realized at
some point in time by some subject. Individual subjects can visit at most T = 136 meta-states,
and our sample of N = 314 subjects allows for entire sample to visit at most NT = 42,704 meta-
states. Although the entire study includes more state visits (42,704) than points in the X, more
than half (C-cR = 18,743 or 57.2%) of the points in X are never visited. The combinatorics
make a full exploration of ways unvisited states distribute in X prohibitive, but some high-level
facts about how individual subjects sample the state space are readily established. Our analysis
focuses on four global metrics of connectivity dynamism:

1. The number of times that subjects switch from one meta-state to another (denoted by s)

2. The number of distinct meta-states subjects occupy during their scans (denoted by n)

Fig 5. Planar projection of the discrete five-dimensional state space.

doi:10.1371/journal.pone.0149849.g005

Time-Varying Network Connectivity Dynamism Reduced in Schizophrenia

PLOS ONE | DOI:10.1371/journal.pone.0149849 March 16, 2016 10 / 24



3. The range of meta-states subjects occupy, ie., the largest L1 distance between occupied
meta-states (denoted by r)

4. The overall distance traveled by each subject through the state space (the sum of the L1 dis-
tances between successive meta-states, denoted by d)

The first measure captures how often a subject switches between meta-states, without
accounting for how many or how divergent the meta-states are (one could switch between two
very similar states in rapid succession). The second records the number distinct meta-states are
passed through. Since there are 32,768 distinct meta-states available, a very high ratio of n to
the number of time points implies high s; a very high ratio of n to the number of possible meta-
states implies high r. The third measure indicates how divergent the meta-states occupied are.
The value of r, except when identically zero, need not imply anything about s or n. It is a lower
bound for d. The final measure, d, incorporates information from the other three without
being fully determined by them. It is maximized when a subject switches frequently between
two meta-states at distal boundaries of the state space.

We find consistent and pervasive evidence (Table 2) of reduced FNC dynamism among
schizophrenia patients with respect to each of the four metrics above, and across all four data-
driven decompositions of observed wFNCs into collections of basis CPs:

1. SZ exhibit diminished dynamic fluidity:

a. Schizophrenia patients occupy fewer meta-states than healthy controls (mean HC = 73.2
meta-states, mean SZ = 67.4 meta-states; diagnosis effect in regression = -5.65, P-
value = 3.93 e-006). (Fig 6(A), Table 2, Table 3)

b. Schizophrenia patients change from one meta-state to another less often than healthy
controls (mean HC = 74.04 changes, mean SZ = 68.58 changes; diagnosis effect in regres-
sion = -5.32, P-value = 1.72 e-006). (Fig 6(B), Table 2, Table 3)

2. SZ operate over a restricted dynamic range:

a. Schizophrenia patients remain trapped in a smaller radius hypercube of the state space
than do healthy controls, as measured by the maximal L1-distance between occupied
meta-states (mean HC = 16.77 diameter, mean SZ = 14.77 diameter; diagnosis effect in
regression = -2.20, P-value = 6.62 e-008). (Fig 7(A), Table 2, Table 3)

Table 2. Age and gender-corrected effects of SZ on four general dynamismmeasures (rows) under four different decompositions of the wFNC
data into sets of five correlation patterns (columns).

Method of Decomposing wFNCs into CPs

tICA sICA PCA K-means

Number of Distinct Meta-States -5.65 -2.63 -5.78 -6.52

p = 3.93e-006) (p = 0.007) (p = 6.03e-008) (p = 1.52e-007)

Number of Meta-State Changes -5.32 -2.59 -4.80 -5.57

(p = 1.41e-008) (p = 0.003) (p = 5.88e-007) (p = 8.23e-007)

L1 Span of Realized Meta-States -2.20 -1.29 -2.22 -2.71

(p = 6.62e-008) (p = 2.71e-006) (p = 2.09e-010) (p = 1.52e-009)

Total Distance Traveled in State Space -9.69 -4.29 -6.78 -10.04

(p = 1.89e-006) (p = 0.0009) (p = 1.76e-006) (p = 5.31e-007)

Displayed effects and p-values are from the regression model specified in the Methods section.

doi:10.1371/journal.pone.0149849.t002
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b. Schizophrenia patients traverse less overall distance, evaluated by summed L1 distance
between successive meta-states, through the state space than do healthy controls (mean
HC = 91.55 overall distance, mean SZ = 83.80 overall distance; diagnosis effect in regres-
sion = -9.69, P-value = 1.89 e-006). (Fig 7(B), Table 2, Table 3).

Fig 6. Effect of Schizophrenia on Dynamic Fluidity Measures (A) Number of meta-states realized; (middle column) boxplot showing median, quartiles
and outliers plus mean for each group, and diagnosis effect from regression model specified in the Methods section with associated p-value; (leftmost
column) The time-indexed meta-states of a sample healthy subject, with the 88 distinct meta-states shown underneath; (rightmost column) The time-indexed
meta-states of a sample schizophrenia patient, with the 23 distinct meta-states shown underneath; (B) Number of timepoints at which subjects change
between meta-states; (middle column) boxplot showing median, quartiles and outliers plus mean for each group, and diagnosis effect from regression model
specified in the Methods section with associated p-value; (leftmost column) The time-indexed meta-states of a sample healthy subject, with the 87 timepoints
at which meta-state changes shown above; (rightmost column) The time-indexed meta-states of a sample schizophrenia patient, with the 33 timepoints at
which meta-state changes shown above.

doi:10.1371/journal.pone.0149849.g006

Table 3. Age and gender-corrected effects of SZ on four general dynamismmeasures (rows) computed over tICA decompositions of different
model orders (columns). Displayed effects and p-values are from the regression model specified in the Methods section.

Number of tICA CPs

3 4 5 6 7

Number of Distinct -5.36 -6.28 -5.65 -5.45 -5.80

Meta-States (p = 4.26e-006) (p = 1.86e-007) (p = 4.11e-006) (p = 5.64e-007) (p = 2.37e-009)

Number of Meta-State -3.93 -5.06 -2.20 -5.15 -5.48

Changes (p = 9.64e-005) (p = 3.09e-006) (p = 6.62e-008) (p = 4.98e-007) (p = 6.22e-009)

L1 Span of Realized -1.24 -1.93 -1.94 -2.64 -3.07

Meta-States (p = 7.33e-005) (p = 1.52e-007) (p = 3.11e-005) (p = 2.62e-008) (p = 1.65e-009)

Total Distance Travel- -5.02 -7.50 -7.53 -11.04 -14.60

ed in State Space (p = 2.68e-004) (p = 8.47e-006) (p = 1.01e-005) (p = 1.06e-006) (p = 1.37e-006)

doi:10.1371/journal.pone.0149849.t003
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Although schizophrenia patients exhibit diverse symptoms [43] ranging from blunted affect
and withdrawal to grandiosity, the hallmark psychotic symptoms of the disease, delusions and
hallucinations, are of special interest. Initial investigations of connectivity dynamism at the
symptom level show mixed effects of the main psychotic underpinnings of schizophrenia with
delusions having weakly dynamism-amplifying effects and hallucinations presenting signifi-
cant and pervasive dynamism-suppressing effects (Fig 8).

Schizophrenia Patients have more Hub States than Controls
Although healthy subjects on average pass through a significantly larger number of distinct
connective meta-states during their resting fMRI scans (Fig 6(A)), it is patients that include a
larger set of distinct meta-states among those they visit more than three times. More con-
cretely, healthy subjects visit a significantly larger number of distinct meta-states at least once,
while patients visit a significantly larger number of distinct meta-states at least four times (Fig
9, Fig 10A, 10B and 10C)). The overall dominance of healthy controls is taking place entirely
via the number of different "filler" meta-states they touch on briefly while passing between
meta-states they visit more often.

Fig 7. Effect of Schizophrenia on Dynamic RangeMeasures (A) Maximally different (in the L1 sense) meta-states that subjects realize; (middle column)
boxplot showing median, quartiles and outliers plus mean for each group, and diagnosis effect from regression model specified in the Methods section with
associated p-value; (leftmost column) The time-indexed meta-states of a sample healthy subject, with the two most divergent realized meta-states (L1
distance = 21) shown underneath; (rightmost column) The time-indexed meta-states of a sample schizophrenia patient, with the two most divergent realized
meta-states (L1 distance = 8) shown underneath; (B) Total distance traveled (summed L1 distance between successive meta-states) in the state space;
(middle column) boxplot showing median, quartiles and outliers plus mean for each group, and diagnosis effect from regression model specified in the
Methods section with associated p-value; (leftmost column) The time-indexed meta-states of a sample healthy subject, with the timeseries of cumulative
distance traveled (increasing to 117 at final timepoint) shown above; (rightmost column) The time-indexed meta-states of a sample schizophrenia patient,
with timeseries of cumulative distance traveled (increasing to 37 at final timepoint) shown above.

doi:10.1371/journal.pone.0149849.g007

Time-Varying Network Connectivity Dynamism Reduced in Schizophrenia

PLOS ONE | DOI:10.1371/journal.pone.0149849 March 16, 2016 13 / 24



The meta-states that a subject returns to four or more times are the subject's hub states;
those that the subject visits at least once but no more than three times are the subject's transient
states. A state that is visited k�4 times is called a level-k hub. In our data, the complete set of
level-k hubs for k�4 consists of 2117 meta-states, accounting for approximately 6% of whole
state space (C = 32,768) space and 15% of the points that are ever visited at least once by some

Fig 8. Effect of Main Psychotic Symptoms of Schizophrenia on Connectivity DynamismMeasures
Significant (α<0.05) effects of hallmark psychotic symptoms of SZ on each of the four dynamism
measures from regression on all thirty symptom scores from the PANSS scale along with gender and
age as covariates. The effect of delusions on L1 Span of Realized Meta-States has p-value = 0.023. The p-
values associated to the effects of hallucinatory behavior on each of the four measures given along the x-axis
are, from left to right: 0.005, 0.003, 0.003, and 0.010.

doi:10.1371/journal.pone.0149849.g008

Fig 9. Basic Results on HubMeta-States and Schizophrenia (A) Bar plots for HC and SZ of number of subjects (y-axis) with hubs of exactly the indicated
levels (x-axis); (B) Bar plots for HC and SZ of number of subjects (y-axis) with hubs of at least the indicated level (x-axis).

doi:10.1371/journal.pone.0149849.g009
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subject (cR = 14,025) (Fig 11). Every subject in this study has a level-k hub for k = 4 (Fig 9(A))
and only one subject has a level-k hub for k>18 (Fig 9(B)). Not only do patients exhibit a larger

Fig 10. Results of Comprehensive Investigation of Hub Meta-States and Schizophrenia (A) Histograms of within-subject mean meta-state recurrence
rate (average number of re-visitations made to the meta-states realized) and SZ regression effect on this quantity (SZ effect = 0.86, p-value = 0.0001); (B) SZ
effect on number of distinct meta-states with indicated within-subject recurrence rate (inset zooms on rates 3–18) along with SZ effect on the largest number
of visits to the same state (SZ effect = 1.42, p-value = 4.96e-005 (also see (C) for distribution)); (C) Number of subjects whose most visited meta-state had
indicated recurrence rate; (D) Mean longest uninterrupted period of hub state occupancy (recall that level k hubs are occupied k times, not necessarily in
uninterrupted stretches) and SZ regression effect (SZ effect = 1.18, p-value = 4.60e-005); (E) Effect of SZ on hub saturation, evaluated separately for hubs of
each level k, k = 4,5,. . .,36. Saturation positively correlated with SZ in red (dark red indicates effects significant 0.05 level after FDR correction), negatively
correlated with saturation in blue. (F) Boxplot of saturation index over all hubs for HC and SZ with group means (μSZ = 5.2, μHC = 5.6) and SZ regression
effect on this quantity (SZ effect = 0.34, p-value = 4.88e-005); All SZ effects and associated p-values are from the regression model specified in the Methods
section. The reported regressions include the patient with an order-36 hub (ie, they are for the displayed data, and we did want to provide evidence that hubs
of higher order are achievable). In regressions omitting this extreme observation, both the direction and significance level of displayed effects were preserved
(p-values were on order e-005 or e-006).

doi:10.1371/journal.pone.0149849.g010
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number of distinct hub meta-states during their scans (Fig 10A and 10B), Fig 11), they tend to
spend longer uninterrupted periods than controls occupying these meta-states (Fig 10C, 10D
and 10E)). A patient, for example, with some level-20 hub is more likely to spend three uninter-
rupted time intervals of lengths 5, 7 and 8 in that meta-state, while a healthy subject is more
likely to spend eight uninterrupted intervals of lengths 2, 1, 4, 1, 2, 1, 6 and 3 in one of its level-
20 hub states. A subject whose longest uninterrupted occupancy of a level-k hub is a large rela-
tive to k is said to saturate that hub; level-k hubs whose longest uninterrupted periods of occu-
pancy are large relative to k are absorbing hubs. The level-k hubs that subjects land on k times
but always move on from quickly are transitory hubs. Patients have more hubs than controls,
and these hubs are more absorbing (Fig 10D, 10E and 10F)).

Although there are multiple supportable ways to quantify the degree to which level-k hubs
are absorbing or saturated, we have chosen to employ the following within-subject measure of
level-k saturation:

ck sð Þ ¼ ðlongest uninterrupted occupancy of a level k hubÞð of times the maximal level k occupancy occursÞ
maxð1; ðof level k hubsÞÞ

ck sð Þ ¼ kd
maxð1;dÞ ¼ k when subject s has d level-k hubs, each of which the subject spends k

consecutive time points in. Otherwise, ck sð Þ ¼ k0d0
maxð1;dÞ � k, where k'�k is the maximal uninter-

rupted occupancy of one of the subject's d level-k hubs and d'�d is the number level-k hubs
that the subject occupies for an uninterrupted period of length k'. The idea is to capture, in a
way that gives more "credit" for saturations of higher-level hubs, the extent to which a subject
utilizes the available visits to his or her level-k hubs in uninterrupted occupation.

The number of distinct meta-states visited exactly n times by some subject decays exponen-
tially with recurrence rate (Fig 11). The rate of decay is slower for patients than controls (Fig 11
(B)). The number of subjects returning to any meta-state at leastm times, follows a roughly
right-skewed normal distribution with respect to the maximum return ratem (Fig 10(C)).
Every subject has at least one hub, ie. they visit some meta-state four or more times. Only
eleven subjects (3% of the total), however, visit no statemore than four times (Fig 10(C)). The
average maximum return rate is 8.4 for patients and 7.2 for controls. Fewer than 10% of

Fig 11. Number of Distinct Meta-States Occupied Multiple Times by any Subject (A) Bar plot of number of meta-states with indicated within-subject
recurrence rates for full population with fitted power law (α = -323); (B) Power laws fitted separately for HC(α = -3.36) and SZ (α = -2.30) to number of meta-
states with given within-subject recurrence rates.

doi:10.1371/journal.pone.0149849.g011
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subjects return to any state more than eleven times (Fig 10(C)). And in terms of the state space,
just over 0.1% of states are visited more than eleven times by some subject (Fig 10(B), Fig 11).
It is also the case that patients move significantly more smoothly through the state space than
do healthy controls, ie. the average L1 distance between successive meta-states is smaller in the
patient population (SZ Effect = -0.08, P-value = 3.04 e-008).

Trajectories of Groups of Schizophrenia Patients More Likely to Intersect
at Common Meta-Sates than are Trajectories of Healthy Controls
As noted above, the discrete 5-dimensional state space in which we are studying dynamics is
large relative to the length of the trajectories (the state space X contains 32,768 points while tra-
jectories consist of only 136 observed timepoints). Absence of inter-subject temporal alignment
in resting fMRI means that most subjects start at some arbitrary point in the state space, move
around for 136 timepoints in a manner at least moderately constrained by their arbitrary “ini-
tial condition”, and need not intersect any other subject trajectories at all. For schizophrenia
patients this problem is more pronounced since they realize fewer meta-states, change meta-
state less often and remain trapped in a smaller radial neighborhood of their arbitrary starting
point. This makes it all the more interesting to note that pairs of schizophrenia patients are sig-
nificantly more likely to have trajectories that intersect than are healthy controls. They are in
fact more likely than pairs of controls to have trajectories that intersect up to ten times (Fig 12
(B)). The odds that the trajectory of a patient and that of a control intersect are lower still (Fig
12(B)). It is also the case that the number of distinct meta-states (points in X) realized by more
than a handful of subjects, i.e., for which there exist three or more subjects whose trajectories
intersect at that point is very small (1751, or about ½ of 1% of the points in X). Although

Fig 12. Meta-States Realized at Least Once by Multiple Subjects (A) Bar plot of number of meta-states realized by two or more subjects (number of
subjects in the collection jointly realizing some meta-state on the x-axis), shown separately for patients and healthy controls. No meta-state whatsoever is
realized by more than 7 different healthy subjects. Fewer than 50 (of 32,768) meta-states are realized by more than 6 patients. A two-sample T-test shows
that the number NSZ of patients jointly realizing somemeta-state is significantly larger than the number NHC of controls respectively jointly realizing some
meta-state; (B) Bar plot of the number of subject-pairs that jointly realize indicated (x-axis) number of meta-states, shown separately for pairs of controls,
pairs of patients and mixed pairs consisting of one patient and one control. A two-sample T-text shows that the average number of intersection points (jointly
realized meta-states) for SZ subject pairs is significantly larger than the average number of intersection points for HC subject pairs.

doi:10.1371/journal.pone.0149849.g012
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individual schizophrenia patients realize fewer meta-states than do healthy controls, it is also
the case that a significantly larger number of distinct meta-states are realized by collections of
three or more schizophrenia patients than by groups of healthy controls (Fig 12(A)).

Discussion
We have introduced a flexible, robust framework for analyzing dynamic network connectivity
in terms of a small set of whole-brain correlation patterns that combine additively to form (or
approximate) observed time-varying windowed FNCs, and whose simultaneous contributions,
in magnitude and direction, are maximally mutually independent. We investigate the tempo-
rally-indexed sequence of length-five CP weight vectors, or meta-states. At this level, we find
very strong statistical evidence that:

1. SZ exhibit diminished dynamic fluidity:

a. SZ switch less frequently between five-dimensional meta-states (Fig 6, Table 2, Table 3)

b. SZ occupy a smaller number of distinct meta-states during their scans (Fig 6, Table 2,
Table 3)

2. SZ operate over a restricted in dynamic range:

a. SZ remain trapped in a smaller radius hypercube of the state space (Fig 7, Table 2,
Table 3)

b. SZs cover less distance as they move through the state space (Fig 7, Table 2, Table 3)

Simultaneously considering these results and combining their implications, what emerges is
a picture of generally more cautious, sluggish patient trajectories through constrained regions
of connectivity space, contrasted with the relatively quick, fluid, more sprawling trajectories of
healthy subjects. Deeper investigations of meta-state occupancy, recurrence, span and change
patterns however reveal a richer and more nuanced perspective on the distinctive ways patients
and controls move dynamically through connectivity space. Schizophrenia patients, for exam-
ple, tend to have a larger number of relatively more absorbing hub states than controls. Patients
travel less distance through the state space from one time point to the next on average, and the
largest k�4 for which patients have a level-k hub tends to exceed that for healthy controls.
Although not statistically significant, it is also the case that the directional effect of schizophre-
nia diagnosis on the number and span of states that are the outgoing targets of hubs is positive
(Fig 13). Locally, in the immediate neighborhood of hubs, the schizophrenia patients seem
slightly more dynamic than controls, while globally they are significantly less so.

Although both groups have hub states that they return to relatively often, any routing role
these hubs play is significantly less efficient in patients than controls and also somewhat more
erratic: patients have more hubs of each level, their hubs hold incoming trajectories longer, and
ultimately release trajectories to a slightly wider range of targets. We see an analogous scaling
phenomenon when we make an upward adjustment to the number of visits to a state required
for it to qualify as having been occupied. If the threshold is one visit, then controls visit signifi-
cantly more states. When the threshold is shifted upward to four or more visits, then it is
patients that are sampling a larger number of states (Fig 10). Finally, although patients are indi-
vidually occupying fewer states and moving smaller distances in the state space, their trajecto-
ries are nonetheless more likely to intersect at some meta-state than are trajectories of healthy
subjects (Fig 12(B)) and the set of distinct meta-states that are in the joint intersection of some
collection of patients is almost always (except in the case of pairs of subjects) larger than the set
of points that sit in the joint intersection of a similarly sized collection of controls (Fig 12(A)).
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Our findings demonstrate the flexibility, sensitivity, and robustness of the meta-state frame-
work for dynamical analysis proposed here. Schizophrenia is a complex illness that presents
with enormous variation of symptom combinations and intensities, and its effects on resting
fMRI are commensurately complex. Most studies to date have taken a static point of view,
assuming the characteristic of interest to be stationary on the timescale of the scan. Such stud-
ies have yielded consistent evidence that at both voxel and network levels that the signals of
schizophrenia patients contain more high frequency content than healthy controls [1, 47]. Sup-
porting the so-called dysconnectivity hypothesis [48] about schizophrenia, static functional net-
work connectivity analyses have consistently revealed diminished network connectivity
strengths in schizophrenia patients [7, 49–53], and more specifically altered connectivity
between auditory, visual and somatosensory networks (AVSNs) and also between subcortical
(SC) networks and AVSNs [26, 37]. Many of these findings appear to hold even when the sta-
tionarity assumption is lifted as evidenced by significantly more negative SZ timecourse values
(Fig 14) for CPs that feature strong positive intra-AVSN correlations and strong negative SC-
to-AVSN connections (Fig 4(A), Top row).

For example, the window-wise spectrum of windowed network timecourses in schizophre-
nia patients have more high frequency content than those of healthy controls (Fig 15). In the
timecourses of individual wFNC network-pair correlations, schizophrenia patients also exhibit
greater high frequency power, though the effect is weaker statistically than for network and
voxel timecourses (Fig 15, first three columns). Shen et al [54] have reported mixed effects of
SZ on low-frequency power in windowed network-pair correlation timeseries, with patients
exhibiting less low frequency power than controls in DMN-to-sensorimotor and DMN-to-cer-
ebellum connections. EEG microstate studies [55–58] that identify common patterns of milli-
second-scale activation from spatially segmented brain regions also indicate a higher rate of
pattern-shifting among schizophrenia patients. In contrast, our investigation of whole-brain
ensembles of network-pair correlations has yielded highly robust findings of diminished

Fig 13. Dynamismmeasures restricted to immediate neighborhoods of higher-level hubs.We examine the number and the span of incoming and
outgoing meta-states connected to each hub of level 8 and over. The interval was selected so that more than a third of HCs and of SZs have level-k hubs for
k�the lower bound of the interval. The values are not integers because we average over each segment during which a given hub is occupied for a subject, ie.
the subject first visits some level k hub for 3 consecutive timepoints and then later visits the same hub again for k-3 consecutive timepoints. Each separate
occupancy has its own outgoing target, which might or might not be identical. Since the number of distinct segments of occupancy of a given hub affect the

overall number and range of the targets of that hub, we rescale by 1
number of segments

resulting in non-integer valued measures. (A) The number (rescaled as

indicated) of distinct target meta-states of fixed hubs; (B) The span (maximal L1 distance between, also rescaled as indicated above) of target meta-states of
fixed hubs.

doi:10.1371/journal.pone.0149849.g013
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connectivity dynamism for schizophrenia patients. These findings are consistent with recent
results on dynamic graph metrics, which inherently involve ensembles of nodal connections
[59] and with the disappearance of positive high-frequency spectral SZ effects on ensemble-
scale timeseries (Fig 15, last two columns). The results we present are fundamentally different
in kind from those obtained in static settings. Our work concerns the adaptive fluidity and
range of functional brain connectivity at a broad multi-network scale–both intrinsically
dynamic phenomena that do not have static analogues. In future work however we plan to
investigate connections between these high-level dynamic features that suggest group differ-
ences in connectonomic adaptivity and the underlying strength, modularity and other key
characteristics of static and structural connectomes. It seems possible, for example that the
consistent findings [1, 7, 48–53] of diminished connectivity strength and weakened connec-
tome-wide modularity among schizophrenia patients reflect a degradation of communication
pathways that enable rapid and widespread reorganization of network relationships.

Fig 14. Effect of Schizophrenia on Dynamic Roles of Individual tICA Correlation Patterns (Fig 4(A), Row 1). Red (or bars pointing upward) indicate
positive correlation with SZ. Only effects significant at the 0.05 level following FDR-correction are displayed. (A) SZ effects on the number of times each
discretized CP timecourse (y-axis), assumes values indicated on the x-axis; (B) SZ effects on binned counts (x-axis) of the number of timepoints each
discretized CP timecourse spends consecutively the most negative level, -4; (C) SZ effect on the number of correlation patterns simultaneously contributing
in their anti-state form, ie. on the number of timepoints at which a subject's meta-state contains the indicated number (x-axis) of negative values; (D) SZ
effects, component-wise for CPs that exhibit strong positive AVSN correlations, on the number of transitions between levels indicated on x-axis and y-axis;
All diagnosis effects and p-values are from the regression model specified in the Methods section.

doi:10.1371/journal.pone.0149849.g014
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The work we present adds an important new layer to the growing constellation of robust
findings specific to certain scales or forms of analysis that may, eventually combine to produce
powerful predictive fMRI signatures for this highly complex disease.
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