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Abstract

Several diseases are associated with excess of adipose tissue, and obesity is considered

an independent risk factor for the development of cardiac remodeling and heart failure. Die-

tary aspects have been studied to elucidate the mechanisms involved in these processes.

Thus, the purpose was the development and characterization of an obesity experimental

model from hypercaloric diets, which resulted in cardiac remodeling and predisposition to

heart failure. Thirty- day-old male Wistar rats (n = 52) were randomized into four groups:

control (C), high sucrose (HS), high-fat (HF) and high-fat and sucrose (HFHS) for 20 weeks.

General characteristics, comorbidities, weights of the heart, left (LV) and right ventricles,

atrium, and relationships with the tibia length were evaluated. The LV myocyte cross sec-

tional area and fraction of interstitial collagen were assayed. Cardiac function was deter-

mined by hemodynamic analysis and the contractility by cardiomyocyte contractile function.

Heart failure was analyzed by pulmonary congestion, right ventricular hypertrophy, and

hemodynamic parameters. HF and HFHS models led to obesity by increase in adiposity

index (C = 8.3 ± 0.2% vs. HF = 10.9 ± 0.5%, HFHS = 10.2 ± 0.3%). There was no change in

the morphological parameters and heart failure signals. HF and HFHS caused a reduction in

times to 50% relaxation without cardiomyocyte contractile damage. The HS model pre-

sented cardiomyocyte contractile dysfunction visualized by lower shortening (C: 8.34 ±
0.32% vs. HS: 6.91 ± 0.28), as well as the Ca2+ transient amplitude was also increased

when compared to HFHS. In conclusion, the experimental diets based on high amounts of

sugar, lard or a combination of both did not promote cardiac remodeling with predisposition

to heart failure under conditions of obesity or excess sucrose. Nevertheless, excess sucrose

causes cardiomyocyte contractility dysfunction associated with alterations in the myocyte

sensitivity to intracellular Ca2+.
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Introduction

Obesity is a disease associated with several disorders and the intensity and duration of this

condition are associated with cardiac remodeling with presence or absence of heart failure [1–

4]. The excess of adipose tissue requires increased metabolic demands, which leads to chronic

volume overload and, consequently, cardiac remodeling. In addition, changes in cardiovascu-

lar hemodynamics, can modify the cardiac morphology and function. Thus, the association of

obesity with comorbidities, some neurohormonal and metabolic alterations may result in

heart failure [5, 6]. In this context, dietary aspects have been studied to explain the possible

mechanisms related to the emergence of this condition, which can modulate cardiovascular

risk factors.

High-fat intake is not only related to lipid metabolism, but the type of ingested fat can also

influence insulin resistance and promote alterations in blood pressure [7]. Diets with high

intakes of simple carbohydrates may result in increased heart exposure to insulin, which acti-

vates cardiac protein synthesis and may promote left ventricular hypertrophy [8, 9].

Studies have shown that obesity induced by hypercaloric diets promotes cardiac remodeling

with changes in morphology and/or cardiac function [10, 11]. Evidence from experimental

studies indicates that high-fat feeding promotes cardiac contractile function damage [12, 13].

In our laboratory, myocardial dysfunction was demonstrated in basal conditions and physio-

logical cardiac remodeling in obese rats [14–16]. In contrast, results on the effects of diets with

high simple carbohydrate content (sucrose and/or fructose) are inconsistent. Sharma et al. [9]

observed that hypertensive animals fed by fructose diet for eight weeks resulted in an increase

in LV wall thickness and mortality, while Salie et al. [17] demonstrated cardioprotective effect

after ischemia reperfusion in Wistar rats, using diet with sucrose supplementation for 16

weeks. Moreover, high-fat diets associated with simple carbohydrates have demonstrated car-

diac damage, ventricular hypertrophy, interstitial fibrosis, increased rigidity and impairment

in cardiac relaxation [17, 18].

Despite much research and evidence of cardiovascular damage caused by high-fat and

high-sucrose diets, it is still unclear whether these diets, isolated or combined, promote cardiac

remodeling with predisposition to heart failure. Thus, this study aimed to investigate the car-

diac remodeling process in an experimental model induced by different types of hypercaloric

diets (high-fat (lard), high-sugar and the combination of both) and their effects in the cardiac

function. The hypothesis was that hypercaloric diets would promote cardiac remodeling, car-

diovascular damage and predispose to heart failure, being most evident in the HFHS model.

Material and methods

Animal care and experimental design

Thirty-day-old male Wistar rats (ffi110 g) obtained from the Animal Quarters of the Federal

University of Espı́rito Santo (Brazil) were individually caged and subjected to different dietary

regimens. All animal experiments were approved by the Ethics Review Committee of Federal

University of Espı́rito Santo (CEUA-UFES 08/2016) and conducted in accordance with cur-

rent Brazilian laws.

Rats were randomly assigned in control diet (C; n = 12), high-sugar diet (HS; n = 14), high-

fat diet (HF; n = 13) and high-fat and high-sugar diet (HFHS; n = 13). All animals had free

access to water and chow (40 g/day). To analyze whether dietary-induced obesity was associ-

ated with alterations in nutritional behavior, food consumption (FC) was measured daily. Cal-

orie intake (CI) was calculated weekly by the average weekly FC × dietary energetic density.

Feed efficiency (FE), the ability to transform consumed calories into body weight, was
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determined by following the formula: mean body weight gain (g)/total calorie intake (kcal).

The HS group had water supplemented with sugar (300 g/l) in alternate weeks. For the calcula-

tion of the caloric intake of the HS group, the caloric energy from the water supplemented

with sugar was also quantified (1.2 kcal/mL consumed).

The experimental diets provided sufficient amounts of protein, vitamins and minerals

according to the Nutrient Requirements for Laboratory Animals. The diets used in the current

study were formulated by Nutriave Alimentos1 (Vitória, Espı́rito Santo, Brazil) [19]. The feed

ingredients were blended, homogenized and extruded (Extru-Tech Extruder, Model E-750,

Sabetha, KS, USA) in the form of pellets. Then, the pellets were dried on a horizontal conveyor

dryer (20 minutes, temperature: ±70˚C). The composition (g/kg) and nutrients for each exper-

imental diet (%) are described in Table 1. The duration of the experimental protocol was 20

consecutive weeks.

Characterization of obesity

The adiposity index, used to assess obesity, was calculated by adiposity index [body fat (BF)/

final body wt] ×100. BF was measured from the sum of the individual fat pad weights as fol-

lows: BF = epididymal fat + retroperitoneal fat + visceral fat.

Metabolic and hormonal measurements

After 20 weeks, the animals were subjected to 12–15 h of fasting, and blood samples were col-

lected in dry tubes. The serum was separated by centrifugation at 10,000 rpm for 10 min.

Table 1. Composition and nutritional values of diets.

Components (g/kg) Diets

C HS HF HFHS

Corn 200 200 180 80

Rice 200 200 200 200

Bone meal 120 120 120 120

Sugar - 100 - 100

Soy oil 75 75 - -

Lard - - 200 200

Gluten 200 200 200 200

Salt 3.5 3.5 3.5 3.5

Mineral Mix�� 35 35 30 30

Vitamin Mix�� 16.5 16.5 16.5 16.5

Inert Material��� 150 50 50 50

Total (g) 1000 1000 1000 1000

Nutrient Composition (%)

Protein 24.8 21.8 17.8 19.2

Carbohydrate 49.6 52.3 44.6 43.4

Lipids 25.6 25.9 37.6 37.4

Energy Density (Kcal/g) 3.55 3.65 4.59 4.49

Diets. C: normal rodent chow; HS: High-sugar; HF: high-fat; HFHS: high fat and high sugar. In order to calculate the

caloric intake of HS, the caloric value of the sugar diet (3.65 kcal/g) plus the caloric value of water intake with sugar

(1.2 kcal/ml) was computed �� Vitamin and Mineral Mix: vit. A, vit. C., vit. D3, vit. E, vit. K3, vit. Complex B,

pantothenic acid, folic acid, biotin, choline; selenium, iron, copper, manganese, iodine, zinc, cobalt, calcium, and

phosphorus.

��� Bentonite: inert material, with no nutritional value and calories.

https://doi.org/10.1371/journal.pone.0228860.t001
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(Heraeus Megafuge 16R Centrifuge, Thermo Scientific, Massachusetts, USA) and stored at

−80 ˚C for subsequent analysis (Coldlab Ultra Freezer CL374-86V, Piracicaba, São Paulo, Bra-

zil). Serum glucose concentration was measured using specific kit (Bioclin Bioquı́mica1, Belo

Horizonte, Minas Gerais, Brazil and Synermed do Brasil Ltda., São Paulo, Brazil) and analyzed

by automated biochemical equipment BS-200 (Mindray do Brasil-Comércio and Distribuição

de Equipamentos Médicos Ltda., São Paulo, Brazil). Insulin was determined using an enzyme-

linked immunosorbent assay (ELISA) using specific kit (Linco Research Inc., St. Louis, MO,

USA). The reading was carried out using a microplate reader (Asys Expert Plus Microplate

Reader, Cambourne, Cambridge, UK).

Cardiac remodeling assessment

The cardiac remodeling process was assessed by determination of heart weight (HW), left ven-

tricle, HW and LV/tibia length ratios. At the end of the experimental protocol, the animals

received an intraperitoneal injection (IP) of sodium heparin (1000 U/Kg/IP; Heparamax-s,

Blau Pharmaceutic S.A., São Paulo, Brazil) for cardiomyocyte analysis. After 30 minutes, rats

were anesthetized with ketamine (90 mg/kg, IP) plus xylazine (10 mg/kg, IP) and euthanized

by decapitation. Subsequently, their chests were opened by mid-thoracotomy, and the heart,

ventricles, fat pads, and tibia were separated, dissected, weighed or measured.

Hemodynamic measurements. After 20 weeks of experimental protocol, the rats (n = 6

per group) were anesthetized intraperitoneally (IP) with urethane (Carbamic acid ethyl ester;

1.2 g/kg/IP injection; Sigma-Aldrich, USA) and submitted to catheterization surgery. LV

hemodynamic data were obtained from right carotid artery using a micromanometer (Mikro-

TipTM, SPR 320, USA). Systolic and diastolic blood pressure (SBP and DBP), heart rate (HR);

LV systolic and end-diastolic pressure (LVSP and LVEDP); maximum positive (+dP/dtmax)

and negatives (-dP/dtmax) derivatives of LV pressure, LV relaxation time constant (TAU) were

acquired and analyzed using a computer (Biopac System, USA).

Histological analysis. The LV transverse sectional area of animals from each group was

fixed in phosphate-buffered 4% paraformaldehyde (7.4 pH) and embedded in paraffin. Sec-

tions of 6 μm were obtained and stained with hematoxylin-eosin (HE) and picrosirius red

stain to determine the myocyte cross-sectional area and to collagen volume fraction,

respectively.

Cardiomyocyte contractile function. Under anesthesia as described above, the hearts

from rats were quickly removed by median thoracotomy, then enzymatically isolated [20]. The

isolated cells were placed in an experimental chamber with a glass coverslip base mounted on

the stage of an inverted microscope (IonOptix, Milton, USA) coupled with an edge detection

system with a 40× objective lens (Nikon Eclipse–TS100, USA). Cells were immersed in Tyrode’s

solution containing 1.8 mM CaCl2 and field stimulated at 1 Hz (20V, 5ms duration square

pulses). Fractional shortening and the times to 50% contraction and relaxation were measured.

Intracellular Ca2+ measurements. Myocytes were loaded with 1.0 μM Fura2-acetoxy-

methyl (AM) ester (Molecular Probes, USA). Ca2+ transient amplitude was reported as F/F0,

where F is the maximal fluorescence intensity average measured at the peak of [Ca2+]i tran-

sients, and F0 is the baseline fluorescence intensity measured at the diastolic phase of [Ca2+]i

transients. We also analyzed the period of time until the Ca2+ transient peak and 50% Ca2+

decay were reached.

Heart failure

Heart failure was considered when three criteria were met: Pulmonary congestion: a) percent-

age of lung humidity above 80%; b) lung/body weight (BW) ratio greater than lung/BW
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approximately 2-fold in relation to C [21]; c) right lung/BW above 5 mg/g [22]. RV hypertro-
phy: characterized by the ratio of the weight of RV adjusted by BW above 0.8 mg/g [23]. Ele-

vated LVEDP: LV end diastolic pressure (LVEDP) greater than 15 mmHg [24, 25]; and Systolic
dysfunction: maximum positive value of the first derivative of LV systolic pressure above 7000

mmHg [22]. After removal of the lung tissue, wet weight (WW) and dry weight (DW) were

determined before and after drying the samples at 60˚C for 48 hours. Water content (%H2O)

was estimated using the follow formula: %H2O = [(WW—DW)/WW] × 100.

Statistical analysis

Data were reported as mean ± standard error of the mean (SEM) and analyzed using one-way

analysis of variance (ANOVA) followed by the Tukey post hoc, at a 5% significance level.

Results

After 20 weeks, HF rats demonstrated a final body weight 22% and 20.6% greater than C and

HS, respectively (Table 2). The HF and HFHS diets promoted a substantial elevation of visceral

and retroperitoneal fat pads compared to C and HS diets. Specifically, HF and HFHS rats

showed an elevation of 62% and 43% in body fat, respectively, when compared to C. In addi-

tion, the adiposity index was significantly greater in these groups (31.3% and 22.9%) than in C.

In relation to HS, there was an increase in body fat of 68% and 48.7% in HF and in HFHS,

respectively.

The nutritional profile of rats is summarized in Table 2. The C rats had an approximately

17.9%, 29.6% and 37.6% greater daily food consumption (g) than the HF, HFHS and HS

groups, respectively, but the daily caloric intake was higher in the HS group in relation to the

C and HFHS groups (HS: 92.1 ± 2.1 vs. C: 79.2 ± 2.6 and HFHS: 77.3 ± 1.8 kcal/day, p< 0.05).

Table 2. General characteristics.

Variables Experimental Groups

C HS HF HFHS

IBW (g) 107 ± 3 110 ± 3 111 ± 3 110 ± 4

FBW (g) 533 ± 17 538 ± 13# 649 ± 34� 616 ± 22

BW gain (g) 426 ± 17 428 ± 12# 538 ± 32� 506 ± 20

Epididymal fat pad (g) 11.2 ± 0.6 10.5 ± 0.7 13.1 ± 0.9 13.5 ± 1.0

Visceral fat pad (g) 11.4 ± 0.6 10.6 ± 0.6#& 18.5 ± 1.4� 15.9 ± 1.4�

Retroperitoneal fat pad (g) 21.9 ± 1.0 21.8 ± 2.0#& 40.4 ± 4.5� 34.4 ± 2.2�

Body fat (g) 44.5 ± 1.6 42.9 ± 0.6#& 72.0 ± 6.3� 63.8 ± 4.3�

Adiposity index (%) 8.3 ± 0.2 7.9 ± 0.3#& 10.9 ± 0.5� 10.2 ± 0.3�

Food consumption (g/day) 22.3 ± 0.7 16.2 ± 0.5�# 18.9 ± 0.7� 17.2 ± 0.4�

Caloric intake (kcal/day) 79.2 ± 2.6 92.1 ± 2.1�& 86.9 ± 3.5 77.3 ± 1.8α

Feed efficiency (%) 3.84 ± 0.08 3.32 ± 0.05� 4.39 ± 0.09�# 4.64 ± 0.09�&

Glucose (mg/dL) 108 ± 2 112 ± 3 115 ± 4 115 ± 3

Insulin (ng/mL) 1.86 ± 0.13 1.77 ± 0.15 2.19 ± 0.16 2.39 ± 0.23

Data are presented as the mean ± SEM. Control diet—(C; n = 12); high-sugar diet—(HS; n = 14); high-fat diet—(HF; n = 13), and high-fat and high-sugar diet (HFHS;

n = 13). IBW: initial body weight; FBW: final body weight; BW: body weight. One-way ANOVA for independent samples followed by Tukey post hoc test. p < 0.05 vs. �

C
# HF vs. HS
& HFHS vs. HS
α HF vs. HFHS.

https://doi.org/10.1371/journal.pone.0228860.t002
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In addition, there was a difference in FC between rats fed the HF diet compared with the HS

group since rats fed the HS diet consumed significantly less food (HG: 16.2 ± 0.5 vs.
HF:18.9 ± 0.7; p< 0.05). Furthermore, HF presented a 12.4% increase in caloric intake over

HFHS (p< 0.05). There was no difference in the caloric intake of C compared to HF and

HFHS (p> 0.05). While the feed efficiency (%) was higher in the HF (14.3%) and HFHS

groups (20.8%) than in C (Table 2), there was a lower feed efficiency in HS rats than C (HS:

3.32 ± 0.05 vs. C: 3.84 ± 0.08; p< 0.05).

In relation to cardiac remodeling, there were no differences in the parameters analyzed in

groups HS, HF and HFHS when compared to C (Fig 1). However, the absolute heart and LV

weights were significantly elevated in HF rats in relation to HS group (Fig 1A and 1B), repre-

senting an increase of 32% and 29%, respectively. In addition, these rats also showed elevation

of HW and LVW-to-tibia length ratios when compared to HS rats (Fig 1C and 1D). Addition-

ally, the histological analysis from LV samples revealed that CSA and interstitial collagen frac-

tion (%) were similar among the groups (Fig 2A and 2B). There was no statistical difference

between the experimental groups for the lung/FBW, right lung/FBW and RV/FBW ratios, as

well as for the lung water content (%) (Fig 3A–3D).

Fig 1. Effect of different diet composition on cardiac remodeling. Data are shown as mean ± SEM. Control diet—(C; n = 5); high-sugar diet—(HS; n = 8);

high-fat diet—(HF; n = 5), and high-fat and high-sugar diet (HFHS; n = 6). HW: heart weight; LW: left weight. p< 0.05 vs. # HF vs. HS. One-way analysis of

variance (ANOVA) followed by the Tukey post hoc test.

https://doi.org/10.1371/journal.pone.0228860.g001
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The different types of hypercaloric diets did not promote hemodynamic alterations

(Table 3). In addition, the fractional shortening was significantly reduced by 20% and 15% in

the HS group in relation to C and HFHS, respectively (Fig 4B). Although all groups showed

lower values of time to 50% contraction in relation to C, there only was statistical difference

between HF and C (Fig 4C). The time to 50% relaxation were reduced in HS when compared

to HF and HFHS, respectively (Fig 4D), resulting in impaired of cardiomyocyte relaxation.

Moreover, HF and HFHS groups had reduced times to 50% relaxation in relation to C (Fig

4D). Ca2+ transient amplitude was increased in HS compared to HFHS (Fig 4E). In contrast,

no differences were observed in times to peak and 50% Ca2+ decay among other groups (Fig

4F and 4G).

Discussion

Obesity is associated with structural and functional changes in the heart [1]. However, the HS

did not cause morphological cardiac remodeling. Chess and Stanley [26] reported that high

sugar intake leads to hyperglycemia in blood circulation and cardiotoxic effects. Increased gly-

cemia leads to elevated serum insulin levels, which in cardiac tissue induce elevated protein

synthesis of cardiomyocytes and, consequently, left ventricular hypertrophy. Sharma et al. [9]

Fig 2. Histological study in myocardium. Control diet—(C; n = 5); high-sugar diet—(HS; n = 8); high-fat diet—(HF; n = 5), and high-fat and high-sugar diet

(HFHS; n = 6) after 20 weeks. (A) cross sectional area (CSA). (B): interstitial collagen of myocardium; representative picrosirius red-stained left ventricle (LV)

section. Arrows: interstitial collagen. Data are shown as mean ± SEM. One-way analysis of variance (ANOVA) followed by the Tukey post hoc test. p< 0.05 vs.
� C; & HFHS vs. HS; §HFHS vs. HF.

https://doi.org/10.1371/journal.pone.0228860.g002
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proposed that the ingestion of carbohydrates, in particular sugar, associated or not with blood

pressure overload, can cause LV hypertrophy, via insulin receptor stimulation and activation

of Akt/mTOR pathways. These findings suggest that, in the HS model, there was no need for

elevated circulating insulin in response to increased glycemic levels, since the animals

remained euglycemic.

The HF model did not cause cardiac remodeling, although the animals showed higher heart

weight and heart/tibia length ratio compared to C, however, this difference was not significant

(p = 0.08). In addition, although the myocyte CSA of this group had a higher value in relation

to C, this increase was also not significant (p = 0.07). However, the HF diet promoted cardiac

remodeling in relation to HS group (Fig 1A and 1B). In relation to the HFHS, no changes in

heart weight, CSA and myocardial collagen fraction were observed, which shows that this

treatment did not lead to cardiac remodeling. These findings are divergent from Poudyal et al.

[27], who visualized cardiac remodeling with LV hypertrophy and increased collagen fraction

in Wistar rats after 32 weeks of experimental protocol. The authors reported that these changes

are related, among other factors, to the aging process. Another mechanism is related to leptin

Fig 3. Effect of different diet composition on parameters of heart failure. Data are shown as mean ± SEM. Control diet—(C; n = 12); high-sugar diet—(HS;

n = 14); high-fat diet—(HF; n = 13), and high-fat and high-sugar diet (HFHS; n = 13). RV: right ventricle. (A) Lung weight/body weight ratio. (B) Right lung

weight/body weight ratio. (C) RV weight/body weight. (D) Lung water content (C = 5; HS = 8; HF = 5, and HFHS = 6). One-way analysis of variance

(ANOVA) followed by the Tukey post hoc test.

https://doi.org/10.1371/journal.pone.0228860.g003
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that mediates the process of cardiac hypertrophy in parts by the mitogen-activated protein

kinase (MaPK p38), which regulates various cellular processes.

Specifically, the HS did not promote cardiac remodeling, however, it was able to prevent

the elevation on heart and LV weights in the HFHS, interfering in the effect of HF diet.

According to literature, high sucrose intake [68% total energy sucrose diet, 69% total mass

sucrose diet, or 20% sucrose solution] induced hyperinsulinemia without alterations in plasma

glucose level in rats and mice [28–30]. Interestingly, our HS rats have not demonstrated alter-

ations in glucose and insulin levels (Table 2). Several mechanisms have been postulated,

including the prohypertrophic effects of insulin, insulin growth factor-1, and insulin resistance

[31]. Initially the circulating insulin levels are increased, directly stimulating cardiomyocyte

growth [32] and indirectly via binding to the insulin growth factor-1 receptor [33]. Chess et al.

[26], analyzing the effects of dietary extremes (high carbohydrate and fat intake) on the remod-

eling process and heart failure, reported that high sugar intake causes hyperglycemia in the

bloodstream and cardiotoxic effects. Increased glycemia leads to elevated serum insulin levels,

which in cardiac tissue, induces increased protein synthesis of cardiomyocytes and, conse-

quently, left ventricular hypertrophy. Sharma et al. [9] propose that carbohydrate intake, in

particular sugar, associated or not with pressure overload may cause LV hypertrophy, via insu-

lin receptor stimulation and activation of Akt/mTOR, proteins involved in protein signaling

pathways. Thus, our results from HS diet suggest that the sugar intake was not able to affect

the process of cardiac remodeling, probably due to the absence of hyperinsulinemia and eleva-

tion of glucose levels, as well as it was not promote cardiotoxic effect, indicating a cardiopro-

tective effect alone or when associated with the HF diet.

Experimental models that mimic the eating habits of the population have been widely used

to elucidate the mechanisms of obesity and cardiovascular disorders [34]. In this sense, there

was no significant difference was observed in vivo study, indicating that the dietary interven-

tions used did not cause cardiac functional adaptation. In addition, our results demonstrate

that obesity models (HH and HFHS) preserved the cardiomyocyte contractile function with a

punctual improvement in myocardial relaxation. These results differ from other studies that

have shown impairment in contraction and relaxation in experimental obesity models [12, 15,

16, 35]. These authors observed a reduction in the L-type Ca2+ channels expression, lower

phosphorylation of RyR2, and a decrease in SERCA2a and phospholamban phosphorylation

Table 3. Left ventricular hemodynamics measurements.

Variables Experimental Groups

C HS HF HFHS

SBP (mmHg) 97.8 ± 3.5 98.9 ± 4.5 92.7 ± 3.8 98.8 ± 3.5

DBP (mmHg) 58.5 ± 4.5 61.1 ± 5.2 56.5 ± 2.7 59.6 ± 5.1

HR (bpm) 288 ± 10 314 ± 17 321 ± 11 328 ± 14

LVSP (mmHg) 99.5 ± 2.9 95.8 ± 4.5 93.4 ± 3.9 100 ± 3

LVDP (mmHg) 4.02 ± 1.6 2.17 ± 0.81 2.19 ± 0.85 2.8 ± 0.79

+dP/dtmáx (mmHg/s) 6568 ± 471 7301 ± 1045 6157 ± 720 8022 ± 652

-dP/dtmáx (mmHg/s) -6769 ± 389 -6485 ± 725 -6375 ± 661 -7749 ± 416

Tau (s) 0.014 ± 0.003 0.011 ± 0.001 0.010 ± 0.002 0.011 ± 0.001

Data are presented as the mean ± SEM (n = 6 animal per group). Control diet—(C); high-sugar diet—(HS); high-fat diet—(HF), and high-fat and high-sugar diet

(HFHS). SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate; LV: left ventricle; LVSP: LV systolic pressure; LVEDP: LV end-diastolic pressure;

+dP/dtmáx: maximum positive derivative of LV pressure; -dP/dtmáx: maximum negative derivative of LV pressure; Tau: LV relaxation time constant. One-way ANOVA

for independent samples followed by Tukey post hoc test.

https://doi.org/10.1371/journal.pone.0228860.t003
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(PLB), respectively, due to the increase of intracellular Ca2+ concentration and removal of

cytosolic Ca2+. However, Fauconnier et al. [36] observed that, in the presence of palmitate, cel-

lular shortening increased by 40%, as well as a 25% increase in the ratio between cellular short-

ening and the Ca2+ transient amplitude, demonstrating that this substrate was able to improve

the contractile responses. Thus, to maintain contractile function, the heart requires a continu-

ous and abundant supply of energy, which comes mainly from fatty acids and glucose.

Free fatty acid oxidation is the major source of energy for the myocardium and up to 80%

of high-energy phosphates are produced, while the glucose metabolism provides the remaining

quantity of energy. Glucose as glycogen are stored to be used during increased metabolic

demands such as obesity and diabetes, since the glucose utilization is 20–30% more metabolic

efficient than free fatty acid oxidation in producing high-energy phosphates. In this sense, an

energetic dysregulation play an important role in the pathophysiology of the failing heart.

According Doesn’t et al. [37] a possible cause for these metabolic derangements in HF could

be related to myocardial insulin resistance, which limits the utilization of glucose and favors

the increased utilization of free fatty acids for ketogenesis. These changes lead to a reduction in

the production of high-energy phosphates and therefore to a metabolically inefficient heart.

Fig 4. Effect of different diet composition on contractile function and calcium transients of left ventricular cardiomyocytes. Control diet (C; n = 5;

cells = 71), high-sugar diet (HS; n = 6, cells = 115), high-fat diet (HF; n = 6, cells = 106) and high-fat and high-sugar diet (HFHS; n = 5, cells = 81). Data are

shown as mean ± SEM. (A) Representative contraction traces obtained from the cardiomyocytes of rats: (B) Cell shortening expressed as % of resting cell

length. (C) Time to 50% of contraction. (D) Time to 50% of relaxation. (E) Amplitude of transients. (F) Time to peak. (G) Time to from peak transient to half

resting value p< 0.05 vs. � C; # HS vs. HF; & HFHS vs. HS. One-way analysis of variance (ANOVA) followed by the Tukey post hoc test.

https://doi.org/10.1371/journal.pone.0228860.g004
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Therefore, the metabolic changes in HF may favor for the progression and reducing functional

capacity. Nevertheless, our findings suggest that the supply of fatty acids seems to initially

exert a cardioprotective effect against the aggressions imposed by the obesity condition and

pressure surges in the hyperlipidic models, since the HF diet did not probably promote sys-

temic and myocardial insulin resistance (data not evaluated). In addition, it should be noted

that the occurrence of heart failure was not observed in the evaluated experimental models; lit-

erature highlights the reduced use of fatty acids in heart failure [37], maintaining normal func-

tioning of the heart.

On the other hand, the hyperglycemic model showed a cardiomyocyte contractile dysfunc-

tion. This finding corroborates Vasanji et al. [38], who demonstrated a reduction in the frac-

tional shortening of animals fed a sucrose-rich diet, indicating cardiac contractility damage.

Balderas-Villalobos et al. [39] reported that the consumption of sucrose in Wistar rats pro-

moted a decreased Ca2+ transient amplitude, although without modifications in the amount of

Ca2+ of sarcoplasmic reticulum (SR). These researchers suggested that alterations in the activ-

ity of L-type Ca2+ channels or RyR2 receptors may contribute to reduce Ca2+ release and reup-

take in SR via SERCA2a. In addition, Abel et al. [1] suggest that altered use of the myocardial

substrate may be a mediator of subsequent contractile dysfunction. Within this context, when

fatty acid levels are low and glucose concentrations are high, myocardial metabolism adapts to

the use of glucose as an energetic substrate. This adaptive response is initially beneficial

because it maintains adenosine triphosphate (ATP) levels in the face of decreased mitochon-

drial oxidative phosphorylation from fatty acids; however, this change in energy metabolism is

not just a primary effect of cardiac remodeling, but it may, in fact, be a predictor of cardiac

dysfunction [40]. Thus, the damage observed in the hyperglycemia model might be, among

other factors, due to the higher glucose intake, which seems to cause some imbalance in intra-

cellular homeostasis and, consequently, alter the mechanism of cardiac contraction and relaxa-

tion, as well as Ca2+ handling.

Heart failure (HF) is the common endpoint of most heart disease, being one of the most

important clinical challenges in the health field [41]. Obesity is an independent risk factor for

the development of HF and this condition causes a series of hemodynamic changes, which aim

to maintain the body’s homeostasis, including increased cardiac output and decreased periph-

eral resistance, changing the cardiac morphology that predispose to left and right ventricular

dysfunction. These results suggest that the damage in the cardiac morphology and function

may lead to heart failure, even in the absence of other cardiac diseases [2, 6]. Our results indi-

cate that no differences were found between the experimental groups, demonstrating the

absence of HF. The absence of HF in the experimental models used in this study might be

explained by the failure in the characterization of tissue congestion, RV hypertrophy, as well as

systolic and diastolic dysfunction. In this sense, there were no morphological and functional

adaptations, originating from the condition of obesity or excess sucrose, capable of predispos-

ing to HF.

Conclusion

The experimental diets based on high amounts of sugar, lard or a combination of both did not

promote cardiac remodeling with predisposition to heart failure under conditions of obesity

or excess sucrose. Nevertheless, excess sucrose causes cardiomyocyte contractility dysfunction

associated with alterations in the myocyte sensitivity to intracellular Ca2+.
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23. Polegato BF, Minicucci MF, Azevedo PS, Gonçalves AF, Lima AF, Martinez PF, et al. Association

between Functional Variables and Heart Failure after Myocardial Infarction in Rats. Arq Bras Cardiol.

2016; 106: 105–112. https://doi.org/10.5935/abc.20160015 PMID: 26815462

24. Teerlink JR, Clozel M, Fischli W, Clozel JP. Temporal evolution of endothelial dysfunction in a rat model

of chronic heart failure. J Am Coll Cardiol. 1993; 22: 615–620. https://doi.org/10.1016/0735-1097(93)

90073-a PMID: 8335837
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