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Abstract: In this paper, we propose a smartphone-based biosensor for detecting human total
hemoglobin concentration in vivo with high accuracy. Compared to the existing biosensors used to
measure hemoglobin concentration, the smartphone-based sensor utilizes the camera, memory, and
computing power of the phone. Thus, the cost is largely reduced. Compared to existing smartphone-
based sensors, we developed a highly integrated multi-wavelength LED module and a specially
designed phone fixture to reduce spatial errors and motion artifacts, respectively. In addition, we
embedded a new algorithm into our smartphone-based sensor to improve the measurement accu-
racy; an L*a*b* color space transformation and the “a” parameter were used to perform the final
quantification. We collected 24 blood samples from normal and anemic populations. The adjusted
R2 of the prediction results obtained from the multiple linear regression method reached 0.880,
and the RMSE reached 9.04, which met the accuracy requirements of non-invasive detection of
hemoglobin concentration.

Keywords: biosensor; smartphone; noninvasive; multi-wavelength; L*a*b* color space; total
hemoglobin concentration

1. Introduction

Globally, more than one-third of pregnant women aged 15–49 suffer from anemia [1].
Anemia in pregnant women during pregnancy can cause complications, which can lead to
death in severe cases. At the same time, the disease cycle of anemia is long, and it is not easy
to treat or recover from; hence, it needs to be monitored and tested frequently. At present,
the clinical solution in hospitals is mainly based on collecting blood sample from veins
and then using the ferric cyanide method to measure the hemoglobin concentration [2].
Although this detection method has high measurement accuracy, it also has its limitations.
The method requires the collection of human blood samples, during which both patients
and medical staff are at risk of infection from exposure to blood and needles. In addition,
professional medical personnel and equipment are required to perform the detection
operation whose process is cumbersome and has low efficiency. Therefore, the method is
inconvenient for the detection of hemoglobin concentration in daily life.

Currently, there are several pieces of non-invasive equipment on the market for daily
hemoglobin concentration testing [3,4]. However, the measurement accuracy of these
devices can hardly reach medical standards [5–7], and they are often not very portable.
Compared with these medical testing devices, smartphones show irreplaceable portability
and convenience. It is predicted that by the year of 2023, there will be more than four billion
smartphone users globally, making smartphones play a potentially huge role in medical
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testing in non-invasive optical measurements. Recently, the application of smartphones in
human physiological parameters measurement and monitoring has become increasingly
common, such as smartphone-based detection platforms for molecular diagnostics [8], clin-
ical diagnosis of albumin-related diseases [9,10], heart rate detection [11–13], blood oxygen
saturation detection [14–16], respiratory rate detection [17,18], and anemia detection [19–21].
The advantages of using smartphones for detection are as follows: there is no need to carry
other hardware devices, and the powerful CPU and memory of the smartphone provide a
good hardware platform for the calculation and analysis of physiological parameters.

Here, we propose an accurate smartphone-based biosensor for detecting human total
hemoglobin concentration. This sensor utilizes the camera, memory, and computing power
of the smartphone. We also develop a highly integrated multi-wavelength LED module and
a specially designed phone fixture to reduce spatial errors and motion artifacts, respectively.
In addition, we embed a new algorithm into the smartphone-based sensor to improve the
measurement accuracy; an L*a*b* color space transformation is used, and the “a” parameter
is proposed to perform the final quantification. A total of 24 blood samples are collected
from normal and anemic populations. The results show that the hardware and algorithm
proposed in this study can meet the accuracy requirements of non-invasive detection of
hemoglobin concentration in vivo.

2. Materials and Methods
2.1. Modified Beer–Lambert Law and Multiwavelength Selection

The Beer–Lambert law [22] indicates that when a beam of light passes through a
medium, the intensity of the detected light is proportional to the concentration of the
medium C and the propagation distance of the beam L. The radius of human blood vessels
increases and decreases periodically with the beating of the heart, so the photoelectric
volume diagram of the human body can be detected. However, this model is based on the
hypothesis that only light is absorbed. This hypothesis is not applicable in a human body,
where the attenuation of near-infrared light caused by scattering dominates relative to
absorption (roughly 80% scattering vs. 20% absorption). In this case, the primary problem
of using a photoelectric detector to receive the outgoing light is that the outgoing photons
are not completely collected, as shown in Figure 1a. In addition, some of the light cannot
reach the detector, so the actual optical attenuation is not accurately defined.
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In addition, the multiple scattering of light in the tissue leads to an increase in the path
L of light propagation, which also has a great influence on the measurement results. The
modified Beer–Lambert law [23] takes into account the effect of scattering in the tissue, as
shown in Equation (1),

Aλ = (ε1λ
· c1 + ε2λ

· c2 + ...εnλ
· cn) · d · DPF + G. (1)

where Aλ is light attenuation (in natural logarithm), also known as optical density [24]
directly related to the concentration of substances and the distance that light passes through;
εnλ

is the molar extinction coefficient of different substances; cn is the concentration of
different substances; DPF is the differential path length factor [25,26], representing the
proportion of the increase in the optical path length due to scattering; d·DPF represents the
effective path length of light; and the factor G is the scattering factor, representing the effect
of the nature and geometry of the tissue.

Blood absorbs different wavelengths of light differently. Figure 1b shows the ab-
sorption curves of oxyhemoglobin, anaerobic hemoglobin, and water [27–29]. In the
near-infrared optical window of 600–1000 nm, oxyhemoglobin and anaerobic hemoglobin
have an iso-absorption point at 810 nm [30]. Hence, researchers generally choose 810 nm as
the base signal for non-invasive measurement of hemoglobin concentration. The absorption
of water near 970 nm and 1050 nm dominates, and the influence of water can be removed
by using the signal at these wavelengths.

2.2. Smartphone Measurement Device

Here, we used a light source containing 5 LEDs of different wavelengths to obtain
the photoplethysmography (PPG) signals from a fingertip. The measurement wavelengths
were 660 nm, 810 nm, 900 nm, 970 nm, and 1050 nm. We chose the iso-absorption point of
oxyhemoglobin and deoxyhemoglobin at 810 nm. Based on the therapeutic window, 660 nm
and 900 nm were added to differentiate oxyhemoglobin and deoxyhemoglobin [31,32].
Moreover, near 970 nm and 1050 nm, the absorption of water was obvious; thus, we added
these two wavelengths to exclude the influence of water absorption.

When a smartphone is held manually, the motion artifacts due to breathing and
movement are prominent. Therefore, a 3D printed fix device is necessary, as shown in
Figure 2a,b, which show the working smartphone system on the fixture. We also designed
the arrangement of the lamps as shown in Figure 2c. As the absorption of the smartphone
sensor at the wavelengths of 970 nm and 1050 nm is weaker than other wavelengths, we
placed these two LEDs in the outermost positions of the fingertip, so the optical path was
relatively short, and the signals were stronger. We designed the PCBA by ourselves and
then handed it over to the factory to solder the patch to reduce the position error caused by
human movement. The smartphone model (Huawei mate20pro, Shenzhen, China) used
in this study has the acquisition pixel of 1920 × 1080. Its acquisition frame rate is 60 Hz,
which is much larger than the PPG signal frequency of the human body (10 Hz). Hence,
the sampling rate satisfies Shannon’s sampling law.

2.3. Data Collection

During the signal detection process, the volunteer’s finger remained motionless, and
each LED was lit up to 20 s. As shown in Figure 3, in one cycle, all five LEDs were lit up
separately. Thus, a video file with a total length of 100 s was collected.

Here we collected the PPG data on 12 normal adults (8 male volunteers, 4 female vol-
unteers) and 12 hospitalized patients with anemia (6 male volunteers, 6 female volunteers).
All the data were obtained from the volunteers’ right index fingers. The volunteers’ arms
were placed on the table to ensure comfort and stability during the data acquisition, and a
MATLAB-based program was used to check whether the frame rate was correct after the
acquisition process. The volunteers’ heart rate, blood pressure, and age were also recorded.
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2.4. Color Space Transformation

The basic form of a time-continuous PPG video file is shown in Figure 4a. It is
composed of color picture sequences of RGB channels. Here, the MATLAB program was
used to extract images of each frame, and then an area of 1000 × 1000 pixels in the middle
of the image was selected as the region of interest (ROI).

The RGB three-channel data of the ROI were extracted and averaged. The final
obtained PPG signal is shown in Figure 4b. It can be seen that the signal noises of channels
B and G are large, and the signals are unstable. However, the main information of the PPG
signal image is concentrated in channel R, which is also more stable.

Previous studies have shown that the L*a*b* parameter provides a measurement of
skin color perception [33] and, thus, mimics how skin is perceived by a dermatologist or
the general population [34,35]. Chardon et al. proposed that in a three-dimensional L*a*b*
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space, all skin tones of light-skinned subjects are within a “banana”-shaped volume called
skin tone volume. Skin redness (erythema reaction) can be represented as a displacement
on the L*-a* plane. Since erythema is mainly caused by dilatation and congestion of local
dermal capillaries of the skin, parameter “a” also reflects blood-related changes. CIE L*a*b*
color space is shown in Figure 4c, where L* indicates light intensity related to the “luminous
reflectance” (quantity of reflected light weighted with the spectral response of the human
eye) and takes values from 0 (black) to 100 (white), a* indicates the color of the object on a
scale that goes from green (−128) to red (128), and b* indicates the color of the object on
a scale that goes from blue (−128) to yellow (128). The signals transformed from RGB to
CIE L*a*b* color space by the RGB2Lab program are shown in Figure 4d, and the channel
a signal was separately extracted as shown in Figure 4e. For all the volunteers’ data, the
channel a signal was used as the initial signal of PPG calculation.
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signal of L*a*b* channels. (e) PPG signal of channel a.

2.5. Data Analysis

Figure 5a shows the PPG optical model of blood, which consists of tissue, venous
blood, and arterial blood. Therefore, the model is simplified to only tissue and pulsating
arterial blood, and then the modified Beer–Lambert law can be described as Equation (2),

Aλ = ln(
Iout

Iin
) = (εBλ

· cB · dBλ
+ εTλ

· cT · dTλ
) · DPF + G. (2)

where Iout represents the outgoing light intensity, Iin represents the incident light intensity,
εBλ

represents the molar extinction coefficient of blood, cB represents the concentration of
blood, dBλ

represents the light path of blood, εTλ
represents the molar extinction coefficient

of tissue, cT represents the concentration of tissue, dTλ
represents the light path of tissue.
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The absorption coefficient of the five wavelengths of light used in our system is
different in human tissues. Under the same incident light intensity, the emitting light
intensity of the strong absorbed wavelength will be relatively small, sometimes even
similar to the intensity of the background noise. Therefore, the signal-to-noise ratio of
such wavelength is low, meaning that it is necessary to strengthen the incident intensity
of such a wavelength of light to increase the signal-to-noise ratio, that is, to increase the
input current of the corresponding LED. For light with weak absorption wavelength in the
tissue, a stronger incident light will lead to a stronger emitted light, which then saturates
the signal of that wavelength, so its incident light intensity should be reduced. In summary,
in order to achieve a good signal-to-noise ratio of light for all five wavelengths, the incident
light intensity of each wavelength must be appropriately adjusted. To eliminate the effect
of the current adjustment on the result, we use the AC/DC of each wavelength to obtain
the characteristic parameter of Rλ as Equation (3),

Rλ = ACλ/DCλ =
Iin · eεBλ

·cB.dBλ
·DPF+G

Iin · eεTλ
·cT·dTλ

·DPF+G = e(εBλ
·cB·dBλ

−εTλ
·cT·dTλ

)·DPF. (3)

To accurately obtain Rλ, we use a strict waveform screening tool and the skewness
as a standard for waveform quality inspection. The waveforms that do not meet the
requirements are not added to the calculation. Here, the parameter R1050 performs multiple
linear regression fitting.

3. Results
3.1. Comparison of RGB and L*a*b* Color Spaces Results

We selected 50 waveforms in this section to calculate the R color channel of the RGB
color space and channel a of the L*a*b color space according to Equation (3). The values
were normalized to eliminate the error of the data scale. Figure 6a shows the R values
of 660 nm, 810 nm, 900 nm, 970 nm, and 1050 nm, where the blue lines represent the Ra
calculated by the “a” color channel, and the red lines represent the RR calculated by the
“R” color channel. It can be seen that for the same wavelength, the variation trends of
Ra and RR are similar for 660 nm, 810 nm, and 900 nm. To further show the distribution
differences of Ra and RR for each wavelength, we calculated the variance values to analyze
their stability, as shown in Figure 6b. We can observe that the variance values of parameter
Ra at 660 nm, 810 nm, 900 nm, and 1050 nm are smaller compared to those of parameter RR,
while the variance in Ra at 970 nm is larger than that in RR. It can be concluded that for
smartphone PPG predictions of hemoglobin concentration, the “a” color channel of L*a*b
color space has a greater stability than the “R” color channel of RGB color space.
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3.2. Prediction Results of Hemoglobin Concentration

Based on the method introduced in the above section, we collected 24 groups of
effective waveforms of healthy people and patients, with the hemoglobin concentration
distributed between 60 mg/dL and 170 mg/dL. We counted the five wavelengths of all
volunteers. Due to the amplitude modulation of the pulse wave signal caused by respira-
tion, the R of each wavelength fluctuates periodically with the breath. To eliminate this
effect, we used wavelet changes to denoise it. Retaining only the trend term R to filter out
the effects of respiration, we fed the five wavelengths and true hemoglobin concentration
values of 24 volunteers into a multiple linear regressor, and the predicted results are shown
in Figure 7, where the horizontal axis is the true value of the hemoglobin concentration, and
the longitudinal axis is the predicted value of the hemoglobin concentration. Figure 7a,b
show the prediction results obtained using the “R” parameter and “a” parameter, respec-
tively. It can be seen in Figure 7 that both the parameters can provide good hemoglobin
concentration predictions for the volunteers. It should be noted that, here, the “true values”
were provided by the collaborating hospital. After the smartphone measurements, a nurse
took the blood samples of the volunteers for hemoglobin concentration testing.
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To further compare the prediction abilities of the “R” and “a” parameters, we used
R2, RMSE (Root Mean Square Error), and MAPE (Mean Absolute Percentage Error) for
evaluation, as Equations (4)–(6) show,

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 ,∈ [0, 1] (4)
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RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷ)
2

,∈ [0,+∞) (5)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣,∈ [0,+∞) (6)

Here, MAPE measures the average absolute value between the predicted and true
values. The smaller the MAPE values of the model the better the prediction it can achieve.
We compared the R2, RMSE, MAPE metrics, and Durbin–Watson test for the “a” and “R”
parameters, and the results are shown in Table 1.

Table 1. Comparison of the prediction results of “a” parameter and “R” parameter.

Model
Color Space R2 Adjusted R2 RMSE MAPE Durbin–Watson Test

a (L*a*b) 0.91 0.88 9.04 0.068 1.77
R (RGB) 0.87 0.83 10.70 0.091 2.41

We can see from Table 1 that the adjusted R2 of the multivariate linear regression
model obtained by using the “a” parameter of the L*a*b color space reaches 0.88, which
is larger than 0.83 achieved using the “R” parameter of the RGB color space. Moreover,
the RMSE of the multiple linear regression model obtained by using the “a” parameter is
9.04, which is smaller than the value of 10.70 obtained by using the “R” parameter. The
MAPE obtained by using the “a” parameter is 0.068, which is much smaller than the value
of 0.091 obtained by using the “R” parameter. In summary, the R2, RMSE, and MAPE of the
regression results obtained by using the “a” parameter are better than those obtained by
using the “R” parameter. In addition, the Durbin–Watson test was carried out to evaluate
the autocorrelation problem of the independent variables. In general, the value of the
Durbin–Watson test, shown in Table 1, confirms that there is no correlation between the
residuals, and the subsequent improvement in the “a” parameter suggests that we should
further increase the number of samples and expand the distribution range of hemoglobin
concentration to further improve the prediction accuracy of the system.

4. Discussion

Most of the portable hemoglobin meters commercially available on the market are
expensive. Although these devices can perform highly accurate hemoglobin measurements,
they often require a finger prick to obtain the blood sample for testing, bringing additional
infection risk for the users. In comparison to these devices, the smartphone-based biosen-
sor proposed in this study provides a non-invasive and low-cost way of monitoring of
total hemoglobin concentration. The testing results demonstrate that it has a satisfactory
measurement accuracy, with irreplaceable portability and convenience. It is worth men-
tioning that there are other applicable methods for the direct monitoring of hemoglobin
concentration using smartphone-based devices with high accuracy [36,37], whose R2 values
reached 0.9810 and 0.9583, respectively. Here, our device provides a multi-wavelength
optical detection method, allowing one to achieve a satisfactory measurement accuracy
non-invasively. It should be pointed out that, since the signal-to-noise ratio of the smart-
phone camera used to respond to infrared light needs to be improved, the data collected
in this study have a certain error. For the wavelength of 1300 nm where water absorption
is prominent, the response of the smartphone is limited. If the signal at 1300 nm can be
added, the prediction result will be more accurate. Additionally, the response speed of the
smartphone camera is relatively slow. It takes 2 s to stabilize the light intensity every time
the LED is switched; hence, the time division multiplexing method cannot be used in this
study. The waveform signals of five wavelengths in a very short time can be obtained. This
method can further eliminate the interference from human movement and the modulation
induced by breathing. In addition, only 24 volunteers were involved in this study, which
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may have led to certain errors in the regression coefficients calculation. As mentioned
above, the prediction accuracy can be improved by increasing the number of samples.

It should be noted that there are issues of various smartphones having different
types of cameras and lighting bias, which may result in different light intensity and color
responses under the same illumination situation. As a possible solution for future devel-
opment of this method and biosensor, a color calibration scheme could be adopted. More
specifically, a color and intensity calibration algorithm could be designed based on the
measurement results of standard samples and light sources when different smartphones
are used to make sure that the light responses of different smartphone sensors are the same.
As for the issue of different camera positions in different smartphones, a variable-position
light source module can be designed and used.

5. Conclusions

In this paper, we proposed an accurate smartphone-based biosensor for detecting
human total hemoglobin concentration. The sensor utilized the camera, memory, and
computing power of the smartphone itself. We collected the data of 12 normal volunteers
and 12 anemia patients and developed a new multi-wavelength light source system external
to the smartphone. The smartphone can provide multi-spectral signals and used a 1050
nm wavelength LED light to provide information that is closely related to the absorption
of water in the blood, thereby increasing the accuracy of the regression. Through the
integrated LED light, the error of motion artifacts caused by switching lights of different
wavelengths was effectively reduced. We designed a smartphone-fixing bracket to reduce
the position error during the measurement. The “a” parameter of the L*a* b color space
was used to predict the hemoglobin concentration when processing each picture frame.
The experimental results demonstrate that, compared to the “R” parameter of the RGB
color space, the “a” parameter has a better performance in predicting human hemoglobin
concentration using PPG signals. The results show that the smartphone-based hardware
and algorithm proposed in this study can meet the accuracy requirements of non-invasive
detection of hemoglobin concentration in vivo.
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