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ABSTRACT

Objective: The goals of this study were to harmonize data from electronic health records (EHRs) into common

units, and impute units that were missing.

Materials and Methods: The National COVID Cohort Collaborative (N3C) table of laboratory measurement

data—over 3.1 billion patient records and over 19 000 unique measurement concepts in the Observational Medi-

cal Outcomes Partnership (OMOP) common-data-model format from 55 data partners. We grouped ontologi-

cally similar OMOP concepts together for 52 variables relevant to COVID-19 research, and developed a unit-

harmonization pipeline comprised of (1) selecting a canonical unit for each measurement variable, (2) arriving

at a formula for conversion, (3) obtaining clinical review of each formula, (4) applying the formula to convert

data values in each unit into the target canonical unit, and (5) removing any harmonized value that fell outside

of accepted value ranges for the variable. For data with missing units for all the results within a lab test for a

data partner, we compared values with pooled values of all data partners, using the Kolmogorov-Smirnov test.

Results: Of the concepts without missing values, we harmonized 88.1% of the values, and imputed units for

78.2% of records where units were absent (41% of contributors’ records lacked units).

Discussion: The harmonization and inference methods developed herein can serve as a resource for initiatives

aiming to extract insight from heterogeneous EHR collections. Unique properties of centralized data are har-

nessed to enable unit inference.

VC The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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Conclusion: The pipeline we developed for the pooled N3C data enables use of measurements that would oth-

erwise be unavailable for analysis.

Key words: reference standards, SARS-CoV-2, electronic health records, data accuracy, data collection

OBJECTIVE

Quantitative data in the National COVID Cohort Collaborative

(N3C) originate from data partners who submit electronic health re-

cord (EHR) data via different Common Data Models (CDMs),

which are then harmonized into the Observational Medical Out-

comes Partnership (OMOP) CDM. Our objective was to harmonize

measurement units and to reclaim usable data via unit inference for

values missing units.

BACKGROUND AND SIGNIFICANCE

N3C has built a repository of EHR data from a growing number of

data partners across the United States to facilitate research on coro-

navirus disease of 2019 (COVID-19).1 Our data partners submit

clinical and laboratory data, using one of several CDMs used for dis-

tributed EHR-based research, which are then mapped to the OMOP

CDM.2,3 While the CDMs specify the structure for storing data, not

all fields are required, and what data can be entered in these fields is

not tightly controlled.2

One of the key resources of N3C is laboratory measurement

data, central to almost all research on COVID-19. Sites submit these

data in a variety of units even within the same measurement con-

cept. Most sites map their local lab data to the Logical Observation

Identifiers Names and Codes (LOINC) system.4 As part of the

LOINC standard, properties being measured, such as mass concen-

tration (mass/volume), number concentration (count/volume), or

rate (count/time), is specified as part of the code but the units to be

used are not specified. Instead, for many codes, example units are

provided, often including units in the Unified Code for Units of

Measure (UCUM) format.5 UCUM formatting is designed to remove

ambiguity (g vs gm for example) and to integrate with electronic

messaging standards. However, UCUM does not dictate which unit

is preferred for any particular analyte. Because of this lack of unifor-

mity in reporting, it is almost always necessary to convert units be-

fore comparing measurement results from different sites. As an

example of OMOP unit concept name diversity in the N3C measure-

ment table, units for body weight can include kilogram, gram, ounce

(avoirdupois), oz and pound (US).

Additionally, units of measure are often missing. Dropping these

entries from analyses would result in significant data loss and even

bias, especially if the units were consistently missing for a given re-

sult or from a given data partner. Another option would be to solicit

each data partner for their missing units, which would be feasible if

working on a small number of data elements and with a small num-

ber of data partners, but is not a sustainable solution as the number

of data contributors grows over time (55, at as of June 10, 2021). A

third option would be to assume a unit based on what is commonly

used in clinical practice; while this may work for simple measure-

ments such as heart rate, it is highly error prone for most cases.

In order to preserve as much data as possible without placing an

undue burden on the data partners or individual researchers, we de-

termined that an automated method is needed to automatically con-

vert units in a systematic fashion as well as determine, on a site-by-

site basis, what the most likely unit is for a given OMOP measure-

ment concept where units are absent. To address this problem of

missing units, we propose a method comparing the value distribu-

tion of measurements6 which are missing units to those from the

same concept set with known units. In general, if the distributions

are not found to be significantly different we infer that they use the

same unit.

LOINC unit conversion has been addressed by other research

groups in a variety of contexts including analysis of aggregated data-

sets,7–9 Hauser describes creation of a standard set of conversions

between compatible LOINC laboratory codes expressed in different

units10,11 along with publicly accessible conversions to support con-

version of common LOINC codes. We contribute and extend the

state of the art by making available reproducible computational

pipelines to impute units in cases where units were missing.

In summary, we aimed to develop approaches that incidentally

have a broad impact beyond the COVID-19 research of N3C,

addressing the need to harmonize units by grouping similar labora-

tory tests and by converting all data points for each measurement to

a single predetermined canonical unit. In addition, we aimed to re-

claim as much data as possible missing units of measure to maximize

their use. The resulting methods are broadly applicable to contexts

of pooled EHR data.

MATERIALS AND METHODS

The design of the N3C data set and a comprehensive characteriza-

tion of the data available prior to December 2020 have been previ-

ously described.1,12 In the current study, we included data ingested

as of June 10, 2021. Our analysis did not put any restrictions on the

patient population, and included all available measurements. The

N3C ingestion pipeline includes comprehensive mapping of mea-

surement concepts and unit concepts to standard concepts in the

OMOP CDM. While we had access to information from source vo-

cabularies, all work discussed in this manuscript began with the

data after conversion to OMOP.

Working with a community of physicians and informatics

experts, we created an initial list of measurements that were of high

priority for harmonization, driven primarily by the needs to describe

the N3C cohort.12 We gained subject matter expert (SME) consen-

sus on broad sets of semantically similar analytes (and, where rele-

vant, of specimen type) expected by the SMEs to have

interoperoberable and convertible measurement units, even though

the particulars may differ. For example, differences between venous

and arterial measurements are meaningfully different, but their ana-

lytes are measured with the same units. Measurement concepts with

relative results (eg, ratio or percent) were grouped into different con-

cept sets than absolute measures. All concept sets were reviewed by

a clinical SME to ensure that only concepts which would be inter-

preted similarly in a clinical setting, despite potential differences in

sampling time and sample specimen, were included. We also re-

quired that the concepts be unique to a single concept set, so that

values did not get harmonized in multiple ways. The full list of con-

cepts per concept set can be found in Supplementary Table S1. No-

tably, the concept sets were used only for unit harmonization
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optimization and implementation purposes and are not intended to

represent clinically synonymous collections of concepts for down-

stream analysis. In fact, the grouping of concepts for research and

clinical use is often necessarily different from the broader grouping

that suits unit harmonization and inference purposes. As an extra

validation of concept set membership we analyzed measurement

concept cumulative distribution functions (CDFs) for each concept

set (Supplementary Figure S1), and the few concept sets that

appeared to contain an outlier were examined in depth. These out-

lier concepts in reviewed concept sets included Leukocytes [#/vol-

ume] in Blood by Manual count, whose CDF differed from others’,

because a manual count is performed under circumstances where au-

tomated counts fail due to low or unusual blood cell counts. This

distribution was not, however, considered sufficiently different to

deserve its own concept set, at least for the purposes of unit harmo-

nization and inference due to (A) being synonymous in terms of the

range of plausible units and (B) for reasons detailed in Results.

Working with our SMEs, we then chose a single “canonical”

unit for each measurement concept set; in most cases the unit where

the values are in the most easily interpretable scale, or units where

derived variables can subsequently be calculated, for example kilo-

gram for weight was selected due to familiarity, and since it is the

most commonly used unit by the clinicians within N3C to calculate

the derived variable BMI. Additionally, we identified acceptable

value ranges, beyond which a measurement would be discarded, for

example percents below 0% or above 100%, and values that are not

clinically possible in any patient as determined by our SMEs. These

ranges were made as liberal as possible to avoid losing extreme cases

yet conservative enough to allow us to filter out poor-quality data

that could affect downstream analyses. A list of the measurements

and values for the required fields are shown for selected examples in

Table 1, and in full, within Supplementary Table S2. Lastly, we

manually curated conversion formulae suitable for converting from

other units to this canonical unit (Supplementary Table S3).

Unit harmonization
Using the concept sets, canonical units, acceptable ranges and for-

mulae from Supplementary Tables S2 and S3, we assessed the diver-

sity of units present in the data (Figure 1) and implemented a

pipeline (Figure 2) that converted value data (ie, value_as_number)

to harmonized value data. In our implementation, we created 2 new

fields in our measurement table, harmonized_unit_concept_id and

harmonized_value_as_number, to preserve the original value data

for maximum transparency and flexibility. Conversions were per-

formed using a mapping function, composed of the units to convert

and the measurement concept as a lookup for the corresponding

conversion equation (Figure 2). After conversion, if the value was

outside of the accepted value range, the harmonized_unit_concep-

t_id and harmonized_value_as_number fields were set to null.

Unit inference
We applied unit inference to measurement records that were missing

units in the source data or, missing a valid mapping from the source

unit to the OMOP standard unit. The basis of unit inference derives

from a previous study6 that developed a method for determining if

lab results from 2 different labs represented the same type of mea-

surement, in part, by comparing distributions of the results between

the 2 tests using the Kolmogorov-Smirnov test (KS test).13 We

adapted this approach, and compared value distributions within

each OMOP measurement concept for laboratory tests per data

partner, converted to the canonical unit for every plausible unit for

that measurement concept (termed “test” value), to a selection of

values with known units converted into the canonical unit (termed

“reference” value). For each test unit, following the conversion to

the canonical unit using the appropriate conversion formula, we

assessed whether the distribution of values closely matched the ca-

nonical unit reference distribution of values, using the KS test P

value, above a threshold, to define “close.” When the match passed

our empirically derived threshold and other quality control criteria

(described below), the test unit was then assigned as the accepted in-

ferred unit. Figure 3 and Supplementary Figure S2 outline the unit-

inference process.

Unit-inference threshold and sample-size validation
To determine the correct KS-test threshold, we created a workflow

(Figure 3A and Supplementary Figure S2A) that masks known

units for each 4-element tuple of measurement variable, data part-

ner, measurement concept, and unit, which were then compared to

the reference values (the collection of values of known units where

all the appropriate conversions have taken place into the canonical

unit). Because of the combinatorial explosion in the number of

comparisons, the work was done with samples from each tuple.

Table 1. Example canonical units table

Measured

variable

Enclave

codeset ID

Canonical unit

concept ID

Canonical unit

concept name

Maximum

plausible value

Minimum plausible

value

Measurement table

row count

Respiratory rate 286601963 8483 Counts per minute 200 0 201 976 073

Sodium, mmol/L 887473517 8753 Millimole per liter 250 50 147 177 271

SpO2 780678652 8554 Percent 100 0 145 403 614

Systolic blood

pressure

186465804 8876 Millimeter mer-

cury column

400 0 136 188 546

Temperature 656562966 586323 Degree celsius 45 25 123 986 764

Glucose, mg/dL 59698832 8840 Milligram per deci-

liter

1000 0 104 743 184

Heart rate 596956209 8483 Counts per minute 500 0 67 530 040

Height 754731201 9546 Meter 3 0 53 998 207

Body weight 776390058 9529 Kilogram 500 0.1 42 113 217

Diastolic blood

pressure

573275931 8876 Millimeter mer-

cury column

200 0 42 024 537

Note: Chosen canonical units and plausible value range for the top 10 most frequent measured variables in the data out of those selected for unit harmonization

and inference.
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Figure 1. Diversity of equivalent and nonequivalent units across measured variables: Units present per measurement variable and their equivalency to the se-

lected canonical unit. Equivalent units to the canonical unit are described as “identity” and those with nonequivalent units are referred to as “non-identity.”

Figure 2. Unit conversion workflow summary. Overview of the process for harmonizing unit in the OMOP measurement table. SME: subject matter expert.

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 7 1175



Within each sample, all possible conversions to the canonical unit

take place, each becoming a list of “test” values, simulating the va-

riety of potential originating units and their converted values. The

KS test was then performed on each test value list, and the resulting

P value (Figure 4) and KS-test statistic (Supplementary Figure S3)

were compared for equivalent units (test unit is equivalent to the

masked “known” unit) versus nonequivalent units (test unit is not

equivalent to the masked “known” unit). This calibration of P val-

ues stands instead of the Bonferroni correction.14 The range of KS-

test P values or test statistics that uniquely pertain to equivalent

unit value distribution comparisons is the potential range to set a

threshold in order to avoid false unit assignments; the base of the

peak within the left tail of the distribution of P values was chosen

as the threshold for inferring units across all variables. The size of

the value lists used for value distribution comparisons in the KS

test was found empirically to perform similarly at 50 and 100 ele-

ments and thus was determined to be robust at those population

sizes, and 100 elements was chosen due to being sufficient for sta-

ble performance while sufficiently small to avoid long processing

times and memory usage. Value-list sizes were held constant as the

A

B

C

Figure 3. Unit inference and harmonization workflows. (A) Unit-inference threshold validation workflow. Masking of known units was used as a guide to assess

the range of KS test P values that pertain to values in equivalent units across populations. The final threshold selected after plotting all P values together was

1e�5, which was then used for identifying units when they are missing. (B) Unit inference workflow. Process for sampling and performing KS tests on values

across data partner and measurement concept combinations, checking for P values above the 1e�5 threshold, and applying thresholds to omit unit inference in

cases where units cannot be confidently assigned. (C) Unit harmonization workflow. Conversion of values for each record into the canonical unit. KS test: Kolmo-

gorov-Smirnov test.
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KS test otherwise has to be corrected for population size to give

results that can be compared.

Unit inference and criteria for unit inference omission
Figure 3B and Supplementary Figure S2B summarize the work

done on these sets of 100 values to determine potential units, which

included inspection of the test values exceeding the threshold for

presence of distinct (multiple) units, in which case unit inference

was skipped. Additionally, entire measurement variables for unit

inference omission were derived from 2 main filters: (1) We com-

pared relative dispersion of values to the relative unit conversion

fold change and excluded measured variables that had a large

amount of uncertainty (Supplementary Figure S2B). (2) We used a

combination of the number of distinct units over the P value

threshold (Supplementary Figure S4), the proportion of fold change

differences between the reference and test value lists within a fold

change range 1.5–15� indicating nonequivalent units (as sup-

ported by Supplementary Figure S5), and the spread of the data,

assessed by median absolute deviation from the median within test

value lists. The combination of these thresholds is displayed in Sup-

plementary Figure S6.

Incorporating inferred units and implementing the final

unit harmonization workflow
Following these quality-control checks, the inferred units were con-

solidated with the original units, where present, to create a new col-

umn in the Measurement OMOP table for unit harmonization

(Figure 3C and Supplementary Figure S2C). We retained any varia-

bles that were unitless or where only 1 unit was possible and there-

fore not entered by the sites, for example, BUN/Cr ratio; these

variables received a 1:1 mapping from value_as_number to harmo-

nized_value_as_number.

All codes for unit inference and harmonization were optimized

within the N3C pipeline using PySpark v3.0.0 and Spark 3 on the

Palantir Foundry platform,1 and deposited to GitHub along with a

full package version list (https://github.com/kbradwell/N3C-units).

RESULTS

The June 10, 2021 release set comprised data from 55 data partners,

with 2.716 billion rows of quantitative measurement lab data, com-

posed of 12 390 distinct measurement concepts and 361 distinct

OMOP unit concepts.

Diversity of measurement units
Unique OMOP units per measurement variable, stratified by equiva-

lency to the selected canonical unit, are shown in Figure 1 (across

the 52 concept sets there were 40 canonical, 27 equivalent to canon-

ical, and 23 nonequivalent to canonical units). Height and body

weight display the greatest number of nonequivalent units, whereas

variables such as diastolic blood pressure and AST had just 2 units,

1 equivalent to the canonical unit and the canonical unit itself. Di-

versity of units within populations (values from individual data part-

ner and measurement concept combinations) was minimal

(Supplementary Figure S7), indicating that generally just 1 unique

unit was used per laboratory test at data partner sites.

Unit conversion workflow
A total of 52 measurement variables important to COVID-19 re-

search, including respiratory rate, body weight, and temperature,

were selected for unit harmonization (Figure 2), corresponding to a

total of 1.608 billion rows of data and 297 measurement concepts.

A total of 299 mapping functions (Supplementary Table S3) were

manually curated by clinicians and informaticians for use in unit

harmonization.

KS test P-value threshold determination
The distributions of validation-step KS test P values were plotted to

identify the best threshold (Figure 4). At P values above 0.00001

(1e�5) we saw almost exclusive presence of KS-test results for com-

parisons between equivalent inferred units versus known units. Sup-

plementary Figure S8A and B highlight the example of body weight,

where the only exception to this pattern occurred due to an incorrect

unit assignment by the data partner site. Based on this body weight

example, Figure 4 distribution profile, and Supplementary Figure S4

that demonstrates lack of false positive outlier variables (aside from

CRP, described below), we judged the threshold of .00001 sufficient

to accurately distinguish the “true” from “false” units. We addition-

ally checked Leukocytes [#/volume] in Blood by Manual count. As

described above, this measurement concept appeared to be an out-

lier within its concept set, but on inspection of P values for

“equivalent” versus “nonequivalent” inferred units versus the

masked known units, we obtained good distinction above and below

the threshold, thus supporting our decision to avoid separating out

these concepts into their own concept set.

Unit inference omission criteria and measurement

variables omitted from unit inference
Further analysis of CDFs indicated that, compared to variables such

as body weight (Supplementary Figure S9A), c-reactive protein

(CRP) has highly overlapping and even interleaved value distribu-

tions across its 2 nonequivalent units of milligram per deciliter and

milligram per liter, that is distributions for milligram per deciliter

can either be found with higher values or lower values than milli-

gram per liter (Supplementary Figure S9B). This overlap indicated

that CRP would not be amenable to unit inference. We systemati-

cally identified all measurement variables that were refractory to

unit inference (Materials and Methods, Figure 3B and Supplemen-

tary Figure S2B), including a comparison of transformed measures

of dispersion and minimum conversion factor fold change (Figure 5).

CRP was the only variable to fall above a threshold of 0.25, indicat-

ing substantial overlap across distinct units.

Figure 4. KS test P-value threshold validation. KS P values for equivalent ver-

sus nonequivalent units per data partner ID/measurement concept name.

CRP was omitted due to having various completely overlapping value distri-

butions in nonequivalent units after visual inspection. CRP: c-reactive protein;

KS test: Kolmogorov-Smirnov test.
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Proportions of data partner contributions to measured

variable reference distributions
The proportion each data partner contributed to the “known units”

used for unit inference reference distributions for measured variables

is summarized in Supplementary Figure S10, which shows propor-

tion sizes along with their counts. Due to the large number of data

partners and general homogeneity in contribution size from each of

the data partners, in no case is there a single site that is in the major-

ity for the generation of a reference distribution within 1 unit infer-

ence pipeline. The highest proportion found is 0.39, and only 4

concept sets contain any data partner that claims greater than a

quarter of the data, 2 being vitals measurements that have only 1:1

or canonical units. The median data partner proportion over all con-

cept sets was 0.017, and mean (SD) of 0.028 6 0.036, and the vast

majority of data partner proportions are of similar size.

Harmonized and inferred units across measurement

variables
An overview of the total counts and percentages of harmonized and in-

ferred units can be found in Table 2. There were 1.61 billion input

records with values for the harmonization pipeline from the 52 mea-

surement variables of research priority, of which 933 million had valid

units. The 675 million that were missing units were processed through

the unit inference pipeline, of which 527 million were successfully in-

ferred (78%). In total, 32.8% of the records with values had an inferred

unit successfully ascribed. Harmonized values were present for 88% of

the data, with 45% coming from nonequivalent units. Figure 6A shows

the proportion of inference and harmonization per measurement vari-

able, and identifies large data quality disparities from the source, with

temperature particularly problematic for unit missingness.

Sources of unit missingness
Supplementary Figure S11 illustrates the proportion of missing units

from the source CDMs, proportion of records with source units that

Figure 5. Omitting variables where units cannot be uniquely assigned; Unit inference omission criteria. The standard deviation of the log median harmonized val-

ues (above the KS test P-value threshold) was used as a measure of closeness of different populations of values, and was compared to the log of the minimum

conversion factor to determine the level of overlap expected between different units. Ratios: 0.125–0.25 (right-most shaded segment), 0.25–0.5 (middle shaded

segment), and >0.5 (left-most shaded segment). KS test: Kolmogorov-Smirnov test.

Table 2. Counts and percentages of harmonized and inferred units

Metric Count Percentage

Total measurements with values present 1 607 758 125 N/A

Total measurements with valid units 933 030 577 58.0

Total measurements without units 674 727 548 42.0

Total nonequivalent units harmonized 725 051 924 45.1

Total harmonized 1 416 354 459 88.1

Total units inferred 527 400 086 78.2a, 32.8b

Note: Harmonized and inferred unit counts and percentages were calcu-

lated across all measured variables out of a total of 1 607 758 125 measure-

ments with values, of which 674 727 548 (42%) had missing units.
aOut of total records that were missing units.
bOut of total measurements with values.
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are mapped to standard OMOP units, and proportions of final in-

ferred and noninferred units, showing the high level of data salvage

via our unit inference pipeline in cases where units were missing.

Harmonized value distributions indicate successful unit

harmonization and inference
An example of successful unit harmonization is shown for body

weight in Figure 6B, where grams, kilograms, ounces, and pounds

are harmonized to kilograms with similar distributions across the

distinct units. Harmonized values for inferred versus reference

(known) units across measured variables displayed highly similar

distributions (Figure 6C), indicating significant bias or error was not

introduced during the unit inference process.

DISCUSSION

We were successful in harmonizing lab data across a very large set

of pooled EHR data, and were able to reclaim data that would oth-

erwise have been lost to analysis. With SME consensus, we grouped

together sets of semantically similar analytes (and, where relevant,

of specimen type) expected by the SMEs to have interoperoberable

and convertible measurement units into concept sets for 52 variables

important to the understanding of COVID-19. We found, on aver-

age (SD), 2.9 6 1.4 different units used per concept set. Using our

pipeline, we harmonized 88.1% of the measurement data that had

values present, and inferred units for 78.2% of measurements where

units were absent. Missing units pertained to 41.9% of the measure-

ments with values, and our pipeline for inferring missing units shows

a false positive rate of 2.7% and a false negative rate of 14.0% (true

rates are likely lower due to apparent unit misassignments by sites).

We found CRP refractory to unit inference, as previously shown.6

Our approach has several attractions. First, the unit-

harmonization pipeline can be integrated with other data-quality re-

view pipelines. The burden of improving lab-data quality is not

placed on the sites, except for specific areas of data quality that our

harmonization and inference cannot address (eg, Figures 5 and 6A).

Misassigned units can be easily identified and shown to sites for cor-

rection, which in turn is an example of the potential of this pipeline

to improve data partner sites’ own data integrity.

Second, our process reduces or eliminates the need for individual

researchers to perform unit conversions.

Third, our work enables consistent research within N3C: all

analyses using the harmonized variables can share programming

code and the resulting numerical results will be harmonized. For ex-

ample, calculation of derived variables, such as BMI, was enabled

due to the unit harmonization of height and weight.

Fourth, our pipeline enables use of measurements that would

otherwise be unavailable for analysis. Reclaiming 78% of data asso-

ciated with missing data raises the precision of our results (through

increased amount of data) and reduces potential bias, due to impor-

tant factors that may have been associated with the data that were

missing units.

Fifth, some of the concept sets we used for unit harmonization

are broader than one would use for clinical purposes or analyses

and so the distributions are, of necessity, broad. In the case where

further distinctions within concept sets may be important (eg, in

measurements of venous vs arterial blood), our approach can be

applied to assess whether the distinctions matter: If the CDFs of

contributing sites lead to nonsignificant KS P values when units are

converted then compared to reference values, then no further work

on unit harmonization is needed. Researchers should still distin-

guish the arterial and venous measurements, for example, in their

analyses.

Figure 6. Overview and examples of successful harmonized and inferred units. (A) Percentage of values with harmonized and inferred units by measurement var-

iable. Roughly half of the data had correct units and did not require conversion (light green), while half of the data had their units inferred (blue). A minority of val-

ues had units that needed conversion (dark green), and the smallest group of data had nonsensical or mislabeled units (black). (B) Original units and their values

for body weight and harmonized data for body weight. (C) Inferred versus observed harmonized value distributions.
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Our approach has implications for other researchers beyond

N3C. The canonical units, concept sets, conversion formulae, and

accepted-value ranges for each measurement variable that we devel-

oped can serve as a harmonization resource for the growing number

of initiatives aiming to extract insight from patient medical lab

records, particularly if present in the widely used OMOP format.

The comprehensive and easily interpretable table of unit conversions

for labs provided in Supplementary Table S3 can serve as a resource

in the context of CDM unit harmonization and any other applica-

tion that requires unit conversions. The canonical units defined

herein have been included as example units for measurement con-

cepts on the LOINC by Regenstrief website.15

Finally, while unit conversions could be applied in a distributed-

data environment, our reclaiming of data with missing units relies

on the availability of data from all sites. Thus, the ability to reclaim

these data is an advantage of a pooled-data architecture. For exam-

ple, 51.2% of the data partner sites contained body weight records

without units (with 7 sites missing units entirely), and 82.4% of

data partner sites had only 1 valid source unit to act as a reference.

The approach taken of determining P value differences and value

distribution differences across units in order to more confidently as-

sign inferred units was thus uniquely enabled by pooling data from

all contributing sites, and would be impossible to replicate on a site-

by-site basis for the majority of data partner sites. Additionally,

even in the case that a site’s unit diversity mirrors centralized unit di-

versity for a lab measurement, ground truth of the expected value

distribution for each unit cannot be accurately obtained on a site-

by-site basis due to the potential for misassigned units.

There is further work to determine whether our method for

selecting values for the reference distributions per measurement vari-

able for unit inference can be improved. For example, an alternative

to random selection over all data partners would be to ensure, where

possible, that the same numbers of data points are sampled per data

partner, per measured variable, to avoid data partner oversampling

and potentially reduce the impact of any one site on the reference

distributions. However, the current sampling regime shows good

performance for identifying canonical units, rescuing missing data,

and identifying outlier sites.

Future work will also involve maintenance of the pipeline over

time. As new source units emerge from sites this will result in further

standard OMOP unit concepts entering the lab measurement data

that require mapping to conversions. Additionally, some sites have

included varying amounts of custom units that differ from those

expected from the source CDM, and thus are missing from our

source to standard OMOP mapping. There is therefore continuous

work in N3C to improve the comprehensiveness of source unit map-

ping.

In cases where a centralized approach is not feasible, or to dis-

tribute the resources collected at the centralized level, we also envis-

age that our centralized approach could be adapted to enable

federated use of aggregated resources such as reference distributions

to allow for unit inference at the data partner site-level, or the unit

harmonization conversions could be shared to the federated sites.

There are some limitations in our approach. The range of units

found for each lab measurement may not constitute the full universe

of potential units, and thus unit comparisons can only be made for

the units we see in the N3C Enclave. In imputing missing units, there

is the risk of false positive imputation. Measured variables such as

body weight were found to contain nonequivalent reference and in-

ferred units above the assigned KS-test P value threshold (1e�5)

during unit inference validation (Supplementary Figure S8A). CDF

analysis (Supplementary Figures S8B and S9A) suggested that these

were from incorrectly assigned units from the data-contributing

sites; for example, one of the CDFs from pounds matched the typical

distribution for ounces. Aside from examining false positives at the

upper end of the KS-test P value distribution, we also looked for

false negatives (units with low P values containing equivalent refer-

ence and inferred units), which would lead to data not included in

analyses that should be. CDFs of measured variables with P values

<1e�5 were plotted (as in Supplementary Figure S8B), and for some

variables, such as SpO2, the distributions for certain measurement

concepts, for example, oxygen saturation [Pure mass fraction] in

Blood, appeared to be different from the average distribution that

focuses on arterial blood. While our concept sets largely capture

equivalent concepts, this difference in CDFs exemplifies the chal-

lenges to inferring units for concepts that may be differentially

employed. The same is also true for variables such as body weight in

subpopulations such as children, where the correct units are

assigned but the overall distribution of values does not match the

typical distribution of the general population. These examples high-

light the urgent need for more sophisticated unit-inference techni-

ques that take into account specific patient subgroups and samples.

Since our unit-inference method assumed just 1 unique unit per mea-

sured variable—data partner—measurement concept triple (as sup-

ported by Supplementary Figure S7), there also may be poor unit

inference in the few cases where there are instead multiple distinct

unknown units, although we did not rigorously test how mixtures of

units affect unit inference via the KS test. Bayesian inference or ma-

chine learning using values from other measurement variables

within each patient or patient subgroup as a cross check to infer

likely units would be a possible next step for our workflow, for ex-

ample values from height and BMI could help infer a missing weight

measurement within an individual patient.

Although more sophisticated machine learning approaches to the

problem of unit inference can potentially be developed, and mainte-

nance of the pipeline over time will be necessary, our pipeline is eas-

ily interpretable, and runs in <2.5 h on the billions of rows of

measurement data processed weekly within the N3C Enclave.

CONCLUSION

As collaborative research projects continue to grow and to incorpo-

rate larger and more diverse sources of data, we need to minimize

time spent preparing data and to maximize its usability. In this work

we have developed and implemented a pipeline to harmonize meas-

urements to a canonical unit and to infer missing units of measure-

ment. This pipeline allowed our team to salvage otherwise unusable

data and to remove the need for duplicative work converting units

for each N3C project. While this work was driven by the specific

needs of the N3C, such a pipeline could be incorporated into the

analysis of any large dataset of pooled EHR data.
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