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Network pharmacology
integrated molecular docking
reveals the bioactive components
and potential targets

of Morinda officinalis—Lycium
barbarum coupled-herbs

against oligoasthenozoospermia

Xue Bai?, Yibo Tang?, Qiang Li*, Yafei Chen?, Dan Liu?, Guimin Liu?, Xiaolei Fan?, Ru Ma?,
Shuyan Wang?, Lingru Li3, Kailin Zhou*, Yanfei Zheng**' & Zhenquan Liu'3*

Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm
count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the
sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated
yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines,
has been widely used for treating OA over thousands of years, but its molecular mechanism is still
unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology
and molecular docking to reveal the bioactive components and potential targets of MOLBCH against
OA.The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function,
and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and
sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1),
Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1),
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt
signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the
most representative pathways. Moreover, molecular docking was performed to validate the strong
binding interactions between the obtained core components and targets. These observations provide
deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new
therapeutic instructions to treat OA.

Infertility, defined as the inability to conceive after 12 months of regular and unprotected intercourse, is a com-
plex multifactorial pathological condition affecting nearly 60-80 million couples worldwide'. Of all the infertile
couples, male infertility contributes to approximately 50%?2. Specifically, oligoasthenozoospermia (OA) is one of
the most common types of male infertility®, which is defined as the total number or concentration of spermatozoa
and percentage of progressively motile spermatozoa are below the lower reference limits (total number <39 x 10°
per ejaculate; concentration < 15 x 10 per ml; progressively motile <32%)*. It is noted that recent studies have
demonstrated sperm concentration and motility decreased for 72-90 days following Coronavirus Disease 2019
(COVID-19) infection, thus it is necessary to take a precaution measures towards to the treatment of QA%
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According to the guidelines of the World Health Organization (WHO), OA is considered to be a condition that
oligospermia and asthenozoospermia occur simultaneously®. Previous studies have shown that many factors
impaired male reproductive function, which leads to OA accordingly, including varicocele, idiopathic, obstruc-
tion, cryptorchidism, immunologic, ejaculatory dysfunction, testicular failure, drug effects/radiation, endocrinol-
ogy, and all others'®. However, the molecular mechanism of OA has not been fully elucidated, and the current
treatment has poor therapeutic effects and many limitations'"'2. Assisted reproductive technology (ART) could
improve the pregnancy rate of infertile couples', but the etiology and pathogenesis of OA are still unclear, and
improving the sperm quality of patients with OA remains challenging.

Traditional Chinese Medicine (TCM) has a long history of considering an individual or patient as an integral
system with different statuses, focusing on multiple biological targets to produce therapeutic efficacies. TCMs are
widely used to treat all kinds of diseases and conditions including OA'. Among them, Morinda officinalis-Lycium
barbarum coupled-herbs (MOLBCH), which is composed of Morinda officinalis (MO) and Lycium barbarum
(LB), has been widely used for treating OA over thousands of years. According to the concept of “ZHENG” and
syndrome differentiation of the TCM theory'>'¢, MOLBCH is believed to possess the efficacies of tonifying the
kidney and yang, storing essence, treating impotence and seminal emission. However, its unclear molecular
mechanism greatly limits its clinical application. Therefore, it is of importance to reveal the bioactive components
and potential targets of MOLBCH on OA.

As a novel approach to disentangle the different nature of diseases and the molecular mechanisms of medicine,
network pharmacology is now drawing more and more attention in the field of TCM'”'8. The concept of holism
for TCM has much in common with the major points of network pharmacology, in which the general “one target,
one drug” mode is shifted to a new “network target, multi-components” mode. In such a mode, the combination
of network pharmacology and TCM would create a novel direction for discovering bioactive components and
potential targets, revealing the molecular mechanism, and examining the scientific evidence of numerous herbs
in TCM based on complex biological systems of human body. Molecular docking is a computational method
in which small molecule ligands are docked to the active pockets of receptors (target proteins) to predict drug
candidates. Correspondingly, integrating TCM, network pharmacology, and molecular docking can greatly
accelerate the drug discovery and development as well.

Here, aiming at revealing the underlying molecular mechanisms of MOLBCH in the treatment of OA, we per-
formed an integrated strategy based on network pharmacology and molecular docking to identify the bioactive
components and potential targets. First, we obtained the MOLBCH and OA-related targets by searching various
databases. Second, we constructed the MOLBCH component-target network and MOLBCH-OA common-target
network to obtain the key bioactive components. Third, GO and KEGG pathway enrichment analyses of PPI
network and clusters were performed to predict the core potential targets and important signaling pathways.
Finally, the molecular docking was conducted to further verify the strong binding interactions between the key
bioactive components and the core potential targets.

Results

MOLBCH component-target network. 354 components of MOLBCH were obtained from TCMSP
and TCMID. Among them, 174 components were from MO, 202 components were from LB, and 22 com-
mon components were from MO and LB. Subsequently, OB>30% and DL>0.18 were used as the screen-
ing criteria. Finally, we got 66 bioactive components of MOLBCH, including 20 from MO, 48 from LB, and
2 (beta-sitosterol, sitosterol) from MO and LB (Fig. 1a,b). Then, the structural information of 66 bioactive
components was collected from PubChem and ALOGPS2.1 (Supplementary Table S2). Four public webserv-
ers, Swiss Target Prediction, SEA, TCMSP and Drugbank, were used to predict the potential targets of the
bioactive components according to the similarity-based method. 671 potential targets were predicted from 65
obtained bioactive components after removing duplicates, except one non-effective component (cyanin). The
MOLBCH component-target network was constructed by Cytoscape software, including 736 nodes and 3034
edges (Fig. 1c). Among the obtained nodes, 372 targets were from 20 components of MO, 504 targets were from
47 components of LB, and 205 common targets were from the common components of MO and LB. According
to these results, we suggest that MO and LB act on an integrated effect on OAthrough the common targets to
a certain extent.

MOLBCH-OA common-target network. The pathogenesis of OA is resulted from the co-occurring
condition of oligospermia and asthenozoospermia. Therefore, taking the genes of these two diseases into con-
sideration is essential to reveal the common targets of MOLBCH on OA. The number of targets got from oli-
gospermia and asthenozoospermia is 993 and 683, while 473 overlapping targets were collected (Fig. 2a). 31
targets from the search term “oligoasthenozoospermia” were added to get total 495 OA-related targets (Fig. 2b).
In order to ensure the comprehensiveness of target collection, we used five human genomic databases, namely
DisGeNET, CTD, OMIM, GeneCards and NCBI. The number of targets from these databases was 51, 415, 36,
78 and 30, respectively.

Additionally, 136 common targets were obtained from the intersection of OA-related targets and MOLBCH
targets (Fig. 2¢). 19 bioactive components from MO and 43 bioactive components from LB were associated with
136 MOLBCH-OA common targets (Fig. 2d). Furthermore, the degree value of the MOLBCH-OA common-
target network was calculated by Network Analyzer, a plugin of Cytoscape, which was used as a screening condi-
tion to get the key bioactive components (Supplementary Table S6). We found four key bioactive components of
the MOLBCH-OA common-target network, namely Ohioensin-A from MO, quercetin from LB, beta-sitosterol
and sitosterol from both MO and LB, respectively. Meanwhile, the degree value of Androgen receptor (AR),
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Figure 1. MOLBCH component-target network. (a) Venn diagram: 354 components (yellow section), and

66 bioactive components screened by two ADME-related models (blue section stands for the components

of OB=30%, green section stands for DL >0.18). (b) Distributions of different herbs. (¢) Construction of
MOLBCH component-target visual network, including 736 nodes and 3034 edges. Green nodes and blue nodes
stand for bioactive components from MO and LB respectively, yellow nodes stand for targets, pink nodes stand
for beta-sitosterol and sitosterol. MO Morinda officinalis, LB Lycium barbarum.
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Figure 2. MOLBCH-OA common-target network. (a) Intersection of Venn diagram: 473 targets are common
to oligospermia and asthenozoospermia. (b) Union of Venn diagram: OA-related targets are 495, including

473 common targets between oligospermia and asthenozoospermia, and 31 targets from the search term
“oligoasthenozoospermia”. (c) Intersection of Venn diagram: 136 targets are common to OA and MOLBCH. (d)
Common-target network, including 196 nodes and 900 edges. The size of the circle represents the node degree
of the target protein. Green nodes and blue nodes stand for bioactive components from MO and LB respectively,
yellow nodes stand for targets, pink nodes stand for beta-sitosterol and sitosterol. OA, oligoasthenozoospermia;

MOLBCH, Morinda officinalis-Lycium barbarum coupled-herbs.

Estrogen receptor beta (ESR2), Nuclear receptor subfamily 1 group H member 3 (NR1H3), Cytochrome P450
19A1 (CYP19A1), Estrogen receptor (ESR1) was high, indicating that these five targets played an important role

in MOLBCH-OA common-target network.
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MOLBCH-OA PPI network and evaluation. To elucidate the protein interactions of the 136 MOLBCH-
OA common targets, the STRING database was employed here. The confidence score of the protein-protein
interaction (PPI) information was set to 0.4 or higher, and the Cytoscape software was used to visualize the PPI
network (Fig. 3a). The Degree (DC) of the PPI network were calculated by Network Analyzer. The topological
parameters (Betweenness (BC), Closeness (CC), Eigenvector (EC), Local Average Connectivity-based method
(LAC), Network (NC), Subgragh (SC), Information (IC)) of the PPI network were calculated by CytoNCA
(Fig. 3b,c) (Supplementary Table S7). The results showed that Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), RAC-alpha serine/threonine-protein kinase (AKT1), Caspase-3 (CASP3), Vascular endothelial
growth factor A (VEGFA), Myc proto-oncogene protein (MYC), Epidermal growth factor receptor (EGFR) were
the most vital targets of MOLBCH-OA PPI Network (Fig. 3¢).

GO and KEGG pathway enrichment analyses of MOLBCH-OA PPl network. The significant
functions derived from MOLBCH-OA PPI network was explored by the GO and KEGG pathway enrichment
analyses. Firstly, GO enrichment analysis was conducted, including biological process (BP), cellular compo-
nent (CC), and molecular function (MF) (Supplementary Table S9). The top 20 significant terms are shown in
Fig. 4a-d. Specifically, BP is related to “response to oxidative stress (OS)”, “reactive oxygen species metabolic
process’, “response to oxygen levels”, “cellular response to oxidative stress’, “response to hypoxia’, “response to
decreased oxygen levels”, “regulation of reactive oxygen species metabolic process’, “response to reactive oxygen
species” and “positive regulation of reactive oxygen species metabolic process’, indicating that MOLBCH has
an anti-oxidant effect to regulate male reproduction on OA (Fig. 4a). CC is associated with “nuclear envelope”,
“membrane raft’, “membrane microdomain”, “membrane region”, “organelle outer membrane’, “outer mem-
brane”, “mitochondrial outer membrane”, “transcription factor complex”, “nuclear chromatin”, “RNA polymerase
II transcription factor complex”, “protein kinase complex”, “serine/threonine protein kinase complex” and “cyc-
lin-dependent protein kinase holoenzyme complex”, demonstrating that MOLBCH can regulate male reproduc-
tive function by acting on membrane and protein kinase complex in cellular (Fig. 4b). MF is relevant to “protein
serine/threonine kinase activity”, “protein tyrosine kinase activity”, “transmembrane receptor protein tyrosine
kinase activity” and “protein serine/threonine/tyrosine kinase activity’, revealing that MOLBCH could affect
protein kinase activity in the pathogenesis of OA (Fig. 4c).

The KEGG database was conducted to investigate the pathways related to the possible functions of the PPI
network (Supplementary Table S9). The top 20 significant pathways were shown in Fig. 4d. The results indicate
that MOLBCH regulates apoptosis process through “PI3K-Akt signaling pathway”, “MAPK signaling pathway’,
“Apoptosis”, “IL-17 signaling pathway” “TNF signaling pathway”. In addition, “AGE-RAGE signaling pathway
in diabetic complications” and “HIF-1 signaling pathway” are related to oxidant stress in the course of disease.
Besides, MOLBCH could regulate the male reproductive function by affecting “Prostate cancer”, “Endocrine
resistance’, “Relaxin signaling pathway”, “EGFR tyrosine kinase inhibitor resistance” and “Prolactin signaling
pathway”. Therefore, through the GO and KEGG pathway enrichment analyses of MOLBCH-OA PPI network,
we believe that MOLBCH might treat OA via promoting male productive function, reducing OS, and inhibiting

apoptosis process.

GO and KEGG pathway enrichment analyses of the cluster. Network cluster is defined as a set
of highly interconnected nodes, which is helpful to discover and reveal the hidden biological information in
the network'. In order to identify the potential mechanism of the 136 common targets, the MOLBCH-OA
PPI network was divided into 6 clusters (Fig. 5). According the result of Network Analyzer, the degree value
of GAPDH, AKT1, CASP3, Interleukin-6 (IL6), VEGFA, Mitogen-activated protein kinase 3 (MAPK3), Myc
proto-oncogene protein (MYC), ESR1, and Epidermal growth factor receptor (EGFR) is much higher than other
proteins in cluster 1.

Since the score of cluster 1 was much higher than other clusters, so we performed GO and KEGG pathway
enrichment analyses to further investigate the proteins of cluster 1 (Fig. 6). “Response to OS”, “cellular response
to OS”, “reproductive structure development’, “reproductive system development” in BP suggest that the proteins
in cluster 1 are related to anti-oxidant effect and male reproductive regulation (Fig. 6a). “Nuclear envelope”,
“nuclear membrane”, “membrane raft”, “membrane microdomain”, “membrane region”, “organelle outer mem-
brane”, “outer membrane”, “mitochondrial outer membrane”, “nuclear inner membrane”, “protein kinase complex’,
“RNA polymerase II transcription factor complex” and “cyclin-dependent protein kinase holoenzyme complex”
in CC demonstrate that the proteins in cluster 1 are relevant to membrane and protein kinase complex in cellular
(Fig. 6b). “DNA-binding transcription factor binding”, “RNA polymerase II-specific DNA-binding transcription
factor binding”, “activating transcription factor binding” and “core promoter sequence-specific DNA binding”
in MF reveals that the proteins in cluster 1 could affect DNA binding (Fig. 6¢).

The KEGG database was conducted to investigate the pathways related to the possible functions of the PPI
network (Supplementary Table S10). The top 20 significant KEGG pathways were shown in Fig. 6d. The KEGG
results indicate that the proteins in cluster 1 are related to inhibit apoptosis process through “PI3K-Akt signaling
pathway” and “IL-17 signaling pathway”. The proteins in cluster 1 also have connections with promoting male
reproductive function by affecting “Prostate cancer”, “Endocrine resistance”, “Relaxin signaling pathway” and
“Prolactin signaling pathway”. The GO and KEGG pathway enrichment analyses indicate that the proteins in
cluster 1 are mainly related to oxidant stress, apoptosis, and male reproductive function, which consistents with

the results of MOLBCH-OA PPI network analysis (Fig. 6d-g).

Core component-target-pathway network. In order to gain a holistic understanding of the underly-
ing mechanism of OA, core component-target-pathway network was constructed by Cytoscape software. As

Scientific Reports |

(2021) 11:2220 | https://doi.org/10.1038/s41598-020-80780-6 nature portfolio



www.nature.com/scientificreports/

Gskaa HK2 ODC1 poR

a PDK1 F2R
ACACA | | LGALSe
ACHE X \. . PDGFRA
IGFBPS N INSR
cDC258 cYPiA2
GsTM1 \ | FGRR1
HPRT1 ST SMAB s D cypiet
NFKBIA : ;
IGFBP2 CYPI7A1
PARP1 |
XOH P S CAPN
\ SERPINET
PTGES s BCL2

PTGS1 : AKR1B1
NR1H3 / seK1
IGFBP4 vt
ROCK2  HMGCR
DNMT3B - PRKCA
MAP2K6 ~MAPT
ALPL GSR
BCHE ';TSD
HSD1783 ‘\'\éHEKZ
THRA PRKCD
ABCC2 PPARA
FABP3 = ""ASN
ERN1 HSPO0B1

MAOA " GsTP1
SQLE NQO1 3 CYP1A1
N
HSD11B2 NOX4
DHCR7 j \ \
THRB e :
SRD5A1

G6PD
. PDGFRB
ABCB1

HIPK2

/7 Veam
MKNK2 _CHEK1

EPHX2 pgocg ABCGZSLCWIGFBPS

® -~ © &
MYC . CASP3 d
@ 7 EGFR 5754 AKTH 7 ‘
' GAPDH \ ‘

s .‘

Figure 3. MOLBCH-OA PPI Network and Evaluation. (a) MOLBCH-OA PPI network (136 nodes and

2233 edges). (b) PPI network by the screening criteria of ‘DC2>58’ (19 nodes and 169 edges). (c) Core-target
PPI network by the screening criteria of “DC’>75, ‘EC’>0.1584286, ‘LAC’ > 33.873016, ‘BC’ >400.05,
‘CC’20.6818182, ‘NC’262.32288, ‘SC’212,901,748,000,000,000,000, IC’ = 15.5665245” (6 nodes and 15 edges).
The nodes stand for the target protein of MOLBCH on OA. The color scales and the size of the circle represent

the node degree of the target protein.
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Figure 4. GO and KEGG pathway enrichment analyses of MOLBCH-OA PPI Network (p-value<0.05). (a) The
top 20 biological processes. (b) The top 20 cellular components. (c) The top 20 molecular functions. (d) The top
20 KEGG pathways. The color scales indicate the different thresholds for the p-values, and the sizes of the dots
represent the number of genes corresponding to each term.
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Figure 5. Cluster analysis of MOLBCH-OA PPI Network. (a) Cluster 1, composed of 42 nodes and 724 edges
(score=35.317). (b) Cluster 2, composed of 15 nodes and 34 edges (score=4.857). (c) Cluster 3, composed of 4
nodes and 5 edges (score=3.333). (d) Cluster 4, composed of 12 nodes and 18 edges (score=3.273). (e) Cluster
5, composed of 3 nodes and 3 edges (score=3). (f) Cluster 6, composed of 3 nodes and 3 edges (score=3). The
nodes stand for the target protein of MOLBCH on OA. The color scales and the size of the circle represent the
node degree of the target protein.

shown in Fig. 7, a total of 143 nodes and 646 edges were calculated, and 17 MO-related components and 43
LB-related components were identified. According to the reported literature?*~?* and the degree value obtained
from Network Analyzer, the most remarkable components corresponding to MO and LB are Ohioensin-A and
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Figure 6. GO and KEGG pathway enrichment analyses of cluster 1 (p-value<0.05). (a) The top 20 biological
processes for cluster 1. (b) The top 20 cellular components for cluster 1. (¢) The top 20 molecular functions for
cluster 1. (d) The top 20 KEGG pathways for cluster 1. The color scales indicate the different thresholds for the

p-values, and the sizes of the dots represent the number of genes corresponding to each term.
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quercetin, respectively. The common ingredients beta-sitosterol and sitosterol from MO and LB is also of great
importance during the course of drug treatment.

As shown in Table 1, GO and KEGG analyses of MOLBCH-OA PPI network and clusters indicate that
MOLBCH could treat OA by regulating male reproductive function, reducing apoptosis and OS. The main KEGG
signaling pathways related to the above mechanism are PI3K-Akt signaling pathway, MAPK signaling pathway,
Apoptosis, IL-17 signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway in diabetic complica-
tions, HIF-1 signaling pathway, Prostate cancer, Endocrine resistance, Relaxin signaling pathway, EGFR tyrosine
kinase inhibitor resistance. The targets relevant to the above pathways were shown in Fig. 6, AR, ESR2, ESR1,
Cytochrome P450 17A1 (CYP17A1), MAPK3, M-phase inducer phosphatase 2 (CDC25B), Nitric oxide synthase
(NOS2), AKT1, Dual specificity mitogen-activated protein kinase kinase 1 (MAP2K1), and EGFR are the top 10
vital targets in core-component-target-pathway network. In addition, GAPDH, AKT1, CASP3, VEGFA, MYC,
EGFR, IL6, MAPK3, and ESRI also play an essential role in MOLBCH-OA PPI network and clusters. We found
that the duplicated targets between them are ESR1, MAPK3, AKT1, and EGFR. Since AR is the most significant
target in MOLBCH-OA common-target network and core component-target-pathway network, GAPDH is the
most significant in the MOLBCH-OA PPI network and clusters, we suggest that AR, ESR1, MAPK3, AKT1, and
GAPDH are the core potential targets of MOLBCH against OA. Based on the above results, we hold that PI3K-
Akt signaling pathway, Prostate cancer, and AGE-RAGE signaling pathway in diabetic complications are the
most important signaling pathways during the process of MOLBCH in treating OA. The targets related to these
three signaling pathways are shown in Figs. 8, 9 and 10. Furthermore, we chose Ohioensin-A, quercetin, beta-
sitosterol, sitosterol as the molecular docking ligands, AR, ESR1, MAPK3, AKT1, and GAPDH as the targets to
reveal the interaction between the key bioactive components and core potential targets of MOLBCH against OA.

Molecular docking. Molecular docking is a procedure using molecular modeling techniques to predict
how a protein interacts with small molecules (ligands)**. In this study, we chose Ohioensin-A from MO, querce-
tin from LB, and the common ingredients beta-sitosterol and sitosterol from MO and LB as small molecules
(ligands), AR, ESR1, MAPK3, AKT1, and GAPDH as proteins to perform the molecular docking. These proteins
not only play an important role in the KEGG signaling pathways, but also serve as the key nodes of the PPI net-
work and clusters. The obtained docking results indicate that the receptor-ligand interaction between drugs and
proteins includes hydrophobic interactions and polar interactions. According to Tables 2 and 3, Ohioensin-A,
quercetin, beta-sitosterol and sitosterol have strong binding interactions with AR, ESR1, MAPK3, AKT1, and
GAPDH.

Ohioensin-A was docked with sixteen residues to form hydrophobic interactions in AR (Leu880, Asn705,
Met780, Phe876, Leu704, Thr877, Leu701, Leu873, Val746, Trp741, Phe764, Gly708, Met745, Met749, Gln711
and Met787) and hydrogen bond (Ohioensin-A;: Met895¢y, (3.1 A)) (Fig. 11a,b). In addition, Ohioensin-A was
predicted to interact with ESR1 via Arg394, Leu391, Phe404, Leu384, Leu387, Glu353, Leu428, Ile424, Leu346,
Ala350, Met421, Met343, Thr347, Leu540, Leu525, and form hydrogen bond with the residue His524 (3.0 A)
(Fig. 11c,d). Ohioensin-A could bind to MAPK3 by forming hydrophobic interactions with the neighboring
residues Ser286, Pro285, Lys287, Gly262, Leu284, Asn255, Leu258 and hydrogen bond with Ser263 (2.7 A)
(Fig. 11e,f). Besides, Ohioensin-A bound to a pocket in AKT1, composing of His194, Glu198, Gly294, Thr195,
Lys179, Lys163, Leul81, Gly162, Val164, Gly159 and Phel61. The hydrogen bond formed by Ohioensin-A,
andThr160y (3.1 A), further enhances the interaction between the ligand and the AKT1 protein (Fig. 11g;h).
Furthermore, Ohioensin-A was docked to GAPDH by forming hydrophobic interactions with the neighboring
residues (Ala183, Argl3, Asn316, Ile14, Cys152, Ala123) and hydrogen bond with Gly100 (2.9 A) (Fig. 11,j).

As shown in Fig. 12a,b, quercetin was observed to interact with AR via Thr877, Met780, Phe876, Leu701,
Leu880, Asn705, Phe764, Leu704, Met 749, Met787, Gly708, Val746, GIn711, Leu707 and form two hydrogen
bonds with Leu873 (2.7 A) and Met745 (3.1 A). According to the analysis results shown in Fig. 12¢,d, querce-
tin forms hydrophobic interactions with eleven residues in ESR1 (Leu391, Phe404, Ala350, Ile424, Met421,
His524, Leu525, Leu384, Leu349, Leu346 and Glu353) and four hydrogen bonds (quercetings: Leu387,, (2.8 A),
Arg394y;y, (3.3 A), querceting,: Arg394yy, (2.7 A), quercetingg: Gly521, (2.5 A)). Figure 12e,f shows that querce-
tin was predicted to interact with MAPK3 via Lys287, Leu258, Leu284, Asn255, Gly259 and Gly262, and formed
two hydrogen bonds with Pro285 (3.0 A) and Ser263 (2.8 A). In addition, the action modes of quercetin and
AKT]1 are shown in Fig. 12g,h. Quercetin binds to a pocket in AKT1, composing of Glu278, Lys276, Phel61,
Glu191, His194, Gly294, Leu295 and Asp292. Three hydrogen bonds, quercetings: Asp274op, (2.9 A) and Ser7q
(2.9 A) and quercetings: Thr54 (3.0 A), further enhance the interactions between the ligand and the AKT1 pro-
tein. As shown in Fig. 12i,j, quercetin was predicted to interact with GAPDH via Pro36, Phe37, Thr99, Gly12,
Ser98, Gly10, Asn9, forming two H-bonds with the residues Asp35 (2.8 A) and Asn34 (3.0 A).

According to Fig. 13a,b, beta-sitosterol was observed to form hydrophobic interactions with nineteen resi-
dues in AR (Phe891, Leu880, Leu701, Met780, Thr877, Trp741, Leu873, Met745, Met742, Met787, Met749,
Arg752, GIn711, Val746, Gly708, Leu707, Leu704, Phe764 and Met895) and a hydrogen bond (beta-sitosterol:
Asn7050p, (3.0 A)). As shown in Fig. 13c,d, beta-sitosterol was observed to interact with ESR1 via Arg394,
Leu387, Leu391, Leu349, Leu428, Ile424, Met388, Met421, His524, G1y521, Leu384, Leu346, Leu525, Thr347,
Met343 and Ala350, forming two H-bonds with the residues Phe404 (3.1 A) and Glu353 (2.4 A). Figure 13e,f
showed that beta-sitosterol could bind to MAPK3 by forming hydrophobic interactions with the surrounding
residues (Ser283, Pro285, Gly259, Leu258, Asn255, Leu284 and Tyr280). Moreover, beta-sitosterol was predicted
to interact with AKT1 via Asn279, Gly294, Leu295, Glu191, Phel61, His194, Leul81, Glu198, Lys179, Thr195,
Asp292 and Vall64 and formed a hydrogen bond with the residue Glu234 (3.0 A) (Fig. 13g,h). Besides, beta-
sitosterol was observed to form hydrophobic interactions with thirteen residues in GAPDH (Phe37, Ile38, Ala183,
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Figure 7. Core component-target-pathway network. The ellipse nodes represent ingredients from MO, and the
diamond nodes represent ingredients from LB. The rectangle nodes represent beta-sitosterol and sitosterol. The

triangle nodes represent the core targets from MOLBCH and OA. The V nodes represent 12 signaling pathways
from enrichment analysis. The size of the circle represents the node degree of the target protein. The color scales
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Classification KEGG signaling pathways Core targets
PI3K-Akt signaling pathway
MAPK signaling pathway

Apoptosis Apoptosis AKTI1, MAPK3

IL-17 signaling pathway

TNF signaling pathway

Prostate cancer

Endocrine resistance

Male reproductive function | Relaxin signaling pathway AR, ESR1

EGFR tyrosine kinase inhibitor resistance

Prolactin signaling pathway

AGE-RAGE signaling pathway in diabetic complications
Os GAPDH
HIF-1 signaling pathway

Table 1. Main KEGG signaling pathways and represent core targets.
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Ile14, Glu317, Asn316, Thr182, Cys152, Tyr320, Argl3, Thr99, Gly12 and Ser98), and formed a hydrogen bond
with the residue Asp35 (3.1 A) (Fig. 13i,j).

The action modes of sitosterol and AR are shown in Fig. 14a,b. Sitosterol bound to a pocket in AR, composing
of Thr877, Met780, Met895, Phe891, Leu880, Met742, Leu701, Leu873, Trp741, Val746, Met745, Met787, Met749,
Leu707, Arg752, Gly708, GIn711, Phe764, Leu704 and a hydrogen bond, Asn705 (2.9 A). As shown in Fig. 14c,d,
sitosterol was predicted to interact with ESR1 via Leu387, Leu391, Leu428, Met388, Ile424, His524, Gly521,
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Leu384, Met421, Leu525, Trp383, Met343, Thr347, Leu346, Glu353, Ala350, Leu349, forming two hydrogen
bonds with Arg394 (2.1 A) and Phe404 (3.1 A). According to the analysis results shown in Fig. 14e,f, sitosterol
was observed to form hydrophobic interactions with eight residues in MAPK3 (Tyr280, Asn255, Lys287, Pro285,
Gly259, Leu258, Leu284 and Ser283). Sitosterol could bind to AKT1 by forming hydrophobic interactions with
the surrounding residues Vall64, Asn279, Glul91, Gly294, Leu295, Leul81, Glu198, His194, Phel61, Thr195,
Lys179, Asp292 and a H-bond with Glu234 (3.0 A) (Fig. 14g,h). Moreover, sitosterol was observed to GAPDH
by forming hydrophobic interactions with the surrounding residues Ser122, Ile14, Argl3, Alal83, Gly12, Asp35,
Phe37, Ser98, Thr99 and a hydrogen bond with Cys152 (3.2 A) (Fig. 14ij).

Discussion

With the changes in people’s living habits, environmental pollution, and psychological factors, the incidence rate
of infertility continues to rise, where male infertility accounts for 50% of the cases®. As one of the most common
types of male infertility, OA has a complicated mechanism of action, thus the current treatment methods and
drugs have some limitations®. So far, the treatment of OA has mainly focused on hormones, anti-infection, sur-
gery, and ART?. However, the existing therapeutic drugs and surgical methods could not fundamentally improve
the sperm quality of patients with OA. In addition, surgical treatment has brought economic and psychological
pressure to infertile couples. Under the current influence of COVID-19 sweeping the globe, researchers have
found that the COVID-19 virus can damage the male reproductive system®-%. Therefore, it is worth to be further
explored to improve sperm quality of OA patients, and develop new drugs against OA.

Here, we adopted a comprehensive method integrated network pharmacology and molecular docking to
reveal the bioactive components and potential targets of MOLBCH against OA. The experimental flow of this
study was shown in Fig. 15. In our study, for the first time, Ohioensin-A, quercetin, beta-sitosterol and sitosterol
were found to be the main bioactive ingredients of MOLBCH against OA. Specifically, the cytotoxic activity of
Ohioensin-A has good effects against various cancer cell lines, including murine leukemia cell line and breast
cancer cell line?®. Ohioensin could reduce the TNF-a-induced production of intracellular reactive oxygen species
(ROS) and phosphorylation of AKT in vascular smooth muscle cells (VSMCs)?®. In previous study, quercetin
was confirmed to indirectly affect the stimulation of the sex organs, both at the cellular and organ levels?!, and
showed outstanding beneficial effects on the serum total testosterone?. The supplement of quercetin could
decrease the expressions of AKT, AR, cell proliferative and anti-apoptotic proteins on prostate cancer in the
in vivo model®. The stimulation of cell proliferation by quercetin is proved to be mediated by ESR1°°. In a
previous study, researchers found quercetin could elicit apoptosis through an ESR1-dependent mechanism
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Figure 10. AGE-RAGE signaling pathway in diabetic complications. The red rectangle represents the targets
related to the core component-target-pathway network.

in cancer cell lines®. Quercetin has a protective effect against chronic prostatitis in rat model through NF-«xB
and MAPK signaling pathways*, and could attenuate cell migration and invasion by suppressing the protein
levels of p-AKT1, MMP-2, and MMP-9 in HCCLM3 cells**. Beta-sitosterol and sitosterol are natural occurring
phytosterols with steroidal moiety, which could inhibit tumor growth, modulates immune response, and has
antioxidant capacity. Beta-sitosterol is regarded as a potential chemo preventive agent for treating a variety of
cancer, including prostatic carcinoma and breast cancer?. It has been reported that beta-sitosterol could inhibit
the growth and migration of prostate cancer cell and slow the growth of prostate tumors in mice. Its mechanism
of action could be involved in AR*. Incorporation of beta-sitosterol into the cell membrane could increase
the resistance to OS and lipid peroxidation via ESR1-mediated PI3K/GSK3p signaling®. Beta-sitosterol could
increase the tyrosine phosphorylation of IRS-1, serine phosphorylation of AKT, threonine phosphorylation of
AKT and threonine phosphorylation of Akt substrate of 160 KD in the adipose tissue of type-2 diabetic rat®®.

In addition, we found that the core potential targets of MOLBCH on OA were AR, ESR1, MAPK3, AKT1 and
GAPDH. AR is essential for the development and maintenance of the male phenotype and spermatogenesis®”.
Previous studies demonstrated AR might work through testicular Sertoli and peri-tubular myoid cells, maintain-
ing spermatogonia numbers, blood-testis barrier integrity, completion of meiosis, adhesion of spermatids and
spermiation®”*’. ESR1 could regulate expression of genes during the process of spermiogenesis, and has been
implicated in male infertility“’“. Besides, ESR1 was found to be associated with testicular germ cell cancer, which
usually occurs in young men**. The MAPKs has been linked to the disturbances in spermatogenesis and dysfunc-
tion of germ cells and Sertoli cells, resulting in reduced semen quality and male reproductive dysfunction®. In
human, MAPK3 may play a crucial role in cell cycle progression and apoptosis*®. AKT1 is considered as the mod-
erator of cellular growth, survival, metabolism and proliferation*’”. AKT1 could also suppress radiation-induced
germ cell apoptosis in vivo*® and enhance the effects of thyroid hormone on postnatal testis development®. In
the testis, GAPDH is of particular importance for spermatogenesis, and could reduce sperm motility induced
by male infertility*. Besides, EGFR, ESR2, MYC, CASP3, VEGFA, etc. are also important during the process of
MOLBCH against OA. EGFR is located in the head and middle of the sperm, and participated in the acrosome
reaction and the polymerization reaction of actin in the process of sperm capacitation®"*2. ESR2 regulates the
expression of genes related to germ cell apoptosis and spermatization*'. c-MYC is an immediate growth early
response gene, and might play a key role in cell proliferation and tumorigenesis®**. The increasing expression
of CASP3 in the testis may cause germ cell apoptosis in the seminiferous tubules®. VEGFA is related to male
reproductive function and maintenance of spermatogonial stem cells*.
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Ligand Proteins | Residues Hydrogen bonds

Leu880, Asn705, Met780, Phe876, Leu704, Thr877, Leu701, Leu873, Val746, Trp741,

AR Phe764, Gly708, Met745, Met749, Gln711, Met787 Met895 (3.1 4)
Arg394, Leu391, Phe404, Leu384, Leu387, Glu353, Leu428, Ile424, Leu346, Ala350, . %
ESRL | Met421, Met343, Thr347, Leu540, Leu525 His524 (3.0 4)
Ohioensin-A :
MAPK3 | Ser286, Pro285, Lys287, Gly262, Leu284, Asn255, Leu258 Ser263 (2.7 A)
AKT1 His194, Glu198, Gly294, Thr195, Lys179, Lys163, Leul81, Gly162, Val164, Gly159 Thr160 (3.1 A)
and Phel61
GAPDH | Alal83, Argl3, Asn316, Ile14, Cys152, Alal23 Gly100 (2.9 A)
Thr877, Met780, Phe876, Leu701, Leu880, Asn705, Phe764, Leu704, Met 749, 2 2
AR Met787, Gly708, Val746, Gln711, Leu707 Leus73 (2.7 A), Met745 (3.1 A)
ESR1 ]55333111131)51’;6404, Ala350, 1le424, Met421, His524, Leu525, Leu384, Leu349, Leu346 Leu387 (2.8 A), Arg394 (33 A), Arg394 (2.7 A), Gly521 (2.5 A)
quercetin _ _
MAPK3 Lys287, Leu258, Leu284, Asn255, Gly259, Gly262 Pro285 (3.0 A), Ser263 (2.8 A)
AKT1 Glu278, Lys276, Phel61, Glu191, His194, Gly294, Leu295, Asp292 Asp274 (2.9 A), Ser7 (2.9 A), Thr5 (3.0 A)
GAPDH | Pro36, Phe37, Thr99, Gly12, Ser98, Gly10, Asn9 Asp35 (2.8 A), Asn34 (3.0 A)
AR Phe891, Leu880, Leu701, Met780, Thr877, Trp741, Leu873, Met745, Met742, Asn705 (3.0 A)
Met787, Met749, Arg752, GIn711, Val746, Gly708, Leu707, Leu704, Phe764, Met895 .
ESR1 Arg394, Leu387, Leu391, Leu349, Leu428, Ile424, Met388, Met421, His524, Gly521, Phed04 (3.1 A), Glu353 (2.4 A)

Leu384, Leu346, Leu525, Thr347, Met343, Ala350

beta-sitosterol | MAPK3 | Ser283, Pro285, Gly259, Leu258, Asn255, Leu284 and Tyr280 -

Asn279, Gly294, Leu295, Glul91, Phel61, His194, Leul81, Glu198, Lys179, Thr195,

AKTI Asp292, Val164 Glu234 (3.0 A)
GAPDH Phe37, Ile38, Alal83, Ile14, Glu317, Asn316, Thr182, Cys152, Tyr320, Argl3, Thr99, Asp35 (3.1 A)
Gly12 and Ser98
AR Thr877, Met780, Met895, Phe891, Leu880, Met742, Leu701, Leu873, Trp741, Val746, Asn705 (2.9 A)
Met745, Met787, Met749, Leu707, Arg752, Gly708, GIn711, Phe764, Leu704 :
ESR1 Leu387, Leu391, Leu428, Met388, Ile424, His524, Gly521, Leu384, Met421, Leu525, Arg394 (2.1 1:\), Phed04 (3.1 A)

Trp383, Met343, Thr347, Leu346, Glu353, Ala350, Leu349

sitosterol MAPK3 | Tyr280, Asn255, Lys287, Pro285, Gly259, Leu258, Leu284, Ser283 -

Vall64, Asn279, Glul91, Gly294, Leu295, Leul81, Glul98, His194, Phel61, Thr195,

Lys179, Asp292 Glu234 (3.0 A)

AKT1

GAPDH | Ser122, lle14, Argl13, Alal83, Gly12, Asp35, Phe37, Ser98, Thr99 Cys152 (3.2 A)

Table 2. Results of molecular docking between the bioactive components and the core predicted targets.

Affinity Dist from best mode
Ligand Proteins | (kcal/mol) | rmsdlb | rmsdu.b
AR 4.5 0.000 0.000
ESR1 -4.7 0.000 0.000
Ohioensin-A MAPK3 -6.2 0.000 0.000
AKT1 -99 0.000 0.000
GAPDH -83 0.000 0.000
AR -8.0 0.000 0.000
ESR1 -6.9 0.000 0.000
Quercetin MAPK3 -53 0.000 0.000
AKT1 -7.7 0.000 0.000
GAPDH -6.5 0.000 0.000
AR -04 0.000 0.000
ESR1 -45 0.000 0.000
Beta-sitosterol MAPK3 -54 0.000 0.000
AKT1 -9.38 0.000 0.000
GAPDH -7.8 0.000 0.000
AR -12 0.000 0.000
ESR1 -4.6 0.000 0.000
Sitosterol MAPK3 -57 0.000 0.000
AKT1 -9.6 0.000 0.000
GAPDH -72 0.000 0.000

Table 3. The binding energy of molecular docking between the bioactive components and the core predicted
targets.
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Figure 11. Molecular models of the binding of Ohioensin-A from MO to the predicted targets (a, b) AR, (¢, d)
ESR1, (e, f) MAPK3, (g, h) AKT1 and (i, j) GAPDH shown as 3D diagrams and 2D diagrams.

Furthermore, 12 significant pathways were related to apoptosis, male reproductive functions, and OS in
the molecular mechanism of MOLBCH against OA. In particular, the most represented signaling pathways are
PI3K-Akt signaling pathway, Prostate cancer, and AGE-RAGE signaling pathway in diabetic complications.
The PI3K/AKkt signaling pathway plays an essential role in inhibiting cell apoptosis and promoting the sur-
vival of male infertility*’. It also perturbs the intracellular redox equilibration by raising ROS®. The aberrant
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activation of PI3K-Akt signaling pathway may contribute to increase cell invasiveness and facilitate prostate
cancer progression®. Prostate cancer is the second leading cause of cancer death in men, and key determinants
of its cellular phenotype include carcinogen defense (GSTP1), growth factor signaling pathways (NKX3.1, PTEN
and p27) and AR%. Activation of AGE/RAGE signaling pathway promotes ROS production, which can induce
lipid peroxidation and eventually sperm DNA damage®'~%.
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Figure 13. Molecular models of the binding of beta-sitosterol from MO and LB to the predicted targets (a, b)
AR, (¢, d) ESR1, (e, f) MAPK3, (g, h) AKT1 and (i, j) GAPDH shown as 3D diagrams and 2D diagrams.

Besides, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, Endocrine resistance,
Relaxin signaling pathway, EGFR tyrosine kinase inhibitor resistance, Prolactin signaling pathway, HIF-1 sign-
aling pathway, also play an important role in the process of MOLBCH on OA. The MAPK signaling pathway
participates in many stages of germ cell development, including spermatogenesis, germ cell cycle progression,
germ cell apoptosis, acquisition of motility in the epididymis, sperm capacitation and acrosome reaction before
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the fertilization of oocytes®>®. The aberrant IL-17 signaling pathway is of great importance to maintain the
testicular immune, including cell immunity, mucosal immunity and cytokines®”-%. TNF family is regarded to
stimulate NF-xB, and further acts an effect on varicocele-mediated pathogenesis’. Estrogens may be involved
in the pathophysiology of varicocele-associated male infertility”!. In male mice, disruption of the relaxin gene
results in the delayed reproductive tract development and arrested sperm maturation’?. EGFR is a tyrosine kinase
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related to the regulation of cellular homeostasis. Mutations in the EGFR gene and protein overexpression could
activate downstream pathways associated with cancer”. Prolactin receptor deficient models built in a previous
study showed neuroendocrine and reproductive abnormalities for male rodents’. Hypoxia-Inducible Factor
(HIF)-1 plays an integral role in responding to low oxygen concentrations or hypoxia in human”. Therefore, we
believe that MOLBCH could improve male reproductive functions, decrease apoptosis and OS in the treatment
of OA, which might further clarify the pathological mechanism of OA.

In summary, we conducted a comprehensive approach integrated network pharmacology and molecular dock-
ing to demonstrate the key bioactive components and core potential targets of MOLBCH against OA. We found
that MOLCH could alleviate apoptosis, promote male reproductive function, and reduce OS in the treatment of
OA. The key bioactive components are Ohioensin-A, quercetin, beta-sitosterol and sitosterol. The core potential
targets are AR, ESR1, MAPK3, AKT1 and GAPDH. The most representative pathways are PI3K/Akt signaling
pathway, prostate cancer, and AGE-RAGE signaling pathway in diabetic complications. In order to further verify
the results of network pharmacology, molecular docking was employed to confirm the strong binding interaction
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between the key bioactive components and core potential targets. This study provides deeper insights into the
pathogenesis of OA and can be helpful to design new drugs and develop new therapeutic instructions to treat OA.

Methods

Data collection and processing. Components of MOLBCH. TCMSP (http://tcmspw.com/tcmsp.php,
updated on May 31, 2014)7® and TCMID (http://119.3.41.228:8000/tcmid/, updated on Oct. 24, 2017)”” were
used to obtain the components of MOLBCH (Supplementary Table S1).

Bioactive components of MOLBCH. The adsorption, distribution, metabolism, and excretion (ADME)-related
models, integrating oral bioavailability (OB) and drug-likeness (DL), were used to filter the bioactive compo-
nents of MOLBCH. Oral bioavailability could represent the relative amount of orally administered drug that
reaches the blood circulation’®. Drug-likeliness was used to describe and optimize pharmacokinetic and phar-
maceutical properties”. According to the published literature!®'*88!, the compounds that meet the require-
ments of both OB2=30% and DL >0.18, were used to identify the bioactive components of MOLBCH (Supple-
mentary Table S2).

MOLBCH targets. 'The structure information of the bioactive components of MOLBCH was obtained from
PubChem (https://pubchem.ncbi.nlm.nih.gov/, updated on Mar. 31, 2020)** and ALOGPS2.1 (http://www.vccla
b.org/lab/alogps/, updated on Feb. 14, 2020). The structure information covered molecular structures, canonical
smiles, and their “sdf” files. Then, the targets of bioactive components of MOLBCH were obtained through Swiss
Target Prediction (http://www.swisstargetprediction.ch/)® and SEA (http://sea.bkslab.org/)*, with the condi-
tions set as “Homo sapiens” and probability value> 0. In addition, we supplemented the prediction targets of
MOLBCH from TCMSP and Drugbank (https://go.drugbank.com/) databases. The names of MOLBCH targets
were standardized by UniProtKB (https://www.uniprot.org/)® (Supplementary Table S3).

OA-related targets. 'The OA-related targets were obtained by five different databases, including DisGeNET
database (https://www.disgenet.org/, updated on May 13, 2019)*, Comparative Toxicogenomics Database
(CTD, http://ctdbase.org/, updated on Feb. 4, 2020)%, Online Mendelian Inheritance in Man (OMIM, http://
omim.org/, updated on Feb. 14, 2020)*, GeneCards (https://www.genecards.org/, updated on Mar. 11, 2020)%
and the National Centre for Biotechnology Information Gene (NCBI Gene, https://www.ncbi.nlm.nih.gov/
gene/, updated on May. 4, 2019)®. Taking advantage of the different characteristics of each database, we selected
“oligoasthenozoospermia’, “oligospermia’, “oligozoospermia’, “asthenospermia” and “asthenozoospermia” as the
keywords and criteria to search related targets. We integrated duplicated targets of “oligospermia” and “oligo-
zoospermia’, and defined the obtained targets as the oligospermia-related targets. Similarly, the same targets of
“asthenospermia” and “asthenozoospermia” were incorporated, and defined the obtained targets as the asthe-
nozoospermia-related targets. Afterwards, we took the intersection of the oligospermia-related targets and the
asthenozoospermia-related targets, and the targets searched by “oligoasthenozoospermia” were added to get the
OA-related targets. Finally, we standardized the names of OA-related targets using UniProtKB (Supplementary
Table S4).

Network construction. MOLBCH-OA common-target network. The MOLBCH-OA common target
network was constructed by the common targets of MOLBCH and OA Cytoscape (http://www.cytoscape.org,
version 3.7.2)°! (Supplementary Table S5). Network Analyzer®?, a plugin of Cytoscape, was used for calculating
the degree value of the network, aiming to find the underlying components and targets of MOLBCH on OA
(Supplementary Table S6).

PPI network and evaluation. 'The STRING database v11.0 (http://string-db.org)®® was utilized to get the pro-
tein—protein interaction (PPI) information. The confidence score was set to 0.4 or higher. The PPI information
were exported in TSV format, and then visualized by Cytoscape. CytoNCA, a plugin of Cytoscape, was used to
evaluate the PPI network, including Betweenness (BC), Closeness (CC), Eigenvector (EC), Local Average Con-
nectivity-based method (LAC), Network (NC), Subgraph (SC), Information (IC)**. First, the data was screened
by using the screening criteria of ‘DC=2 x median DC’. Then, the potential targets were obtained by the screen-
ing criteria of ‘DC, BC, EC, CC, LAC, and NC greater than or equal to their median® (Supplementary Table S7).

Cluster analysis.  MCODE®, a cluster analysis algorithm in Cytoscape, was performed to analysis the sub-region
of PPI network. The same or similar targets were treated as clusters to further explore the underly information
the PPI network?” (Supplementary Table S8). The conditions were set as node score cutoff=0.2, K-core=2, and
degree of cutoft=2.

GO and KEGG pathway enrichment analyses. Gene Ontology (GO) knowledgebase (http://geneo
ntology.org/), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses (https://www.
genome.jp/kegg/)*****° were conducted by R 4.0.0 software with the Bioconductor package to evaluated the
enrichment functions and pathways of the PPI network and clusters (Supplementary Tables S9-S10). The figures

of core targets in KEGG signaling pathways are from Kanehisa laboratories (www.kegg.jp/kegg/keggl.html)!?-
102
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Molecular docking. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were used as ligands, and AR,
ESR1, MAPK3, AKT1 and GAPDH were used as protein receptors. PubChem database (https://pubchem.ncbi.
nlm.nih.gov/) was used to download the two-dimensional (2D) structures of Ohioensin-A, quercetin, beta-
sitosterol and sitosterol. The 2D structure was processed and transformed into PDB format through Chem3D,
and they were saved in PDBQT format as docking ligands in AutoDock Tools 1.5.6 software. The X-ray crys-
tal structures of the targets (http://www.rcsb.org/)!®®, including AR (PDB ID: 2Q7K), ESR1 (PDB ID:4PXM),
MAPK3 (PDB ID:6GES), AKT1 (PDB ID:3QKK), and GAPDH (PDB ID:6ADE), were obtained from the Pro-
tein Data Bank (PDB). Subsequently, PyMOL 2.4 (https://pymol.org/2/)'** was applied to remove water mol-
ecules and pro-ligand small molecules. The protein receptor files were processed and then converted to pdbqt
format using AutoDock Tools 1.5.6. Each grid box was centered on ligand. Finally, molecular docking calcula-
tions were performed using Autodock Vina 1.1.2'%1%, The conformation with the best affinity was selected
as the final docking conformation. The docking results were visualized and displayed as 3D diagrams and 2D
diagrams by using PyMOL 2.4 and ligplus.

Data availability
The data generated or analyzed during this study are included in the Supplementary Source files.
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