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Microbiome dysbiosis is associated with
disease duration and increased
inflammatory gene expression in systemic
sclerosis skin
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Abstract

Background: Infectious agents have long been postulated to be disease triggers for systemic sclerosis (SSc), but
a definitive link has not been found. Metagenomic analyses of high-throughput data allows for the unbiased
identification of potential microbiome pathogens in skin biopsies of SSc patients and allows insight into the
relationship with host gene expression.

Methods: We examined skin biopsies from a diverse cohort of 23 SSc patients (including lesional forearm and
non-lesional back samples) by RNA-seq. Metagenomic filtering and annotation was performed using the Integrated
Metagenomic Sequencing Analysis (IMSA). Associations between microbiome composition and gene expression
were analyzed using single-sample gene set enrichment analysis (ssGSEA).

Results: We find the skin of SSc patients exhibits substantial changes in microbial composition relative to controls,
characterized by sharp decreases in lipophilic taxa, such as Propionibacterium, combined with increases in a wide
range of gram-negative taxa, including Burkholderia, Citrobacter, and Vibrio.

Conclusions: Microbiome dysbiosis is associated with disease duration and increased inflammatory gene
expression. These data provide a comprehensive portrait of the SSc skin microbiome and its association with
local gene expression, which mirrors the molecular changes in lesional skin.
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Introduction
Systemic sclerosis (SSc) is a progressive autoimmune
disease that results in inflammation, fibrosis, and dys-
function of multiple organ systems including the skin,
lungs, gastrointestinal tract, and blood vessels. Recent
advances have provided significant insight into the mo-
lecular and immunologic changes characteristic of SSc
patients [1–5]; however, the underlying mechanisms that

initiate and perpetuate disease pathologies remain poorly
understood.
Evidence for dysbiosis as a source of disease pathology

is well-documented in inflammatory skin conditions,
such as psoriasis, where patients exhibit significant in-
creases in both Propionibacterium and Staphylococcus
on lesional skin [6]. In atopic dermatitis (AD), patients
exhibit temporal shifts in skin microbiome composition,
with microbiome diversity decreasing during disease
flares, characterized by significant increases in Staphylo-
coccus levels, followed by increased diversity thereafter
[7]. These patterns of dysbiosis suggest a mechanism by
which relative changes in the abundance of specific taxa
directly influence disease pathology [7].
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A wide array of potential etiologic agents have been
proposed for SSc, including viruses, bacteria, and fungi.
Viruses such as cytomegalovirus (CMV), parvovirus B19,
Epstein-Barr virus (EBV), and endogenous retroviruses
have all been postulated as potential triggers of SSc
[8–10]. EBV transcripts have been reported in lesional
skin of SSc patients [11]. Among bacteria, Helicobac-
ter pylori has been implicated in the etiology and pro-
gression of numerous autoimmune diseases, though
its role in SSc remains controversial with studies both
confirming and refuting such an association [10, 12, 13].
The most recent addition to the list of potential etiologic
agents is the fungus Rhodotorula glutinis, a ubiquitous en-
vironmental contaminant and occasional skin commensal,
which was found to be strongly associated with lesional
skin of early-stage, untreated diffuse SSc patients [14].
Here, we examined skin biopsies from a diverse cohort

of SSc patients and healthy controls by RNA-sequencing
(RNA-seq) to obtain an unbiased assessment of the SSc
microbiome and its relationship with patient gene ex-
pression. We show a reproducible shift in microbiome
composition characterized by decreases in lipophilic
taxa, along with increases in a variety of gram-negative
bacteria that mirror local changes in inflammatory gene
expression. These changes are closely tied to underlying
gene expression associated with lipid signaling and im-
mune activation. Genus-level taxonomic changes were
associated with disease duration and the inflammatory
intrinsic gene expression subset. Together, these data
demonstrate that the skin microbiome composition in
SSc mirrors molecular pathogenesis.

Methods
Patient selection
Study participants provided written, informed consent
prior to sample collection in accordance with the Declar-
ation of Helsinki Protocol and the Institutional Review
Boards of Boston University Medical Center, Boston, MA,
Dartmouth-Hitchcock Medical Center, Lebanon, NH, and
the Hospital for Special Surgery, New York, NY. All pa-
tients met the American College of Rheumatology classifi-
cation criteria for SSc [15], with further classification as
either diffuse [16] (dSSc) or limited [17] (lSSc) disease.
SSc patients with disease duration < 2.5 years were classi-
fied as “early stage” and patients with disease duration > 8
years were classified as “late stage” for this analysis.

Biopsy processing and RNA-seq
Lesional forearm and, for a subset of patients, non-lesional
back skin was collected by punch biopsy (4mm) from 15
SSc patients and 6 healthy volunteers. An additional 8 base-
line samples collected as part of a Nilotinib clinical trial
[18] were also included in this analysis. Following col-
lection, samples were immediately placed in RNALater

(Life Technologies, Carlsbad, CA) at 4 °C overnight,
followed by − 80 °C until needed. Tissue homogenization
was performed using the Qiagen TissueLyser II (Qiagen,
Gaithersburg, MD). RNA extraction was performed using
the Qiagen RNeasy Fibrous Tissue Mini Kit run on the
QIAcube (Qiagen). RNA concentration and RNA integrity
were assessed using the Agilent 4200 TapeStation (Agilent,
Santa Clara, CA). RNA-seq libraries were generated from
100 ng total RNA prepared using the Illumina TruSeq
Stranded Total RNA Library Prep Kit with Ribo-Gold
rRNA depletion (Illumina, San Diego, CA). Samples were
then multiplexed and sequenced on an Illumina NextSeq
500 sequencer, producing an average of 80–100 million
75-bp paired-end reads per sample.

Human gene expression analyses
Raw sequencing reads were aligned to the human gen-
ome (hg19) using STAR aligner [19] and expressed as
fragments per million mapped reads (FPKM). Designa-
tion of intrinsic molecular subsets for SSc patients was
performed using a gene-specific normalization method
to render RNA-seq values distributions similar to micro-
array so that supervised machine learning algorithms
can be applied regardless of the platform used to gener-
ate data, as described [20]. Normalized RNA-seq data
were classified using a support vector machine trained
using a merged and curated dataset composed of sam-
ples from GSE9285, GSE32413, and GSE45485. To
visualize results, the probe ID list from Johnson et al. [4]
was collapsed on gene ID. This gene list was compared
against normalized FPKM values for all 36 RNA-seq
samples, resulting in a total of 1010 overlapping genes; a
full list of all genes and normalized expression values is
shown in Additional file 1: Table S1. Data were then
hierarchically clustered using Cluster 3.0 [21] and visual-
ized using Java TreeView [22].

Metagenomic filtering and microbiome annotation
Metagenomic filtering and microbiome annotation was
run using the Integrated Metagenomic Sequencing Ana-
lysis (IMSA) software package [23] and compared
against the National Center for Biotechnology Informa-
tion (NCBI) non-redundant nucleotide database (mini-
mum significance = 1 × 10− 15), followed by a secondary
BLAST alignment against the NCBI viral genome reposi-
tory (minimum significance = 1 × 10− 5). To limit inclu-
sion of spurious hits, sample annotation was limited to
sequences mapping to five or fewer species, with ties
split equally across species. Outputs were then filtered
based on taxonomy to include only archaea, bacteria,
fungi, and viruses. Normalization of taxonomic outputs
was performed by rounding down to the nearest integer
and rarefying to the level of the depth of the lowest sam-
ple using the Quantitative Insights Into Molecular
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Ecology (QIIME) platform [24]. Batch effects associated
with library preparation were removed by median cen-
tering across taxa. Statistical analyses were performed
using Statistical Package for the Social Sciences (SPSS)
software (IBM, version 23); additional analyses, including
corrections for multiple hypothesis testing using the
method of Benjamini & Hochberg [25], were performed
in R.

Pathway activation and microbiome abundance
Single-sample gene set enrichment analysis (ssGSEA)
[26] was run as a module in GenePattern, using relevant
KEGG pathways as the query gene sets. A correlation
matrix was then generated by calculating Pearson’s cor-
relations for all combinations of ssGSEA values and
genus-level abundance across all patients. Data were
then hierarchically clustered using Cluster 3.0 and visu-
alized using Java TreeView.

Results
Patient characteristics
Lesional forearm skin biopsies were collected from 23
SSc patients; seven patients also provided biopsies of
non-lesional back skin. Forearm skin biopsies were also
obtained from 6 age- and gender-matched healthy con-
trols. Samples were collected from three independent
clinical centers and included both clinically limited
(lSSc) and diffuse (dSSc) disease, with disease duration
ranging from 0 to 35 years. The patient population con-
sisted primarily of early-stage patients (disease duration
≤ 2 years), though a handful of very late-stage patients
(disease duration > 10 years) were also included to assess
microbiome changes over time. Clinical information on
these patients is summarized in Table 1; a full break-
down of patient clinical information is presented in
Additional file 2: Table S2. Assessments of skin involve-
ment were determined based on overall modified Rodnan
skin score (mRSS), as local scores were not available for
all patients. No significant differences in age, sex, or race
were evident between SSc and controls (p > 0.05 for all).

Sequencing and annotation
RNA-seq was performed on 36 skin biopsies, from 29
unique patients, resulting in an average of 83 million
reads per sample (range 51,278,817–112,643,430). Raw
sequencing reads were aligned to the human genome
(hg19) using STAR aligner [19], and the expression level
of each gene was expressed as fragments per million
mapped reads (FPKM). Intrinsic gene expression subset
designations were determined based on support vector
machine classification using normalized FPKM values
[20]. Hierarchical clustering using the gene list from
Johnson et al. [4], resulting in a total of 1010 overlapping
genes, revealed distinct molecular subsets of disease,

characterized by strong immune activation, lipid signal-
ing, and proliferation signals, consistent with previous
publications [1–3] (Fig. 1a; Additional file 1: Table S1).
Together, these data suggest our patient cohort is repre-
sentative of the four major intrinsic gene expression sub-
sets of SSc. Additionally, we find that forearm and back
samples largely tend to cluster together, consistent with
previous analyses (Fig. 1b) [27].
Filtering of human sequence reads and microbiome

annotation was performed using Integrated Metage-
nomic Sequence Analysis (IMSA) [23], yielding an aver-
age of 18,794 informative hits, defined as sequences
mapping to five or fewer species, per skin biopsy (range
3098–74,429) across 1870 genera. To adjust for library-
specific effects, all data were rarefied to the level of the
lowest sample, followed by median centering of each
genus by library preparation batch. This approach sub-
stantially reduced batch effects associated with library
preparation, enabling direct comparisons of sample out-
puts across patients.

Table 1 Summary clinical information

Control subjects SSc patients

(N = 6) (N = 23)

Age, median (range) years 53 (25–67) 53 (27–77)

Sex, N (%) female 4 (67%) 19 (83%)

Race, N (%) Caucasian 5 (83%) 20 (87%)

SSc subtype, N (%) diffuse NA 15 (65%)

MRSS, median (range) NA 16 (0–44)

Disease duration from first
non-Raynaud’s, median (range) years

NA 1.0 (0–35)

ILD/PAH, N (%) NA 8 (35%)

ANA primary pattern, N (%) patients

Homogenous NA 1 (4%)

Nucleolar NA 5 (22%)

Speckled NA 6 (26%)

Centromere NA 2 (9%)

SSc-specific antibodies, N (%)

Anti-centromere NA 3 (13%)

Scl-70 NA 3 (13%)

RNA polymerase III NA 5 (22%)

Current therapies, N (%) NA 17 (74%)

Prior therapies, N (%)

Amlodipine NA 4 (17%)

Methotrexate NA 4 (17%)

Prednisone NA 3 (13%)

Abbreviations: SSc, systemic sclerosis; ANA, anti-nuclear antibodies; MRSS,
modified Rodnan skin score; ILD, interstitial lung disease; PAH, pulmonary
arterial hypertension; NA, not applicable
Current and prior therapies include all treatments observed in three or
more patients
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Antimicrobial gene expression is suppressed in SSc
lesional skin
Antimicrobial peptides (AMPs), including cathelicidin
(CAMP/LL-37), α-defensins, and β-defensins, are an es-
sential component of epithelial barrier defenses. To assess
the role of AMPs in SSc, we compared gene expression
levels between SSc and controls, as well as between
lesional forearm and non-lesional back skin. Among the
major AMPs, dermcidin (DCD) is highly expressed across
samples, regardless of disease type, while other major
AMPs, including cathecidin (CAMP) and the α-defensins,
were virtually undetected, with no difference in expression
between SSc and controls. In contrast, β-defensin 1
(DEFB1), an AMP produced by epithelial cells, is
expressed across all samples; however, these levels are sig-
nificantly lower is SSc lesional skin compared to healthy
controls (p < 0.001 by unpaired t-test), as well as in
lesional forearm compared to non-lesional back skin (p =
0.007 by paired t-test) (Additional file 3: Table S3). Similar
results were also seen between SSC lesional skin and
healthy controls in a previous SSc skin RNA-seq dataset
(Additional file 3: Table S3), suggesting a potential mech-
anism underlying microbiome differences in SSc patients.

Microbiome genus-level differences are correlated with
SSc clinical phenotypes
SSc patients exhibited large changes in microbiome com-
position relative to controls, characterized by decreases in
lipophilic taxa, such as Propionibacterium and Staphylo-
coccus, combined with increases in a wide range of
Gram-negative bacteria, including Burkholderia, Citrobac-
ter, and Vibrio (p < 0.05 for all; Fig. 2a; Additional file 4:
Table S4). These differences were not associated with clin-
ical subtype, with limited and diffuse disease exhibiting
broadly similar abundances of major taxa (Fig. 2a). De-
creases were also observed in the fungus Malassezia rela-
tive to controls, with the greatest decrease occurring in
dSSc patients.
Associations between disease duration and genus-level

abundance were also evident, with significant (p < 0.05)
or near-significant (p < 0.10) differences in 6 of the top
21 genera, including Propionibacterium, Salmonella, and
Enterobacter (Fig. 2b; Additional file 4: Table S4). Rela-
tive decreases in Propionibacterium were evident for
both early- and late-stage patients, relative to controls.
We observed differential directions for the relative abun-
dance of Salmonella including significant increases for
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early-stage patients and reduced abundance in late-stage
patients. Comparisons between the four intrinsic mo-
lecular subsets of disease revealed modest differences as-
sociated with the normal-like and inflammatory subsets,
with normal-like patients broadly mimicking differences
seen between SSc and controls, while the inflammatory
group was characterized by decreased Staphylococcus
and increased Roseolovirus, relative to other subsets

(Fig. 2c). The absence of more acute genus-level distinc-
tions between subsets is likely the result of high levels of
some genera in both inflammatory and proliferative pa-
tients (Fig. 2c), thereby limiting the diagnostic value of
any single genus. Other clinical cofactors, including sex
and autoantibody status, were not statistically different
between groups. A full list of comparisons for each clin-
ical cofactor is shown in Additional file 4: Table S4.
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Core microbiome by patient is predictive of clinical
involvement
To identify changes in microbiome composition associ-
ated with clinical covariates, we calculated the number
of taxa that accounted for 90% of the annotated reads
across our entire dataset, which we collectively refer to
as the SSc skin core microbiome. The SSc skin core
microbiome was composed of 103 genera and included
representatives from bacteria, fungi, and viruses. Organ-
isms not included in the core microbiome were exclu-
sively low abundance taxa found in only a small number
of samples. Hierarchical clustering of the SSc skin core
microbiome revealed patterns of microbial abundance
closely mimicking that seen within an individual, charac-
terized by clear differences between SSc and controls
(Fig. 3a). Organisms of the SSc skin microbiome formed
distinct branches within the dendrogram. Lipophilic
commensals (Malassezia, Propionibacterium, and Cuti-
bacterium) were the predominant genera in normal-like
patients, Gram-negative bacteria (Veillonella, Prevotella,
Neisseria, and Actinomycetes) were abundant in the lim-
ited and proliferative subsets, and viruses (Roseolovirus
and Cyprinivirus) were highest in inflammatory patients
(Fig. 3a). These patterns are consistent with the various
environmental niches associated with each class of organ-
isms and are suggestive of changes in skin morphology
and immune activation associated with each subset.
SSc skin microbiome profiles were analyzed using prin-

cipal component analysis (PCA) to identify the broad,
population-based changes associated with clinical covari-
ates. Lesional forearm and non-lesional back skin were
not significantly different among SSc patients (p = 0.097;
Fig. 3b; Additional file 5: Figure S1). Similarly, no signifi-
cant differences were evident based on SSc clinical sub-
type (p = 0.156; Fig. 3c) or mRSS at the time of biopsy
(Additional file 6: Figure S2). In contrast, microbiome pro-
files were strongly correlated with intrinsic subset, with
the strongest differences seen in normal-like and inflam-
matory patients, indicative of a link between disease activ-
ity of microbial abundance (p = 0.014; Fig. 3a, d).

Microbiome composition is correlated with inflammatory
pathway activation in SSc skin biopsies
Given the close association seen between clinical sub-
type and microbiome composition, we next sought to
identify relationships between relevant molecular path-
ways and taxonomic abundance using single-sample
gene set enrichment analysis (ssGSEA). ssGSEA analysis
generates a single value quantifying the extent to which
a given gene set is coordinately up- or downregulated in
a sample. This analysis was repeated for all available
KEGG pathways, generating a table of pathway activa-
tion scores for each patient sample (Additional file 7:
Table S5). Using this data, we then used Pearson’s

correlations to compare each of these individual path-
ways against all genera in the SSc skin core microbiome
(Additional file 8: Figure S3). The resulting correlation
matrix allows for a direct comparison of gene expression
and microbiome composition (Fig. 4a).
Hierarchical clustering of this dataset revealed strong

associations between human gene expression and micro-
bial abundance. Processes such as T cell, B cell, chemo-
kine, and transforming growth factor beta (TGFβ)
signaling in the absence of fatty acid signaling are
strongly indicative of the inflammatory subset (Fig. 4a,
cluster 1). Lower immune activation signals in combin-
ation with major fatty acid metabolism processes are
commonly seen in the proliferative subset (Fig. 4a, clus-
ter 2), while fatty acid signaling in the absence of im-
mune activation is most commonly seen in normal-like
patients (Fig. 4a, cluster 3).
Taxonomic abundance was strongly associated with

the molecular processes of immune activation, lipid me-
tabolism, cell proliferation, and Notch/Wnt signaling
(Fig. 4a). Clustering of these processes was strongly cor-
related with differences in microbial abundance between
SSc and controls, with statistically significant differences
evident in 5 of 7 clusters (paired t-test, p < 0.05 for all;
Fig. 4a, b). Among the most significant clusters was clus-
ter 1, dominated by major lipophilic taxa, such as
Malassezia and Propionibacterium, along with numerous
Gram-positive Actinobacteria species (Additional file 9:
Figure S4). These organisms were significantly more abun-
dant in healthy controls (p < 0.001 for Actinobacteria and
Propionibacterium by paired t-test) and exhibited strong
positive correlations to lipid metabolism and cell prolifera-
tion KEGG pathways (Fig. 4a, b). In contrast, cluster 5
exhibits substantial increases in a wide range of Proteo-
bacteria and other Gram-negative taxa in SSc patients
(p < 0.001 by paired t-test) and is strongly correlated
with KEGG immune activation pathways, including
Toll-like receptor (TLR) and TGFβ signaling (Fig. 4a, d).
Cluster 3 shows strong, positive correlations with immune
activation, lipid metabolism, and Notch/Wnt signaling
and is associated with statistically significant decreases in
Bacteroidetes levels in SSc patients (p = 0.028 by paired
t-test), combined with modest increases in Proteobacteria,
relative to controls (p = 0.085 by paired t-test; Fig. 4a, e).
These data demonstrate a strong association between
underlying gene expression and the composition of the
skin microbiome in SSc.

Discussion
Recent studies have provided significant insight into the
immunologic and gene expression-based changes char-
acteristic of SSc patients; however, the underlying
mechanisms that initiate and perpetuate disease path-
ologies remain poorly understood. Analyses of the
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skin [14] and gut [28] of SSc patients have revealed
substantial changes in microbiome composition (dys-
biosis), though the role of these organisms in disease
pathology is not known. Here, we examined skin bi-
opsies from a diverse cohort of SSc patients by
RNA-seq, allowing for the unbiased metagenomic
analysis of all potential pathogens, including bacteria,
fungi, and viruses, as well as providing a platform
from which to investigate the relationship between
microbiome composition and underlying gene expres-
sion. Limitations of this study include the small num-
ber of samples and incomplete clinical data for some

patients including a lack of local skin scores. The bi-
modal distribution of disease duration in our cohort
is a confounding factor when assessing changes in
microbiome composition over time.
Previous studies examining the composition of the

bacterial microbiome in healthy individuals identified
three basic environments, dry, moist, and sebaceous,
which are reflected in the bacterial populations of these
regions [29]. Sebaceous regions, such as the face and
back, harbored large proportions of Propionibacterium
and Staphylococcus species, while dry regions, such as
the forearm, show a shift towards lower levels of

A B

C

D

Fig. 3 Distribution of the SSc skin core microbiome. The distribution and relative abundance of the SSc skin core microbiome was calculated by
rarefaction to the depth of the lowest sample, and filtering to retain the fewest taxa necessary to account for 90% of all reads, resulting in a total
of 103 unique genera. Data were then log2-transformed and median centered by library preparation. a Hierarchical clustering of the core microbiome.
Hash marks below the dendrogram indicate intrinsic subset designations and SSc clinical diagnosis for each sample. Principal component analysis of
the core microbiome was performed to identify associations between microbiome composition and b biopsy location, c clinical diagnosis, and d
intrinsic subset

Johnson et al. Arthritis Research & Therapy           (2019) 21:49 Page 7 of 11



Propionibacterium in combination with higher percent-
ages of Proteobacteria, Corynebacteria, and Flavobacter-
iales [29]. When considered in this context, where the
bacterial microbiome changes as a function of local lipid
and moisture levels, the data presented here paint a pic-
ture of SSc as a more extreme version of this process,
with disease-specific anatomical changes playing a major
role in shaping microbiome composition. Lesional SSc
forearm skin exhibited significant decreases in Propioni-
bacterium and Staphylococcus levels relative to controls,
along with increases in a wide range of Proteobacteria
(Fig. 2), a continuation of the normal differences seen
between sebaceous and dry regions of healthy controls.
The underlying basis for these changes is also evident at
the molecular level, with abundance of lipophilic taxa,
such as Propionibacterium and Malassezia, strongly asso-
ciated with fatty acid metabolism and lipid signaling path-
ways, while Proteobacteria were more elevated in patients
with active immune signaling (Fig. 4). Microbiome profiles

were not significantly different between lesional forearm
and non-lesional back skin in this study, with paired sam-
ples clustering strongly based on patients, with minimal
effect seen in terms of the anatomical site (Additional file 5:
Figure S3). This observation further implicates the under-
lying gene expression as a major driver of microbiome
composition, as disease-related changes in gene expres-
sion are consistent between SSc lesional forearm and
non-lesional back, yet the microbiome profiles of these
sites are strongly divergent in healthy controls.
From a mechanistic standpoint, changes in the SSc

skin microbiome may be attributed to physical changes
associated with fibrotic skin. Atrophy of both hair folli-
cles and sebaceous glands is commonly seen in SSc pa-
tients [30], resulting in the loss of both an essential food
source, as well as the physical niche where many of
these species reside [31]. This loss of skin appendages
leads to a weakening of the acid mantle, and a loss of
skin barrier function [32].

A B C

D

E

Fig. 4 Microbiome composition is associated with pathway activation in SSc skin. Single-sample gene set enrichment analysis (ssGSEA) was run
against normalized FPKM values for all 36 patient samples, using curated KEGG pathways as the probe gene sets. A correlation matrix was then
generated by calculating Pearson’s correlations for all combinations of ssGSEA values and genus-level abundance across all patients. a Hierarchical
clustering of the correlation matrix revealed strong associations between SSc-associated gene expression pathways and microbial composition. b
Taxonomic clustering based on gene expression. Hash marks indicate phylum/group associated with each sample. Relative abundance indicates
the degree to which each genus is differentially present in SSc patients, relative to controls with yellow indicating abundance is higher in SSc,
while blue indicates abundance is higher in controls. Black bars indicate KEGG pathways that clustered together hierarchically, with representative
pathways listed alongside each cluster (*p < 0.05; ** p < 0.01; *** p < 0.001 by paired t-test). Clinically relevant genera are highlighted in red. c Relative
abundance of all genera by taxonomic cluster. d, e Distribution of taxa is shown for cluster 5 (d) and cluster 3 (e)
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The strong association between increased Gram-nega-
tive taxa, particularly Proteobacteria, and immune acti-
vation shown here suggests a potential link between the
skin microbiome and immune activation. Analysis of
host-microbiome interactions, particularly with the host
immune system, is necessary to determine the extent to
which these organisms are capable of exacerbating and
perpetuating the inflammatory responses in SSc skin.
In a preliminary study of the skin microbiome, in-

creased levels of R. glutinis were detected on lesional
skin of four untreated, early-stage patients, with only
background levels seen in controls, suggesting a poten-
tial link between disease etiology and the skin micro-
biome [14]. Unfortunately, a direct assessment regarding
the etiologic nature of this organism was not possible
here due to differences in the two patient cohorts, both
in terms of prior treatment and disease duration. The
majority of early-stage patients described here were not
receiving immunosuppressive therapy at the time of biopsy,
though all were receiving treatment for SSc-associated
symptoms, including vascular symptoms and gastrointes-
tinal reflux. In contrast, five of six late-stage patients (dis-
ease duration > 5 years) were untreated at the time of
biopsy, consistent with the more quiescent nature of the
disease in this population. Rhodotorula sequences were
consistently detected in both SSc and controls, though
these levels never rose above the background noise. Such
an observation indicates that while Rhodotorula may be in-
creased in very early disease, colonization does not persist
over time.
Few viral pathogens were detected in our cohort, with

no reads associated with EBV, parvovirus B19, or CMV
identified in lesional skin. In contrast, we did consist-
ently identify sequences associated with Roseolovirus, a
genus which contains both human Herpesviruses (HHV)
6 and 7, which exhibited modest increases in inflamma-
tory SSc patients. As EBV (HHV4), CMV (HHV5), and
Roseolovirus are all members of the Herpesvirus family,
detection of active viral transcription in inflammatory
lesional skin does suggest a potential link between
life-long latent viral infections and disease pathology,
though further studies will be necessary to prove such
an association.

Conclusions
The data presented here demonstrate a possible mech-
anistic link between SSc skin microbiome composition
and disease pathology, with a loss of skin appendages
and lipid signaling leading to decreases in lipophilic taxa,
and a shift to a largely Gram-negative environment.
Host-microbiome studies will be necessary to assess the
extent to which the microbiome shapes SSc-associated
gene expression and vice versa.

Additional files

Additional file 1: Table S1. Gene expression data. Normalized RNA-seq
data were classified using a support vector machine trained using a
merged and curated dataset composed of samples from GSE9285,
GSE32413, and GSE45485. To visual results, the probe ID list from Johnson
et al. [4] was collapsed on gene ID. This gene list was compared against
normalized FPKM values for all 36 RNA-seq samples, resulting in a total of
1010 overlapping genes. Intrinsic subset assignments for individual genes
are not possible based on the nature of gene expression in SSc patients.
Each patient’s intrinsic subset assignment was determined based on the
collective co-expression of all 1010 genes in this dataset, with both high
and low expression of individual genes important for determining subset
distinctions. Furthermore, both high and low expression of individual genes
often extends across multiple intrinsic subsets. This inherently prevents
providing subset-specific calls for individual genes. (XLSX 418 kb)

Additional file 2: Table S2. Full clinical data for all patients included in
this study. (XLSX 14 kb)

Additional file 3: Table S3. Antimicrobial gene expression in lesional
and control skin. (XLSX 36 kb)

Additional file 4: Table S4. Differences in genus-level abundance by
clinical covariate. Statistical analyses were performed comparing genus-level
abundance between groups, presented as p values. Data were compared
using the Mann-Whitney U test, corrected for multiple hypothesis testing
using the method of Benjamini & Hochberg. Statistically significant differences
(p< 0.05) are highlighted in yellow; differences significant to p< 0.10 are
shown in pink. (XLSX 24 kb)

Additional file 5: Figure S1. Principal component analysis of lesional
forearm samples based on mRSS. Principal component analysis of core
microbiome profiles based on mRSS. Data were limited to SSc lesional
forearm samples only. Patients were divided into quartiles based on
mRSS score at the time of biopsy (low, < 5; medium, 6–15; high, 16–30;
very high, > 30). (PPTX 77 kb)

Additional file 6: Figure S2. Principal component analysis of paired
lesional forearm samples. Core microbiome profiles from seven paired
forearm and back samples were analyzed by principal component
analysis to assess the relationship between anatomical sites. Samples
were color coded by A) anatomical site, and B) patient. (PPTX 91 kb)

Additional file 7: Table S5. Single-sample gene set enrichment analysis
in SSc patients. Single-sample gene set enrichment analysis (ssGSEA) [26]
was run as a module in GenePattern, using relevant KEGG pathways as
the query gene sets. Raw pathway enrichment scores are shown for each
sample in our dataset. (XLSX 102 kb)

Additional file 8: Figure S3. Comparing gene expression with taxonomic
abundance. Single-sample gene set enrichment analysis (ssGSEA) provides a
quantitative measurement, expressed as a single value, describing the extent
to which a given gene set is coordinately up- or downregulated in a sample.
A. To reduce the dimensionality of the data, the activation of a given KEGG
pathway was assessed using ssGSEA, reducing a large set of functionally
related genes to a single value for each patient. This process was repeated for
all available KEGG pathways, generating a table of pathway activation scores
for each patient sample (Additional file 2: Table S2). B. Pearson’s correlations
were then used to compare each set of pathway activation scores against the
relative abundance of each genus in the SSc skin core microbiome. C. This
process is repeated for each combination of KEGG pathway and genus,
producing a correlation matrix. D. Data are then clustered hierarchically and
visualized to identify patterns of gene expression, and its relationship to
microbial abundance. (PPTX 113 kb)

Additional file 9: Figure S4. Differences in kingdom- and phylum-level
abundance between groups. Kingdom- and phylum-level abundance is
shown for all major gene expression clusters (Fig. 4a, b). Data are presented
as log2 median-centered values for all forearm biopsies from SSc (blue) and
controls (gray). (TIF 7050 kb)
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