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Abstract—Physical activity (PA) is known to be a risk factor
for obesity and chronic diseases such as diabetes and metabolic
syndrome. Few attempts have been made to pattern the time
of physical activity while incorporating intensity and duration in
order to determine the relationship of this multi-faceted behavior
with health. In this paper, we explore a distance-based approach
for clustering daily physical activity time series to estimate tempo-
ral physical activity patterns among U.S. adults (ages 20-65) from
the National Health and Nutrition Examination Survey 2003-
2006 (NHANES). A number of distance measures and distance-
based clustering methods were investigated and compared using
various metrics. These metrics include the Silhouette and the
Dunn Index (internal criteria), and the associations of the clusters
with health status indicators (external criteria). Our experiments
indicate that using a distance-based cluster analysis approach to
estimate temporal physical activity patterns through the day, has
the potential to describe the complexity of behavior rather than
characterizing physical activity patterns solely by sums or labels
of maximum activity levels.

Index Terms—DTW, kernel k-means, NHANES, physical ac-
tivity pattern, time series clustering

I. INTRODUCTION

Physical activity (PA), the movement produced by the
contraction of skeletal muscle causing energy expenditure
above a basal level, is a complex human behavior providing
many health benefits regardless of age, gender, race, fitness
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level, or current life stage [2]. Physical activity is a risk
factor for obesity and chronic diseases such as diabetes and
metabolic syndrome [34], [35], [44], [47], [53]. Studies that
have investigated patterning physical activity lag behind other
health behaviors, such as diet, both conceptually and method-
ologically. To date, work has mainly focused on physical
activity patterns of varying intensities and how they link to
health [41], [43], [46], [48], [49]. Less is known about the
patterns of physical activity behaviors over continuous time
and their associations to health status indicators such as body-
mass-index (BMI) and waist circumference. Recent studies
provide evidence that the time of physical activity may be
related to health [8], [13], [55], [56], and a few heuristic
concepts of temporal physical activity patterns have been
introduced to define the chronological succession of physical
activities [26], [46]. Other studies have attempted to include
the time of the physical activity by using summary estimates
such as the percentage of morning activity to daily total
activity [13] or the time of the exercise session [8]. These
studies provided early developments of temporal physical
activity patterns, but relied heavily on experts’ knowledge
and pre-defined standards. Using data-driven methods such as
cluster analysis for the incorporation of time, intensity, and
other factors of physical activity is rarely considered. The
computational limitations incurred by using complex distance
measures have further hindered the analysis of “minute-level”
accelerometer-collected data from physical activity studies.

In this paper, we define the creation of Temporal Physical
Activity Patterns (TPAP) as the partitioning of daily physical
activity time series data into mutually exclusive clusters using
data-driven approaches that incorporate the time of activities
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as well as other factors such as intensity and duration. Each
cluster represents a specific temporal pattern of physical ac-
tivity. This paper describes a distance-based cluster analysis
approach for estimating temporal physical activity patterns
using the National Health and Nutrition Examination Survey
2003-2006 (NHANES) [3]. The purpose of our work is to
investigate the creation of the TPAPs including intensity, time,
and duration, and to link the TPAPs to health.

The NHANES physical activity dataset (1999 participants
after exclusion) [3] was collected using uni-axial accelerom-
eters that measures vertical acceleration in units known as
“physical activity count (PAC)”. Participants’ physical activity
data correspond to one-dimensional time series of length 1440
minutes (60× 24). The samples of the time series denote the
summed PACs in each one-minute epoch. Since daily physical
activity time series are subject to nonlinear warpings in time
(e.g., walking to work 10 minutes earlier, jogging for 45
minutes instead of 30), the samples from two time series need
to be aligned before being compared. We choose Dynamic
Time Warping (DTW) [42] to align the samples to be able to
compare the physical activity times series. To prevent potential
pathological warpings (e.g., aligning activities in the morning
to activities in the evening) and take into consideration the
temporal nature of the physical activity, the Sakoe-Chiba Band
[42] is introduced as a global constraint which limits the
maximum temporal difference between matched activities.

The DTW distance is combined with three distance-based
clustering methods that are commonly used in time series clus-
tering, namely kernel k-means [40], spectral clustering [30],
and hierarchical agglomerative clustering [37]. The distance-
based clustering methods require the computation of a distance
matrix which consists of the pairwise DTW distances of
all participants in the dataset. Since the DTW distances for
different pairs of participants are computed independently,
we use Graphics Processing Unit (GPU) and CUDA parallel
computing platform [31] to accelerate the computation of the
distance matrices. Our goal is to select the distance measures
and clustering methods that generate clusters with distinctive
physical activity characteristics and meaningful links to health.
In this paper, we investigate three approaches for evaluating
the clustering results: (1) internal criteria (the Silhouette Index
[38] and the Dunn Index [17]), (2) external criteria (associa-
tions between clusters and health status indicators determined
by multivariate linear regression), and (3) cluster visualizations
including mean trajectory and heat map.

Our major contributions in this paper can be summarized
as follows:

• We investigate a distance-based cluster analysis approach
for estimating temporal physical activity patterns in the
NHANES dataset.

• We evaluate the clustering results through internal crite-
ria, external criteria, and visualizations.

• We show through experiments that the temporal physical
activity patterns are derived based on the integration
of time and intensity of physical activity, and could
meaningfully link to health.

II. RELATED WORK

A. Clustering Methods for Physical Activity Data

Here we review previous methods for clustering physical
activity data. The physical activity data used in this paper
are time series representing the intensity of physical activity
in a day. While searching for related literature, only a small
number of works used the same daily physical activity time
series to study the association to health. Therefore, we also
include in the review some works that used different type of
physical activity data (not time series), but focused on the as-
sociation between physical activity and health. These methods
for clustering physical activity data can be categorized into
two types: 1) using pre-defined grouping standards (summary
metric); and 2) using data-driven methods such as k-means
and hierarchical clustering.

Pre-defined grouping standards or summary metrics are
usually designed by domain experts to separate the participants
into clusters [8], [13], [26], [43], [46], [49]. In [8], Alizadeh et
al. divided 48 overweight females into morning and evening
groups based on the time of exercise to study the effect on
appetite and anthropometric indices. Chomistek et al. [13]
clustered the participants into quartiles based on the ratio of
activities before noon, and studied the clusters’ association
to body mass index (BMI). Lindgren et al. [26] summarized
accelerometer data into 3 pre-defined levels: sedentary, low,
and medium-to-vigorous, and used regression models to find
links between physical activity levels and socioeconomic
status. In general, using pre-defined grouping standards has
the flexibility in analyzing desired physical activity features.
However, the grouping standards often omit detailed infor-
mation from original, minute-level physical activity data. In
addition, designing the grouping standards requires domain
expert knowledge, which potentially limits the quality of
physical activity patterns [54]. There is little evidence of
what are the “correct” grouping standards, and the appropriate
intensity, duration, and time of physical activity throughout a
day [2].

Data-driven methods have also been investigated to derive
unbiased interpretation of physical activity patterns [7], [39],
[41], [52]. The data-driven methods followed two general
directions. The first one is the model-based approach which
constructs probabilistic models for fitting physical activity
data. In [41], Metzger et al. first determined total minutes
of moderate-to-vigorous physical activity (MVPA), vigorous
physical activity (VPA), and minutes of MVPA that occurs
in bouts of 10 minutes for each participant. These intensity
features were used to design a latent class analysis (LCA)
model to cluster the NHANES dataset and estimate physical
activity patterns associated with the clusters. The second
direction is the distance-based approach using features from
descriptive statistics or important motifs [7], [39], [52]. Rov-
niak et al. [39] examined the duration of moderate-to-vigorous
physical activity (MVPA) from four different life domains:
leisure, occupation, transport, and home. The authors then
used the Euclidean distance and hierarchical agglomerative
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clustering to group the participants and study psychosocial
and built-environment differences in U.S. adults. These data-
driven methods mainly focused on varying physical activity
intensities, while the time of activity (temporal information)
was often omitted.

In this paper, we also explore a distance-based approach.
In contrast, the distances we use are computed using DTW
based on the daily physical activity time series instead of
intensity features so that the time of the activity is con-
sidered. Dynamic Time Warping (DTW) and similar elastic
distances [28] have been widely used in time series cluster-
ing/classification [29], [45], [57]. There have also been some
works using DTW to analyze daily physical activity time
series. In [54], the authors used Low Rank and Sparse matrix
decomposition (LRS) to decompose a daily physical activity
time series dataset (HealthyTogether [11]). They used DTW
and hierarchical agglomerative clustering on the low rank and
sparse components separately, and generated the final clusters
through cross-product. However, global constraints for DTW
and alternative clustering methods were not explored in [54],
and the evaluation of clustering results is limited to internal
criteria and visualizations. The relationship between physical
activity patterns and health was not studied in [54] due to the
lack of anthropometric and health-indicator data.

B. NHANES 2003-2006 for Physical Activity Studies

The NHANES 2003-2006 [3] is one of the only publicly-
available, nationally representative datasets to capture physi-
cal activity through accelerometry devices [4], [5]. Here we
review how the previous works used the NHANES 2003-
2006 for physical activity research. Among the literature we
reviewed, only a few used clustering methods to separate the
participants in the NHANES 2003-2006 dataset and studied
their association to health [14], [41], but the physical activity
data were simplified to represent only the intensity, while
the time of activities was often omitted. In some studies
[10], [15], [27], [32] the participants were clustered based on
their anthropometric or health-indicator data (e.g., age, gender,
BMI, etc.), then the authors studied the association between
the clusters and physical activity. There are also some works
which used the NHANES physical activity data to perform
regression analysis against health status indicator [20], [33].
To our knowledge, few previous works used the NHANES
2003-2006 dataset to perform clustering analysis based on the
minute-level, accelerometer-collected physical activity time
series.

III. OUR PROPOSED APPROACH

A. DTW Distance Measure

Let X = [x1, x2, . . . , xM ] and Y = [y1, y2, . . . , yM ] be
two one-dimensional time series of the same length M . Let
X[k : l] = [xk, xk+1, . . . , xl] be the sub time series of X
(1 ≤ k ≤ l ≤ M). In this paper, these time series represent the
daily activity routines of different participants. The samples
xi and yj are the Physical Activity Counts (PACs) collected
using uniaxial accelerometry devices. Their time indices i and

j denote the time (minute) when xi and yj are collected.
Detailed description of the NHANES physical activity dataset
can be found in section IV-A.

The first step in estimating temporal physical activity pat-
terns is to find a proper distance measure for comparing the
physical activity time series. Two physical activity time series
X and Y may not be aligned temporally. This is due to the fact
that different participants have different daily activity routines.
The Euclidean distance between X and Y is defined as:

dEuclidean(X,Y) =

√√√√ M∑
i=1

(xi − yi)2 ;

Using the Euclidean distance, a small temporal shift in X or
Y could result in a large increase in the distance, which is
unsuitable for physical activity analysis. The Dynamic Time
Warping (DTW) [42] distance provides a way of temporally
aligning two time series such that the distance measure is
not sensitive to temporal misalignment. The alignment of time
series X and Y determined by DTW is denoted as the optimal
warping path P . The optimal warping path P is a set of time
index pairs that describes how the samples of X map into the
samples of Y (e.g., if the ith sample of X is mapped to the
jth sample of Y, the time index pair (i, j) will be included
in the warping path). The DTW distance between X and Y
is defined as

dDTW (X,Y) = min
P

∑
(i,j)∈P

Γ(xi, yj) ,

where Γ : R × R → R+ is a local distance function. Details
about finding the optimal warping path can be found in [42].
In this paper, we choose Γ(xi, yj) = (xi−yj)

2 to be the local
distance function.

Fig. 1 gives an example of how two physical activity time
series from the NHANES dataset are aligned by the Euclidean
distance and the DTW distance respectively. Here, y-axis is the
physical activity count (PAC) which represents the intensity
of activities (see Section IV-A for more detail). With the
Euclidean distance, the intensive activities of one participant
are often aligned to the sedentary periods of another. This
exaggerates the actual difference between the two participants’
activity patterns. The DTW distance aligns the two time series
such that the intensive activities from one participants are
compared to the intensive activities of another. In this paper,
to prevent potential pathological alignments (e.g., aligning
morning activities to evening activities), the Sakoe-Chiba band
[42] is used as a constraint on the warping path of DTW.
The Sakoe-Chiba band limits the maximum difference between
the time indices of aligned samples, i.e., it limits (i, j) ∈ P
by |i − j| ≤ T, where P is the warping path, and T is
the parameter for the Sakoe-Chiba bandwidth. We denote
constrained DTW with the Sakoe-Chiba Band as CDTW.

B. Clustering Methods

The second step of estimating temporal physical activity
patterns is to group the time series based on the selected
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Fig. 1. Temporal alignment of two physical activity time series from the NHANES dataset. Top: The original time series before time warping. The Euclidean
distance compares the samples with the same time index, and exaggerates the actual difference. Bottom: The DTW distance aligns the samples to compensate
the temporal shifts.

distance measure. Several distance-based clustering methods
are examined in the Experimental Section IV. Based on our ex-
perimental results we focus on the most successful approaches.
These include kernel k-means [40] and kernel hierarchical
agglomerative clustering with Ward’s Linkage [24].

1) Kernel K-Means: Kernel k-means has been used to
cluster data points which are not linearly separable. First,
the time series are projected from the input space V onto a
hyperspace W using a projection function ϕ : V → W . Next,
the projected points in the hyperspace are partitioned using
the standard k-means clustering method. The inner product of
projected points in hyperspace W can be computed through
the corresponding kernel function k : V × V → R which
satisfies

k(X,Y) = ϕ(X) · ϕ(Y) ;

Let {Cl}kl=1 denote a partition of the dataset into k clusters,
and let mi = 1

|Ci|
∑

X∈Ci
ϕ(X) be the “center” of the ith

cluster in the hyperspace. Kernel k-means finds the partition
by minimizing an objective function defined using the total
sum of squared errors

k∑
i=1

∑
X∈Ci

∥ϕ(X)−mi∥2 ;

Furthermore, the squared distance from point X to the center
of the ith cluster mi can be written as

∥ϕ(X)−mi∥2 = k(X,X)− 2
1

|Ci|
∑
Y∈Ci

k(Y,X)

+
1

|Ci|2
∑
Y∈Ci

∑
Z∈Ci

k(Y,Z) ;
(1)

Equation (1) shows that as long as the corresponding kernel
function k is known, the projection function ϕ is not needed in
computing distances between cluster centers and data points in
the hyperspace. Hence a kernel function matrix K consisting
of the pairwise kernel function values of all data points is
sufficient to perform kernel k-means clustering without the
original data points.

2) Kernel Hierarchical Agglomerative Clustering: Hierar-
chical Agglomerative Clustering (HAC) is frequently used in
physical activity cluster analysis [39], [54]. The HAC starts
by treating each data point as a cluster, and then successively
merges two nearest clusters by minimizing a measure of
pairwise cluster distance, until there is a single cluster. A
dendrogram [37] is formed during the agglomeration process,
and the desired number of clusters can be drawn from the
dendrogram.

There are several different ways of defining the distance
between clusters, which are referred to as linkage methods.
Some commonly used linkages are based on the spatial dis-
tances between data points, such as Single, Complete, and
Average [37]. To use kernel functions on these linkages, one
can use agglomeration based on the distances in hyperspace
[24]:

∥ϕ(X)− ϕ(Y)∥ =
√
k(X,X)− 2k(X,Y) + k(Y,Y) ;

However, using these linkages (Single, Complete, Average)
to the CDTW distance matrices leads to a serious chaining
effect [37], where the data points sequentially get merged
into a single cluster. From our experimental observations,
the generated clusters are greatly unbalanced in size, with
the largest cluster taking up to 95% of the entire dataset.
Such issues limit the fidelity of the external evaluation of
the clusters. The unbalanced clusters also tend to emphasize
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extreme patterns that only represent a relatively small number
of participants, and do not support our goal of defining
population physical activity patterns.

In contrast, kernel Ward’s method [24] is a linkage method
that aims to minimize cluster variance. The variance of a
cluster Ci is defined using the sum of squared errors

EF (Ci) =
∑
X∈Ci

∥ϕ(X)−mi∥2

=
∑
X∈Ci

k(X,X)− 1

|Ci|
∑
X∈Ci

∑
Y∈Ci

k(X,Y) ;

To determine whether clusters Ci and Cj are next to be
merged, the distance between them is defined as

dWard(Ci, Cj) = EF (Ci ∪ Cj)− EF (Ci)− EF (Cj) ;
(2)

The distance between the merged cluster Ci ∪Cj and another
cluster Cq is then updated by

dWard(Cq, Ci ∪ Cj) =
|Cq|+ |Ci|

|Cq|+ |Ci|+ |Cj |
dWard(Ci, Cq)

+
|Cq|+ |Cj |

|Cq|+ |Ci|+ |Cj |
dWard(Cj , Cq)

+
|Cq|

|Cq|+ |Ci|+ |Cj |
dWard(Ci, Cj) ;

Notice that kernel Wards’s method and kernel k-means both
attempt to minimize the cluster variance in hyperspace. In our
experiments (Section IV-B), these two methods produce more
balanced clusters, suggesting that for the physical activity data
the total sum of squared errors is an appropriate objective
function.

3) Convert CDTW into Kernel Function: In this paper, we
used the Gaussian Dynamic Time Warping Kernel [9] to con-
vert the CDTW distances into kernel function values for kernel
k-means and kernel hierarchical agglomerative clustering:

kCDTW (X,Y) = exp{−γ · dCDTW (X,Y)} ; (3)

The Gaussian DTW Kernel is straightforward and easy to
implement. In this paper, we further exploited the parallel
structure of GPUs to accelerate the computation of CDTW
distance matrices.

IV. EXPERIMENT AND EVALUATION

A. Dataset

The NHANES is designed to assess the health and nutri-
tional status of children and adults in the United States [3]–
[5]. In order to represent the non-institutionalized civilian U.S.
population, a multi-stage probability sampling design is used
to recruit participants for NHANES. To date, the NHANES
is one of the only publicly-available, nationally representative
datasets to capture physical activity through accelerometry.

The physical activity data were collected as follows. Partic-
ipants wore an ActiGraph AM-7164 (Formerly the CSA/MTI
AM-7164; ActiGraph, LLC, Fort Waltion Beach, FL) on the
right hip. The Actigraph AM-7164 uses a cantilever beam

sensor for measuring vertical acceleration in units known
as “physical activity count (PAC)” at a sampling frequency
of 10 Hz. The original data from the accelerometer were
filtered using analog methods, and typically calibrated in a
laboratory to achieve linear regression associations between
the “counts” and a measured physiologic variable [21]. In the
NHANES 2003-2006 Examination, orginal PACs (10 Hz) were
further summed over each minute epoch [3]. All participants
were asked to wear the devices on for 7 consecutive days.
Only non-pregnant participants who were 20-65 years without
missing anthropometric and laboratory data are included in the
experiments. Due to compliance and other factors, there are
a large number of participants who do not have a full 7-day
record. To maximize the number of participants involved in
our analysis, we included anyone with at least one weekday of
valid accelerometer data. There are 1999 targeted participants
after exclusions, and one valid weekday of each participant is
randomly selected to form the physical activity dataset. Note
that the physical activity data of each participant corresponds
to a one-dimensional time series:

X = [x1, x2, . . . , xM ] ,

where xi is the physical activity counts (PACs) summed over
the ith minute in a day, and M = 1440 is the number of
minutes in a day (24-hour period). Two example time series
can be found in Figure 1.

B. Cluster Evaluation

Participants were clustered using methodologies discussed
in the previous section. For parameter selection, the Gaussian
DTW Kernel parameter γ in Equation 3 is fixed to be half
of the average of all distances in the CDTW distance matrix.
With different values of Sakoe-Chiba bandwidth T , the CDTW
distance would have varying emphasis on the time difference
of physical activity over intensity difference. In this paper, we
investigated 12 values of T ranging from 60 to 720 (minute)
in step of 60. We did not keep increasing the bandwidth to
the maximum (1440) because the CDTW distances of most
pairs of participant converge to DTW before bandwidth 720.
Keeping increasing the bandwidth after T > 720 has little
influence on the generated clusters. CDTW with different
bandwidths can be treated as different distance measures.
We combined each distance measure with all three clustering
methods (kernel k-means, spectral clustering, and kernel hier-
archical method) to have a total of 36 different combinations.
For the number of clusters, k, we explored four values
k ∈ {3, 4, 5, 6} for each combination of distance measure
and clustering method. We conducted 144 experiments on
the NHANES physical activity dataset (12 distance measures
× 3 clustering methods × 4 numbers of clusters). From all
the combinations of distance measures and clustering methods
we explored, we wish to select the ones that could generate
clusters with both distinctive physical activity characteristics
and meaningful links to health.

As our proposed approach is essentially a time series
clustering method, the evaluation of the clustering results is
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not easy due to the absence of ground truth. In a review of
time series clustering studies [6], three possible approaches for
evaluating clustering results were described: internal criteria,
external criteria, and visualizations. In this paper, all three
evaluation approaches were used. For robust post hoc tests, we
also take into consideration the sample sizes of the clusters.

1) Sample Sizes of Clusters: As suggested by the NHANES
analytic guidelines [1], a cluster size of less than 30 is
considered insufficient for inferential analysis based on the
normal approximation. Therefore, we disregard the unbalanced
clustering results whose smallest cluster has less than 30
participants. From our experiments, the unbalanced clusters
appeared most often in clustering results derived by spectral
clustering and kernel hierarchical clustering with Single, Com-
plete, or Average linkage methods. Of all these results, the
largest clusters always take up the majority of the partici-
pants in the dataset (over 90%), leaving few participants in
the smaller clusters (in most cases less than 10). Following
the instructions of the NHANES analytic guidelines [1], we
disregard the results derived by spectral clustering and kernel
HAC with Single, Complete, and Average linkage, and focus
on kernel k-means and kernel HAC with Ward’s linkage.

2) Internal Criteria: The internal criteria are similar to the
objective function in kernel k-means, and formalize the goal
to reach higher intra-cluster similarity and lower inter-cluster
similarity [6]. Since the internal criteria are computed based on
the PA data, they evaluate whether the clusters from the same
result have distinctive physical activity characteristics. Two
internal criteria that are commonly used in cluster analysis
were adopted in this paper, namely the Silhouette Index [38]
and the Dunn Index [17]. For both criteria, higher values
indicate better clustering quality. When computing the internal
criteria, we always follow the same distance measure that was
used to generate the clusters.

When ground truth is not available, the number of clusters is
commonly determined through internal evaluations [41], [54].
Table I lists the Silhouette and the Dunn Index for different
number of clusters k while fixing clustering method to kernel
k-means. For both internal criteria and most combinations
of distance measures and clustering methods, the smaller
number of clusters generally achieves better internal criteria.
Therefore, we choose the number of clusters to be k = 3
in the following discussions. In some related studies, the
internal criteria were also used to evaluate distance measures
and clustering methods. However, it can be shown from our
experiments (Table II) that the Silhouette Index and the Dunn
Index may support different clustering methods at certain
CDTW bandwidths (e.g. when T = 540). If we fix kernel
k-means as clustering method and compare different distance
measures, we can find that while the Silhouette Index favored
CDTW with smaller bandwidth, larger CDTW bandwidths
generally achieved better Dunn Index. It is worth mentioning
that different internal criteria have their own ways of defining
inter- and intra- cluster difference [17], and it remains arguable
whether internal criteria are valid for comparing distance
measures. Therefore, we introduce the external criteria in the

TABLE I
THE SILHOUETTE/DUNN SCORES FOR DIFFERENT NUMBER OF CLUSTERS

k WHILE FIXING CLUSTERING METHOD TO KERNEL K-MEANS.

Ta k = 3 k = 4 k = 5 k = 6
60 0.257/0.062 0.167/0.054 0.088/0.045 0.069/0.025
120 0.214/0.062 0.151/0.053 0.059/0.035 0.053/0.035
180 0.201/0.069 0.149/0.065 0.085/0.051 0.057/0.053
240 0.138/0.067 0.148/0.070 0.055/0.057 0.070/0.057
300 0.145/0.076 0.057/0.068 0.056/0.064 0.054/0.063
360 0.147/0.078 0.057/0.071 0.056/0.068 0.057/0.063
420 0.148/0.081 0.056/0.073 0.060/0.073 -0.002/0.046
480 0.150/0.083 0.058/0.074 0.064/0.074 -0.001/0.047
540 0.148/0.084 0.059/0.075 0.065/0.074 -0.001/0.048
600 0.147/0.084 0.059/0.074 0.065/0.075 0.001/0.048
660 0.152/.084 0.060/0.074 0.066/0.075 0.002/0.048
720 0.148/0.085 0.061/0.074 0.066/0.075 0.003/0.048

a The Bandwidth of CDTW.

TABLE II
THE SILHOUETTE INDEX, THE DUNN INDEX (INTERNAL), AND THE

NUMBER OF TOTAL SIGNIFICANT-DIFFERENCE PAIRS (EXTERNAL) FOR
CLUSTERING RESULTS DERIVED FROM DIFFERENT COMBINATIONS OF

DISTANCE MEASURES (ROWS) AND CLUSTERING METHODS (COLUMNS)
WHILE THE NUMBER OF CLUSTERS WAS SET TO 3.

Ta KKMb KHAC-Wardc

Sd De SDPf S D SDP
60 0.257 0.062 8 0.221 0.053 8
120 0.214 0.062 9 0.065 0.035 8
180 0.201 0.069 11 0.253 0.067 10
240 0.138 0.067 9 0.057 0.068 8
300 0.145 0.076 12 -0.054 0.044 7
360 0.147 0.078 12 0.207 0.075 9
420 0.148 0.081 14 -0.004 0.038 7
480 0.150 0.083 13 0.038 0.067 8
540 0.148 0.084 15 0.208 0.078 12
600 0.147 0.084 15 0.041 0.051 7
660 0.152 0.084 13 0.312 0.090 10
720 0.148 0.085 14 0.281 0.068 7

a The Bandwidth of CDTW; b Kernel K-Means; c Kernel HAC with Ward’s
Linkage; d the Silhouette Index; e the Dunn Index; f Number of Significant

Difference Pairs.

following section to help the evaluation of distance measures
and clustering methods.

3) External Criteria: In general, the external criteria such
as the Rand Index [36] evaluate clustering results based on
ground truth. Unfortunately, participants in the NHANES
physical activity dataset are not labeled. Instead, each par-
ticipant has several health status indicators such as body mass
index (BMI) and blood pressure. In this paper, we use these
indicators to define an external score which represents the
clusters’ association to health.

Twelve health status indicators were chosen for their
previously studied associations with physical activity [12],
[16], [50], including BMI, waist circumference (WC), fasting
plasma glucose, triglycerides, hemoglobin A1c, total choles-
terol, high-density lipoprotein (HDL-C), systolic blood pres-
sure (SBP), diastolic blood pressure, type 2 diabetes (T2DM),
metabolic syndrome (MS), and obesity. For one clustering
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result and a specific health status indicator, we use the cluster
label as explanatory variable and the health status indicator as
dependent variable to perform Multivariate Linear Regression
(MLR). We control for potential confounders (survey year,
age group, sex, ethnicity/race, poverty-income ratio (PIR),
BMI, and total activity count (PACs summed over one day))
and adjust for multiple comparisons to determine the asso-
ciation between the clusters (explanatory variable) and the
health status indicator (dependent variable). Tukey-Kramer’s
procedure [51] was used for adjusting the p-values. In this
paper, we chose the 5% significance level (α). Two clusters are
considered significantly different if their adjusted p-value of
pairwise comparison is less than 0.05. SAS (version 9.4) was
used to complete the MLR and multiple comparison analysis.
After one clustering result’s associations to all 12 health status
indicators are determined, the external score is computed as
the total number of pairwise comparisons that show significant
difference. With more pairs of comparisons showing signifi-
cant difference, there is a stronger association between the
clusters and health. For detailed data collection procedures
of the selected health status indicators and confounders, we
refer interested readers to the Anthropometric Assessment and
Laboratory Tests section in [18], [19], [25].

From all the methodologies considered in this paper, kernel
k-means combined with CDTW bandwidth of 540 and 600
both have the highest external score (15 significant-difference
pairs among the 12 health status indicators). Since CDTW
bandwidth 540 achieved better internal scores than bandwidth
600, we choose kernel k-means combined CDTW bandwidth
540 to generate the final temporal physical activity patterns. In
the following section, we will use visualization tools to show
the physical activity characteristics of the clusters generated
using this combination. Here we do not attempt to adjust
our subsequent inferential analysis for the selection of the
clustering parameters. But this is reasonable in view of the
fact that unadjusted confidence intervals are generally much
closer to those which are obtained with post selection inference
(for example with lasso, where such a framework exists [22])
than what would have been obtained with data splitting due
to loss of efficiency.

4) Cluster Visualization: Unlike the internal and external
criteria, visualizations do not have a scalar value that reflects
the quality of clustering results. Instead, visualizations intu-
itively illustrate the physical activity characteristics of different
clusters, such as the overall physical activity intensity level
and the most active time periods in a day. In this paper, we
visualized the clustering results through their mean trajectories
and heat maps. Due to page limitations, we mainly focused
on the visualizations of the selected clustering result (kernel
k-means coupled with CDTW bandwidth 540). Details about
the two visualization methods are given bellow.
Mean Trajectory of a cluster C shows the average intensity
at each time unit. It is defined as:

m(t) :=
1

|C|
∑
i∈C

Xi[t] ,

Fig. 2. Mean trajectories of the three clusters obtained using kernel k-means
and CDTW with T = 540.

where Xi denotes the physical activity time series of a
participant who gets partitioned to cluster C. |C| denotes
the number of participants in cluster C. Time unit here is
converted into hour level (t ∈ [0 : 23]) for better visualization,
and Xi[t] is the summed intensity over the tth hour of the ith

participant.
Heat Map of a cluster C is a gray scale image which shows
the distribution of non-zero physical activity counts (PACs) at
each time unit. For cluster C, its physical activity heat map
is defined as:

hm(t, k) :=
1

|C|
∑
i∈C

1[yk,yk+1)(Xi[t]) ,

where yk (k ∈ [0 : K] and K = 80) denotes an increasing
sequence of physical activity intensity with yk = k ×∆ and
∆ = 1500, which defines the intensity bins; 1[yk,yk+1) is the
indicator function:

1[yk,yk+1)(Xi[t]) =

{
1, if Xi[t] ∈ [yk, yk+1)

0, else
;

yK (K = 80) is specially set to infinity to accommodate the
extreme activity intensities.

Fig. 2 and Fig. 4 show the mean trajectories and heat
maps of the clusters. Here, the constraint on time differ-
ence is relatively weak, and participants are separated based
mainly on the intensity level. When bandwidth T reaches 540
(minute), the CDTW distances almost converged to DTW,
and keeping increasing T has little influences on the clusters.
Our observations show that the mean trajectories of clusters
will not have significant changes for bandwidth larger than
540. From Fig. 2, all three clusters’ most active periods in
a day are from 8 a.m. to 4 p.m., and participants become
sedentary after 4 p.m. Cluster 2 is the most active of all three
clusters, but has the smallest number of participants. Cluster 1
contains the largest number of participants and has moderate
amount of activities. Cluster 3 also contains a large number of
participants, but has the lowest activity level. Similar physical
activity characteristics can be observed in their heat maps as
well.
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Fig. 3. Mean trajectories of the three clusters obtained using kernel k-means
and CDTW with T = 60.

As we decrease the bandwidth T , CDTW distance and
clustering results focus more on participants’ temporality
difference than intensity difference. Fig. 3 shows the mean
trajectories of the clusters obtained using CDTW bandwidth
60 and kernel k-means. Comparing Fig. 3 to Fig. 2, the
temporality difference between clusters in Fig. 3 becomes
much more obvious. Here, Cluster 1 is the most sedentary
cluster, and has a lower intensity level throughout the day;
Cluster 2 and Cluster 3 both have more active physical activity
patterns, but the most active period of Cluster 2 takes place
between 8 a.m. and 12 a.m. in the morning while for Cluster
2 it happens between 4 p.m. and 8 p.m. in the late afternoon.

CONCLUSION

In this paper, we describe a cluster analysis approach that
combines distance measures and distance-based clustering
method for estimating temporal physical activity patterns
of U.S. adults ages 20-65 in the NHANES dataset. From
our exploration on clustering methods, using cluster-variance
based objective functions is likely to have a positive effect
on producing more equal-sized clusters. Therefore, we mainly
focused on kernel k-means and kernel HAC with Ward’s
linkage in the evaluation section. We adopted both internal
criteria and external criteria to evaluate the clustering results
derived using different combinations of distance measures
and clustering methods. The number of clusters is set to 3
as it achieved the best scores for both types of criteria in
most situations. Based on the internal criteria, each clustering
method achieved better scores under some CDTW bandwidths,
but kernel k-means is favored in this study as it is more robust
and stable against small changes in distance matrix.

From the visualizations of the clusters, we can find distinc-
tive physical activity characteristics of each cluster in either
temporality or intensity. With larger Sakoe-Chiba bandwidth
in CDTW, there will be less constraint on the temporal
difference between matched activities. Subsequently, the in-
tensity difference between clusters will be more prominent
than temporal difference. Moreover, the regression analysis
as external criteria demonstrated that clinically meaningful

differences [19] in health status indicators can be found among
the four clusters. This investigation demonstrates that multiple
aspects of physical activity such as intensity, duration and
time may be incorporated and patterned, capturing the multiple
behaviors related to physical activity as it occurs throughout
a day.

In this paper, we have performed cluster analysis focusing
on physical activity solely, and discovered temporal patterns
and their links to health status indicators. Yet, dietary intake
and physical activity may be connected in complex ways and
have a cumulative influence on obesity and chronic diseases
[23]. Other multi-faceted daily activities such as dietary intake
may be influenced by the varying factors of physical activity
behaviors over time. Their integration and the integration of
further behavioral and health information to create tempo-
ral patterns may have synergistic links to health outcomes.
Therefore, future studies should consider integrating additional
multi-faceted behaviors.
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