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ABSTRACT: A Cd-MOF was constructed based on 3,5-bis(4-carboxyphenyl)
pyridine under solvothermal conditions. Its structure and phase purity were verified
by single-crystal X-ray diffraction. Thereafter, some studies on the morphology,
structure, and luminescent properties of the compound were carried out. The
compound exhibited a highly sensitive response to Fe3+, Cr(IV), trinitrophenol
(TNP), and colchicine based on the fluorescence-quenching mechanism. The
possible mechanism of luminescence quenching was discussed in detail.

1. INTRODUCTION
Environmental pollution has grown in importance as a global
concern for public health and the ecosystem over the past few
decades due to social development,1 and many types of
pollutants such as nitroaromatic compounds, heavy metal ions,
toxic anions, and colchicine are associated with health risks.
Chemical synthesis and production of explosive materials are
two common uses of nitroaromatic compounds (NACs), such
as nitrobenzene (NB), 2,4,6-trinitrotoluene (TNT), and
trinitrophenol (TNP), and they pose a substantial risk to
human health and social security since they can contaminate
air, groundwater, and soil.2 TNP is the most dangerous among
these explosives because of its tremendous explosive strength
and numerous uses in dye, leather, explosive manufacturing,
textile, and pharmaceutical industries.3

Fe3+ is a fundamental element that is widely distributed in
ecological systems and the environment and plays a significant
role in the processes of hemoglobin formation, oxygen
metabolism, and electron transfer. Both an excess and shortage
of iron can lead to various health problems, including reduced
immunity, iron deficiency anemia, multiple organ failure, and
even cancers of the esophagus and bladder.4

Inorganic pollutants, especially toxic anions, also pose a
serious environmental hazard due to their excessive emissions
from industrial facilities such as electroplating, metallurgy, etc.5

Hexavalent chromium ions, particularly Cr2O72− and CrO42−
anions, are extensively utilized in numerous industrial
processes, including pigment printing, leather tanning, electro-
plating, and other associated domains. On the other hand, it
has also been shown that they are two of the most dangerous
pollutants in the environment. Since they can build up in living

things and seriously harm human health by causing maladies
such as cancers, deformities, and gene mutations, they are not
easily broken down by nature. Hence, the detection of Cr(IV)
is of great significance.6

Colchicine has also been observed to suppress many
inflammatory processes (Scheme S1); it is a naturally occurring
toxic compound derived initially from Colchicum spp. In
humans, even minute amounts of colchicine can induce nausea,
vomiting, diarrhea, and bone marrow suppression. It is also a
traditional medication used to treat cirrhosis, spontaneous
inflammation, and gout.7 Therefore, the detection of colchicine
is of interest.
Recently, various analytical methods have been developed

and applied to identify and quantify these contaminations, and
these methods primarily include spectrophotometry, induc-
tively coupled plasma mass spectrometry (ICP-MS), gas
chromatography/mass spectrometry, atomic absorption spec-
trophotometry (AAS), and electrochemical analysis.8 However,
these techniques are usually costly and time-consuming and
require complex instruments and advanced operational skills.
Therefore, there is a great need to find more effective
techniques with a simple operation, fast response time, and
high sensitivity. Optical sensing is well recognized as an
effective, economical, and prompt detection approach, making
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it a viable tool for contaminant detection.9 Luminescent
metal−organic frameworks (LMOFs) are a novel family of
optical materials that have experienced rapid development
because of their unique photophysical characteristics, easily
tailored structures, and permanent porosity, all of which
fascinating properties endow them with potential applications
for detecting explosives, biomolecules, gases, heavy metal ions,
and solvents.10 Nevertheless, there are very few research
studies on multifunctional LMOFs for the simultaneous
detection of TNP, colchicine, and metal ions. In particular,
detecting trace levels of Fe3+, Cr3+, TNP, or colchicine in the
presence of other interfering analogs is extremely challenging
to accomplish selectively and sensitively.
Based on the above discussions, we herein employ 3,5-bis(4-

carboxyphenyl) pyridine (H2L) as an organic linker with Cd2+
to fabricate a new LMOF-CdL, denoted as compound 1. The
structure of compound 1 can be viewed as a three-dimensional
network featuring one-dimensional triangular channels, which
can be utilized as a multifunctional material for sensing Fe3+,
Cr(IV), TNP, and colchicine in methanol with high sensitivity
and selectivity through effective quenching reactions.

2. EXPERIMENTAL SECTION
2.1. Physical Measurements. FT-IR spectra were

acquired using a Nicolet Impact 410 FTIR spectrometer
employing KBr pellets within the 4000−400 cm−1 spectral
range. Both the excitation and emission pass widths were 2.0
nm. A 15 mL stainless steel autoclave lined with Teflon was
used to perform a solvothermal reaction. C, H and N elemental
studies were carried out using a PerkinElmer 2400 element
analyzer. An X-ray powder diffraction (model Rigaku D/max
2550) instrument was used to acquire data for powder X-ray
diffraction measurements. TGA was performed by utilizing a
TGA Q500 V20.10 Build 36 instrument. The analysis was
conducted from room temperature to 800 °C employing a
heating rate of 10 °C/min under a flowing N2 atmosphere.
UV−vis spectra were collected at ambient temperature by
using a TU-1900 spectrometer. Luminescent spectra were
acquired by utilizing the FLS920 spectrofluorimeter employing
excitation and emission pass widths of 2.0 nm.

2.2. Synthesis of Compound 1. Cadmium(II) nitrate
tetrahydrate (15.4 mg), 3,5-bis(4-carboxyphenyl) pyridine (4.8
mg), 4,4′-bipyridine (15.6 mg), and three drops of
concentrated HNO3 were ultrasonically dissolved in DMA (5
mL), CH3CH2OH (2 mL), and H2O (1 mL) in a 20 mL vial at
75 °C for 72 h. Columnar yellow crystals were then collected
and washed with DMA, followed by drying at 60 °C. Yield:
58% (based on 3,5-bis(4-carboxyphenyl) pyridine); IR (KBr
4000−400 cm−1): 3418 (w), 1639 (w), 1509 (s), 1598 (s),
1397 (s), 1280 (m), 1263 (w), 1011 (m), 912 (w), 855 (m),
817 (m), 779 (s), 707 (s), 669 (m), 593 (w), 526 (w), 503
(w), 486 (m). Elemental analysis (%): Calcd for
C25H28N2O7Cd: C 51.6, H 4.82, N 4.82; found: C 51.4, H
4.84, N 4.86.

2.3. Crystal Structure Determination. The Rigaku
RAXIS-RAPID, equipped with a narrow-focus, 5.4 kW
sealed-tube X-ray source using graphite-monochromated Mo
Kα radiation (λ = 0.71073 Å), facilitated data collection and
structural analysis. The data were collected at a temperature of
20 ± 2 °C. The PROCESS-AUTO processing program was
used to process the data. The direct methods of the SHELXL
crystallographic software package were employed to solve the
structure, and full-matrix least-squares approaches were applied

to refine them on F2. Anisotropic thermal parameters were
used to refine all of the compound’s non-hydrogen atoms.
Every hydrogen atom in the organic molecule was incorpo-
rated into the structure factor calculation geometrically. The
additional crystallographic data for this study is CCDC-
2205947. The atomic coordinates detailing this structure were
submitted to the Cambridge Crystallographic Data Center.
Since it is challenging to identify the precise solvent molecules
in the structure, we further determined the molecular formula
of the as-synthesized compound 1 using Platon/Squeeze,
TGA, IR, and elemental analysis. The coordinates are available
from the Cambridge Crystallographic Data Center (CCDC) at
https://www.ccdc.cam.ac.uk/

2.4. Fluorescence Sensing Experiments. For the
purpose of the fluorescence sensing tests, a mixed solution
containing 3 mg of compound 1’s milled samples and 3 mL of
CH3OH was prepared. The mixture was then sonicated for 30
min.

3. RESULTS AND DISCUSSION
3.1. Crystal Structure of Compound 1. Compound 1 is

classified as a member of the monoclinic space group I2/a
based on crystallographic study (Table 1). In compound 1, the

asymmetric unit has one Cd2+ ion and 0.5 L2− ligand (Figure
S1). Six carboxylate O atoms from four different L2− ligands
and one N atom from one L2− ligand coordinate the Cd2+
center (Figure 1a). The L2− ligand is pentacoordinated to three
Cd centers, and each carboxyl group of the L2− ligand adopts a
double coordination pattern of μ2-η2:η1 (Figure 1b). The
Cd−O distances vary from 2.226 (2) to 2.628 (3) Å, while the
O−Cd−O angles are in the range from 53.56 to 174.25°.
Additionally, the O−Cd−N angles are observed within the
range of 74.82−104.65°. Both the Cd center and L2− can be
considered as five-coordinated nodes, resulting in the frame-
work forming a uninodal (5,5)-connected bnn topology
denoted by the point symbol of (46·64) as illustrated in Figure
2.

Table 1. Crystallographic Data and Structure Refinement
Summary for Compound 1

compound 1
molecular formula C25H28CdN2O7
formula weight 580.8
crystal system monoclinic
space group I2/a
a, Å 8.0481(3)
B, Å 16.0917(5)
c, Å 14.9654(5)
α, deg 90
β, deg 96.636(3)
γ, deg 90
V, Å3 1925.15
Z 4
Dcalc, g/cm3 1.620
F(000) 848.0
GoF 1.073
R1, wR2 [I > 2σ(I)]a,b R1 = 0.0308, wR2 = 0.0863
R1, wR2 (all data) R1 = 0.0321, wR2 = 0.0876

aR1 = ||F0| − |Fc||/∑|F0|. bwR2 = [∑w(F02 − Fc2)2/∑w(F02)2]1/2.w =
1/[σ2(F02) + (ap)2 + (bp)], p = [max(F02 or 0) + 2(Fc2)]/3. a =
0.0539, b = 2.3313.
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The one-dimensional Cd-ion chains are formed by a
carboxyl group bridging all of the metal ions in the structure
as presented in Figure 3a. The one-dimensional Cd-ion chains
then interconnect along the b-axis through ligands, resulting in
the formation of a two-dimensional layer. This layer is then
extended by Cd−N bonding, contributing to the generation of
a three-dimensional framework (Figure 3b,c). Furthermore,
one-dimensional ultramicroporous channels with a diameter of
∼3 Å exist along the a-axis, regardless of the van der Waals
radius. Platon calculations reveal that the total solvent
accessible volume of the 3D framework is 620.1 Å3, accounting
for 48.7% of the total cell volume.

3.2. Fluorescence Properties of Compound 1. The
solid-state fluorescence characteristics of compound 1 and H2L
were studied at room temperature. As depicted in Figure 4,
H2L (λex = 330 nm) obtained the maximum emission peak at
378 nm, potentially arising from π → π* or n→ π* transitions.

Conversely, compound 1 exhibited the maximum emission
peak at 414 nm (λex = 365 nm), which was attributed to the
challenging oxidation or reduction of the Cd(II) ion because of
its d10 electronic configuration. These emissions are neither
MLCT nor LMCT. Thus, the emissions can be assigned to
intraligand and interligand luminescence emissions. Due
mostly to the ligand−metal coordination effect, compound
1’s emissions were seen to be red-shifted when compared to
free H2L.

11

3.2.1. Fluorescence Detection of Compound 1 in Various
Solvents. The fluorescence properties of compound 1 were
further tested by suspending the milled samples (3 mg in 3
mL) in various solvents like methanol, NMP (N-methyl-2-
pyrrolidone), DMF, ethanol, DMA, DMSO, acetonitrile
(CH3CN), CH2Cl2, acetone, 1,4-dioxane, and H2O, treated
with ultrasonication at room temperature for 30 min.
Compound 1 displayed the greatest fluorescence emission in
CH3OH, as demonstrated by Figure 5, which also confirms
that compound 1’s fluorescence intensity was significantly
dependent on the solvents. Hence, in fluorescence measure-
ments, CH3OH was selected as the dispersion solvent.

3.2.2. Fluorescence Detection of Compound 1 in Different
Cations. The determination potential of compound 1 was
evaluated by sonicating 3 mg of milled samples in 3 mL of
M(NO3)x methanol solution (0.01 M) (M = K+, Na+, Cd2+,
Zn2+, Co2+, Cu2+, Mn2+, Ni2+, Pb2+, Fe3+, Al3+, Cr3+, Ag+) for 30
min to produce homogeneous suspensions. The photo-
luminescence response for the obtained emulsion containing
different metal ions was recorded (Figure 6). The metal-ion
identities play a major role in determining the fluorescence
intensities. Most of the metal ions, such as K+ and Cd2+, have
little effect on the fluorescence intensity of compound 1. It is
noteworthy that compound 1 exhibits a clear drop in emission
intensity when Fe3+ is present. Additionally, Fe3+ demonstrates
a 100% quenching, indicating that Fe3+ has the greatest
quenching impact on compound 1. To assess the stability of
compound 1 in a methanol solution, the collapse of
framework-related fluorescence quenching after sensing differ-
ent metal ions is excluded according to PXRD measurement
(Figure S10).

3.2.3. Fluorescence Detection of Compound 1 in Different
Concentrations of Fe3+ Solution. To further evaluate the
sensing selectivity toward Fe3+, 1 × 10−3 M Fe3+ was prepared
to test the emission response (3 mg compound 1 in 3 mL
methanol), and the fluorescence intensity decreased continu-
ously with gradually increasing concentrations of Fe3+ solution
(Figure 7). The analysis of the quenching effect involved
applying the linear Stern−Volmer (S−V) equation: I0/I = 1 +
Ksv [M], where Ksv signifies the quenching constant, [M]
represents the concentration of metal ions, I0 denotes the
initial fluorescence intensity, and I stands for the intensities
observed after the addition of Fe3+. The SV plot pertaining to
Fe3+ demonstrated an almost linear correlation, boasting a
strong correlation coefficient of 0.999. The calculated slope,
denoting Ksv, amounted to 1.1 × 104 M−1 (as depicted in
Figure S3). Compound 1’s luminescence intensity was nearly
entirely quenched in the presence of Fe3+ methanol solution
for a given metal ion (Figure S11). To evaluate a material’s
efficacy as a fluorescence sensor, it is critical to determine its
limit of detection (LOD). Compound 1 has the potential to be
a very sensitive fluorescent probe for Fe3+, as evidenced by the
limit of detection of 0.028 mM for Fe3+, calculated from the
equation, LOD = 3σ/k.

Figure 1. Coordination mode of (a) Cd center and (b) L2−.

Figure 2. Topology of compound 1.
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3.2.4. Fluorescence Detection of Compound 1 in Different
Anions. Experiments on anion sensing were conducted
similarly to those on cation sensing. The milled sample of 3
mg compound 1 was dispersed in the individual methanol
solutions of 0.01 M KX (3 mL, X− = Br−, I−, NO3−, SCN−,

C2O42−, CO32−, CrO42−, Cr2O72−, SO32−, PO43−, Cl−, F−) and
then subjected to 30 min of ultrasonication, after which a
stable suspension was obtained for testing and investigating the
fluorescence formed (Figure 8). Their fluorescence intensities

Figure 3. (a) Rod shape of the one-dimensional Cd-ion chain; (b) two-dimensional layer of compound 1 without Cd−N coordination; and (c)
three-dimensional structure of compound 1.

Figure 4. Solid-state fluorescence of compound 1 and H2L.

Figure 5. Fluorescence spectra of compound 1 in different solvents.

Figure 6. Fluorescence spectra of compound 1 toward different metal
ions.

Figure 7. Fluorescence spectra of compound 1 with addition of Fe3+
(1 × 10−3 M).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07110
ACS Omega 2024, 9, 11339−11346

11342

https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07110?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07110?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


were prominently dependent on anions. Compound 1 was
primarily affected by the Cr2O72− and CrO42− anions, which
sharply quenched the compound’s fluorescence and signifi-
cantly reduced it. On the contrary, the other anions showed a
slight effect under the same conditions. The findings suggest
that among other common anions, compound 1 could serve as
a capable fluorescence sensor with excellent selectivity for
Cr(VI). Competitive experiments on compound 1’s anti-
interference sensing ability provide evidence for this point.
These experiments showed that compound 1’s intensity was
acutely quenched in the presence of Cr2O72− and CrO42−
anions, but no discernible changes were seen when competitive
anions were added to the corresponding solutions (Figures S12
and S13). Hence, compound 1’s outstanding anti-interference
sensing capability and high selectivity as a chemical sensor for
Cr2O72− and CrO42− anions in methanol are amply supported
by the aforementioned results.

3.2.5. Fluorescence Detection of Compound 1 in Different
Concentrations of Cr2O7

2− and CrO4
2− Solutions. Fluores-

cence titration studies were conducted to examine the
sensitivity during quenching. This was achieved by adding
varying amounts of Cr2O72− and CrO42− anions. As the
concentration of Cr2O72− or CrO42− anions increased,
compound 1’s emission intensity in methanol progressively
reduced, as depicted in Figures 9 and 10, further supporting
the existence of the luminescence quenching effects. According
to the Stern−Volmer equation analysis, the quenching
constants (Ksv values) for compound 1 were determined to
be 1.14 × 104 M−1 for Cr2O72− and 8.6 × 103 M−1 for CrO42−,
yielding R2 values of 0.993 (Cr2O72−) and 0.998 (CrO42−)
(refer to Figures S6 and S7). Furthermore, the detection limits
of Cr2O72− and CrO42− were about 16.7 and 22.1 μM,
respectively, as determined by the Ksv values and standard
deviation of the repeated fluorescence measurements of the
blank solution. When compared to other MOF-based
fluorescent probes, compound 1 is a superior material for
Cr(VI) anion detection in methanol.12

3.2.6. Fluorescence Detection of Compound 1 in Various
NACs. The investigation of compound 1’s fluorescence
properties aimed to discern its capability to detect NACs
within a methanol solution. In this study, NACs such as 2,4-
NT, 2-NT, TNP, TNT, p-NT, and NT were employed. Figure
11 shows compound 1’s fluorescence intensity at different

NACs (1 × 10−3 M). The fluorescence intensity of compound
1 was continuously quenched at 385 nm, and its quenching
efficiency reached 100% in a TNP methanol solution.
Additionally, a highly noticeable amount of fluorescence

Figure 8. Fluorescence spectra of compound 1 with addition of
anions (1 × 10−2 M).

Figure 9. Fluorescence spectra of compound 1 upon adding various
concentrations of Cr2O72− (2.5 × 10−3 M).

Figure 10. Fluorescence spectra of compound 1 with addition of
CrO42− (2.5 × 10−3 M).

Figure 11. Fluorescence spectra of compound 1 after adding various
concentrations of NACs (1 × 10−3 M).
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quenching was detected in this solution. Compound 1 showed
minimal variation in fluorescence intensity when compared to
that of the other five NACs.

3.2.7. Fluorescence Detection of Compound 1 in Different
Concentrations of TNP. A fluorescence-quenching titration
investigation was carried out to examine compound 1’s
sensitivity for TNP detection. TNP methanol solution (1 ×
10−4 M) was gradually added to compound 1’s suspension,
resulting in a notable reduction in luminescence intensity
(Figure 12). Based on the titration data, the SV curve was

plotted using the equation I0/I = 1 + Ksv [M], and a linear
relationship was obtained; meanwhile, the Ksv of TNP was
calculated as 7220 M−1 (R2 = 0.9946) (Figure S4), with a
detection limit of 26.3 μM, calculated using 3σ/k.

3.2.8. Fluorescence Detection of Compound 1 in Different
Concentrations of Colchicine. The fluorescence response of
compound 1 in a methanol solution of colchicine (1 × 10−2

M) was also examined (Figure S9), and the fluorescence
intensity exhibited a substantial decrease, signifying the
remarkable sensitivity of compound 1 toward colchicine.
Following that, a colchicine fluorescence titration investigation
was carried out, in which incremental amounts of colchicine
methanol solution (5 × 10−4 M) were added to the suspension
of compound 1, and there was a discernible decline in the
luminescence intensity of compound 1, as shown in Figure 13.
Based on the titration data, an SV plot was acquired. The
results showed that Ksv was equal to 4.26 × 104 M−1 (R2 =
0.994) (Figure S5), and the detection limit of colchicine was
4.46 μM. These results reveal that compound 1 has a good
sensitivity for the detection of colchicine in methanol.

3.3. PXRD of Compound 1. Furthermore, the recycling
performance must be simple and quick. Luminescence and
PXRD were used to examine the recycled samples of
compound 1, which was acquired by repeatedly washing it in
methanol. Following five cycles, the luminescence intensity of
compound 1 in solutions containing Fe3+, Cr(IV), TNP, and
colchicine was found to be nearly constant from its initial state
(Figure S14), and the framework structure remained intact
(Figure S15). Therefore, compound 1 is an excellent sensor for
Fe3+, Cr(IV), TNP, and colchicine in terms of stability and
recyclability.

3.4. Fluorescence-Quenching Mechanism. Meanwhile,
UV−vis absorption spectra of Fe3+, Cr(IV), TNP, and
colchicine depict overlaps with the luminescence excitation
peak of compound 1 (Figure S8). This phenomenon indicates
that the excited light’s energy is absorbed by Fe3+, Cr(IV),
TNP, and colchicine, impeding the transfer of energy from L2−
to Cd2+ and consequently inducing the quenching effect on
compound 1, which suggested a possible energy transfer
between Fe3+, Cr2O72−/CrO42−, TNP, colchicine, and
compound 1.13

4. CONCLUSIONS
A novel luminescent Cd-MOF was synthesized via a
solvothermal method and thoroughly characterized. Lumines-
cence sensing investigations suggest its potential as an excellent
probe for highly sensitive detection of Fe3+, Cr(IV), TNP, and
colchicine. This flexible detection capability is greatly
anticipated to offer valuable insights into the development of
new multifunctional MOFs for chemical sensing.
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