



open 🗟 access

Crystal structure of tetraaquabis(3,5-di-

### amino-4*H*-1,2,4-triazol-1-ium)cobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] dihydrate

#### Atim Johnson,<sup>a,b</sup> Justina Mbonu,<sup>c</sup> Zahid Hussain,<sup>a,d</sup> Wan-Sin Loh<sup>e</sup>‡ and Hoong-Kun Fun<sup>f,e</sup>\*§

<sup>a</sup>H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75720, Pakistan, <sup>b</sup>Department of Chemistry, University of Uyo, P.M.B. 1017, Uyo, Akwa Ibom State, Nigeria, <sup>c</sup>Department of Chemistry, Federal University of Petroleum Recourses Effurun, Delta State, Nigeria, <sup>d</sup>Department of Chemistry, Karakoram International University, Gilgit, Baltistan, Pakistan, <sup>e</sup>X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and <sup>f</sup>Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia. \*Correspondence e-mail: hfun.c@ksu.edu.sa

Received 20 April 2015; accepted 23 May 2015

Edited by M. Zeller, Youngstown State University, USA

The asymmetric unit of the title compound, [Co(C<sub>2</sub>H<sub>6</sub>N<sub>5</sub>)<sub>2</sub>- $(H_2O)_4$  [Co(C<sub>7</sub>H<sub>3</sub>NO<sub>4</sub>)<sub>2</sub>]<sub>2</sub>·2H<sub>2</sub>O, features 1.5 Co<sup>II</sup> ions (one anionic complex and one half cationic complex) and one water molecule. In the cationic complex, the Co<sup>II</sup> atom is located on an inversion centre and is coordinated by two triazolium cations and four water molecules, adopting an octahedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water molecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the Co<sup>II</sup> ion is six-coordinated by two N and four O atoms of the two pyridine-2,6dicarboxylate anions, exhibiting a slightly distorted octahedral coordination geometry in which the mean plane of the two pyridine-2,6-dicarboxylate anions are almost perpendicular to each other, making a dihedral angle of  $85.87(2)^{\circ}$ . In the crystal, molecules are linked into a three-dimensional network via  $C-H\cdots O$ ,  $C-H\cdots N$ ,  $O-H\cdots O$  and  $N-H\cdots O$ hydrogen bonds.

**Keywords:** crystal structure; pyridine-2,6-dicarboxylate; triazolium; Co<sup>II</sup> complex; hydrogen bonding.

CCDC reference: 1402526

#### 1. Related literature

For the different coordination modes of transition metaldipicolinate complexes, see: Håkansson *et al.* (1993); Okabe & Oya (2000); Aghajani *et al.* (2009). For crystal structures of related complexes, see: Yousuf *et al.* (2011*a,b*); Aghabozorg *et al.* (2009); Ramos Silva *et al.* (2008); Wang *et al.* (2004); MacDonald *et al.* (2004). For studies on proton transfer from carboxylic acids to both heterocyclic and substituted amine N atoms, see: Aghabozorg *et al.* (2008); Moghimi *et al.* (2002, 2005, 2007); Pasdar *et al.* (2011); Tabatabaee *et al.* (2009).



2.1. Crystal data  $[Co(C_2H_6N_5)_2(H_2O)_4]^ [Co(C_7H_3NO_4)_2]_2 \cdot 2H_2O$   $M_r = 1145.54$ Monoclinic,  $P2_1/c$  a = 7.1499 (2) Å b = 10.8807 (2) Å

c = 26.6877 (6) Å

 $\beta = 90.649 (1)^{\circ}$   $V = 2076.06 (8) \text{ Å}^{3}$  Z = 2Mo  $K\alpha$  radiation  $\mu = 1.29 \text{ mm}^{-1}$  T = 100 K $0.43 \times 0.28 \times 0.28 \text{ mm}$ 

35534 measured reflections

 $R_{\rm int} = 0.021$ 

refinement  $\Delta \rho_{\text{max}} = 0.56 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ 

9081 independent reflections

8203 reflections with  $I > 2\sigma(I)$ 

H atoms treated by a mixture of

independent and constrained

#### 2.2. Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *T*<sub>min</sub> = 0.607, *T*<sub>max</sub> = 0.718

2.3. Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$   $wR(F^2) = 0.068$  S = 1.059081 reflections 370 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|----------|-------------------------|-------------------------|--------------------------------------|
| $N4-H1N4\cdotsO1^{i}$       | 0.88 (2) | 1.74 (2)                | 2.6044 (12)             | 165 (2)                              |
| $N5-H1N5\cdots O7^{ii}$     | 0.89 (2) | 1.77 (2)                | 2.6402 (12)             | 169 (2)                              |
| $N6-H1N6\cdots O2$          | 0.84(2)  | 2.15 (2)                | 2.9117 (12)             | 151.1 (19)                           |
| $N6-H2N6\cdotsO1W^{ii}$     | 0.92 (2) | 1.85 (2)                | 2.7645 (12)             | 173.6 (19)                           |
| $N7 - H2N7 \cdots O6^{iii}$ | 0.80(2)  | 2.24 (2)                | 2.9956 (13)             | 158.4 (18)                           |
| $O1W - H1W1 \cdots O3$      | 0.83 (2) | 1.90 (2)                | 2.7354 (13)             | 171 (3)                              |
| $O1W - H2W1 \cdots O6^{iv}$ | 0.79 (2) | 2.09 (2)                | 2.8711 (12)             | 175 (2)                              |

<sup>‡</sup> Thomson Reuters ResearcherID: C-7581-2009.

<sup>§</sup> Thomson Reuters ResearcherID: A-3561-2009.

### data reports

| $D - H \cdots A$           | $D-\mathrm{H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|----------------------------|----------------|-------------------------|--------------|---------------------------|
| $O2W-H1W2\cdots O5^{i}$    | 0.86(2)        | 1.80(2)                 | 2.6666 (11)  | 173 (2)                   |
| $O2W - H2W2 \cdots O4$     | 0.82(2)        | 2.00 (2)                | 2.8206 (11)  | 175 (2)                   |
| $O3W-H1W3\cdots O4^{i}$    | 0.79 (2)       | 2.19 (2)                | 2.9602 (11)  | 163 (2)                   |
| $O3W - H2W3 \cdots O8^{v}$ | 0.83 (2)       | 1.76 (2)                | 2.5795 (11)  | 173 (2)                   |
| $C3-H3A\cdots O5^{vi}$     | 0.95           | 2.25                    | 3.1816 (13)  | 167                       |
| $C5-H5A\cdots N7^{vii}$    | 0.95           | 2.50                    | 3.4265 (15)  | 164                       |
| $C10-H10A\cdots O6^{ii}$   | 0.95           | 2.44                    | 3.3898 (13)  | 177                       |

Symmetry codes: (i) x - 1, y, z; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iii) x, y - 1, z; (iv) x + 1, y, z; (v) -x, -y, -z; (vi) -x + 2, -y + 1, -z; (vii) x, y + 1, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2015); molecular graphics: *SHELXTL* (Sheldrick 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

#### **Acknowledgements**

The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP VPP-207. WSL thanks the Malaysian Government for a MyBrain15 (MyPhD) scholarship. AJ thanks the Academy of Science for the Developing World (TWAS) for the award of a Research and Advanced Training Fellowship. AJ and ZH thank the H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan, for providing research facilities.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2619).

#### References

- Aghabozorg, H., Ghadermazi, M., Zabihi, F., Nakhjavan, B., Soleimannejad, J., Sadr-khanlou, E. & Moghimi, A. (2008). J. Chem. Crystallogr. 38, 645–654.
- Aghabozorg, H., Sadr-khanlou, E., Shokrollahi, A., Ghaedi, M. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 55–70.
- Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373–385.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Håkansson, K., Lindahl, M., Svensson, G. & Albertsson, J. (1993). Acta Chem. Scand. 47, 449–455.
- MacDonald, J. C., Luo, T. M. & Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203–1209.
- Moghimi, A., Moosavi, S. M., Kordestani, D., Maddah, B., Shamsipur, M., Aghabozorg, H., Ramezanipour, F. & Kickelbick, G. (2007). J. Mol. Struct. 828, 38–45.
- Moghimi, A., Ranjbar, M., Aghabozorg, H., Jalali, F., Shamsipur, M. & Chadha, R. K. (2002). *Can. J. Chem.* 80, 1687–1696.
- Moghimi, A., Sharif, M. A., Shokrollahi, A., Shamsipur, M. & Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 902–908.
- Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 305-307.
- Pasdar, H., Ebdam, A., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m294.
- Ramos Silva, M., Motyeian, E., Aghabozorg, H. & Ghadermazi, M. (2008). *Acta Cryst.* E64, m1173-m1174.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Tabatabaee, M., Aghabozorg, H., Attar Gharamaleki, J. & Sharif, M. A. (2009). Acta Cryst. E65, m473-m474.
- Wang, L., Wang, Z. & Wang, E. (2004). J. Coord. Chem. 57, 1353–1359.
- Yousuf, S., Johnson, A. S., Kazmi, S. A., Hemamalini, M. & Fun, H.-K. (2011b). Acta Cryst. E67, m1105–m1106.
- Yousuf, S., Johnson, A. S., Kazmi, S. A., Offiong, O. E. & Fun, H.-K. (2011a). Acta Cryst. E67, m509–m510.

### supporting information

Acta Cryst. (2015). E71, m139-m140 [doi:10.1107/S2056989015010014]

# Crystal structure of tetraaquabis(3,5-diamino-4*H*-1,2,4-triazol-1-ium)cobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] dihydrate

#### Atim Johnson, Justina Mbonu, Zahid Hussain, Wan-Sin Loh and Hoong-Kun Fun

#### S1. Chemical context

Among different multidentate species, compounds bearing carboxylate functions are widely studied ligands for producing stable transition metals coordination polymers and supramolecular architectures, mostly because of the versatile ligating abilities of the -COO moieties and also due to the enhanced affinity of these metal ions towards such O donors. There have been a number of successful attempts at utilizing proton transfer from carboxylic acids to both heterocyclic and substituted amine nitrogens (Moghimi *et al.*, 2002; Moghimi *et al.*, 2005; Moghimi *et al.*, 2007; Aghabozorg *et al.*, 2008; Aghabozorg *et al.*, 2009; Tabatabaee *et al.*, 2009, Pasdar *et al.*, 2011, Yousuf *et al.*, 2011*b*). Dicarboxylic acids possess a good potential to be used as proton donors in the synthesis of proton transfer compounds. In continuation of our work, we report herein the trinuclear complex of Co<sup>II</sup> with pyridine-2,6-dicarboxylic acid as proton donor and 3,5-diamino-1,2,4-triazole as proton acceptor.

#### **S2. Structural commentary**

The asymmetric unit consits of half whole repeating unit of the title compound (Fig. 1) and is composed of 1.5 Co<sup>II</sup> ions (one anionic complex and one half cationic complex) and one water molecule. In the cationic complex, the Co<sup>II</sup> atom (Co2) is located on an inversion centre and is coordinated by two triazolium cations and four water molecules, adopting an octahedral geometry where the N atoms of the two triazolium cations (N3 & N3A) occupy the axial positions (Co–N = 2.2016 (7) Å) and the O atoms of the four water molecules (O2W, O2WA, O3W & O3WA) occupy the equatorial positions (Co–O = 2.0590 (7) - 2.1080 (7) Å). Atoms with suffix A were generated by the symmetry operation *-x, -y, -z*. The two triazole ligands are parallel offset (with a distance of 1.377 Å between the exact parallel planes). The angle between the Co–N bond and the centroid of the triazole plane is 158.56°. The bond distances are comparable with those reported for similar complexs (Aghabozorg *et al.*, 2008; Prasad & Rajasekharan, 2007; Colak *et al.*, 2009). In the anionic complex, the Co<sup>II</sup> ion (Co1) is six-coordinated by two N (Co–N = 2.0273 (9) - 2.0308 (9) Å) and four O (Co–O = 2.1471 (7) - 2.2223 (7) Å) atoms of the two pyridine-2,6-dicarboxylate anions, exhibiting a slightly distorted octahedral coordination geometry where the mean plane of the two pyridine-2,6-dicarboxylate anions (maximum deviation = 0.0851 (9) Å at C7) are almost perpendicular to each other with a dihedral angle of 85.87 (2)°.

#### **S3. Supramolecular features**

In the crystal packing (Fig. 2), the molecules are linked into a three dimensional network *via* intermolecular C—H···O, C —H···N, O—H···O and N—H···O hydrogen bonds (Table 1).

#### S4. Synthesis and crystallization

An aqueous solution (10 ml) containing 0.5mmol (0.0496 g) of 3,5-diamino-1,2,4-triazole was added to a hot and stirring aqueous solution (20 ml) containing 1mmol (0.167 g) of pyridine-2,6-dicarboxylic acid and 1mmol (0.238 g) of CoCl<sub>2</sub>.6H<sub>2</sub>O. The resulting pink solution was stirred for 30 min and allowed to stand at room temperature. Crystals formed after 3 days but single crystals suitable for X-ray analysis were separated after one month.

#### **S5. Refinement details**

N- and O- bound H atoms were located from the difference Fourier map and were refined freely [N—H = 0.79 (2) to 0.92 (2) Å; O—H = 0.79 (2) to 0.86 (2) Å]. The remaining H atoms were calculated geometrically and were refined using a riding model with  $U_{iso} = 1.2 U_{eq}(C)$ , with the bond lengths of C–H being 0.95 Å.



#### Figure 1

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Atoms with suffix A were generated by the symmetry operation -x, -y, -z.



#### Figure 2

Crystal packing of the title compound, showing the three-dimensional network. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

# Tetraaquabis(3,5-diamino-4*H*-1,2,4-triazol-1-ium)cobalt(II) bis[bis(pyridine-2,6-dicarboxylato)cobaltate(II)] dihydrate

#### Crystal data

| $[Co(C_2H_6N_5)_2(H_2O)_4][Co(C_7H_3NO_4)_2]_2 \cdot 2H_2O$ |
|-------------------------------------------------------------|
| $M_r = 1145.54$                                             |
| Monoclinic, $P2_1/c$                                        |
| a = 7.1499 (2) Å                                            |
| b = 10.8807 (2) Å                                           |
| c = 26.6877 (6) Å                                           |
| $\beta = 90.649 (1)^{\circ}$                                |
| V = 2076.06 (8) Å <sup>3</sup>                              |
| Z = 2                                                       |
|                                                             |

#### Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009)  $T_{\min} = 0.607, T_{\max} = 0.718$ 

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.024$  $wR(F^2) = 0.068$ S = 1.059081 reflections F(000) = 1166  $D_x = 1.833 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9904 reflections  $\theta = 2.4-35.0^{\circ}$   $\mu = 1.29 \text{ mm}^{-1}$  T = 100 KBlock, purple  $0.43 \times 0.28 \times 0.28 \text{ mm}$ 

35534 measured reflections 9081 independent reflections 8203 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.021$  $\theta_{max} = 35.1^{\circ}, \ \theta_{min} = 1.5^{\circ}$  $h = -9 \rightarrow 11$  $k = -17 \rightarrow 17$  $l = -42 \rightarrow 41$ 

370 parameters0 restraintsHydrogen site location: mixedH atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0314P)^{2} + 1.0292P] \qquad \Delta\rho,$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta\rho,$  $(\Delta/\sigma)_{max} = 0.001$ 

# $\begin{array}{l} \Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x             | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|------|---------------|--------------|-------------|-----------------------------|
| Col  | 0.55162 (2)   | 0.25891 (2)  | 0.13399 (2) | 0.00894 (3)                 |
| Co2  | 0.0000        | 0.0000       | 0.0000      | 0.00821 (4)                 |
| 01   | 0.82104 (10)  | 0.26153 (6)  | 0.09788 (3) | 0.01282 (12)                |
| O2   | 0.27767 (10)  | 0.33471 (6)  | 0.14695 (3) | 0.01253 (12)                |
| 03   | 0.65732 (11)  | 0.31798 (7)  | 0.20566 (3) | 0.01412 (12)                |
| O4   | 0.46908 (10)  | 0.11281 (6)  | 0.07992 (2) | 0.01164 (11)                |
| O5   | 0.98594 (10)  | 0.35876 (7)  | 0.03895 (3) | 0.01370 (12)                |
| O6   | 0.11089 (10)  | 0.50933 (6)  | 0.13722 (3) | 0.01255 (12)                |
| O7   | 0.79218 (12)  | 0.24719 (7)  | 0.27668 (3) | 0.01834 (14)                |
| 08   | 0.44182 (11)  | -0.09334 (7) | 0.07506 (3) | 0.01482 (13)                |
| N1   | 0.54987 (11)  | 0.41617 (7)  | 0.09324 (3) | 0.00998 (12)                |
| N2   | 0.59941 (11)  | 0.09926 (7)  | 0.17147 (3) | 0.00943 (12)                |
| N3   | -0.00429 (11) | -0.02963 (7) | 0.08158 (3) | 0.01012 (12)                |
| N4   | 0.03927 (11)  | 0.07247 (7)  | 0.11156 (3) | 0.01056 (12)                |
| N5   | 0.08642 (11)  | -0.08746 (7) | 0.15824 (3) | 0.01057 (12)                |
| N6   | 0.13643 (13)  | 0.11292 (8)  | 0.19445 (3) | 0.01373 (14)                |
| N7   | -0.00180 (14) | -0.24234 (8) | 0.09908 (3) | 0.01487 (15)                |
| C1   | 0.85009 (12)  | 0.34939 (8)  | 0.06704 (3) | 0.01023 (14)                |
| C2   | 0.69856 (12)  | 0.44549 (8)  | 0.06584 (3) | 0.01026 (14)                |
| C3   | 0.70679 (14)  | 0.55422 (9)  | 0.03875 (4) | 0.01333 (15)                |
| H3A  | 0.8119        | 0.5733       | 0.0187      | 0.016*                      |
| C4   | 0.55548 (15)  | 0.63436 (9)  | 0.04196 (4) | 0.01642 (17)                |
| H4A  | 0.5576        | 0.7105       | 0.0246      | 0.020*                      |
| C5   | 0.40079 (14)  | 0.60293 (9)  | 0.07070 (4) | 0.01499 (16)                |
| H5A  | 0.2967        | 0.6568       | 0.0730      | 0.018*                      |
| C6   | 0.40236 (13)  | 0.49099 (8)  | 0.09586 (3) | 0.01047 (14)                |
| C7   | 0.24820 (12)  | 0.44216 (8)  | 0.12908 (3) | 0.00996 (13)                |
| C8   | 0.71223 (13)  | 0.23375 (9)  | 0.23540 (3) | 0.01208 (15)                |
| C9   | 0.67492 (13)  | 0.10389 (8)  | 0.21746 (3) | 0.01040 (14)                |
| C10  | 0.71742 (14)  | -0.00249 (9) | 0.24395 (3) | 0.01303 (15)                |
| H10A | 0.7708        | 0.0016       | 0.2767      | 0.016*                      |
| C11  | 0.67989 (14)  | -0.11541 (9) | 0.22139 (4) | 0.01395 (15)                |
| H11A | 0.7070        | -0.1896      | 0.2388      | 0.017*                      |
| C12  | 0.60241 (13)  | -0.11954 (8) | 0.17318 (3) | 0.01207 (15)                |
| H12A | 0.5762        | -0.1957      | 0.1572      | 0.014*                      |
| C13  | 0.56501 (12)  | -0.00872 (8) | 0.14938 (3) | 0.00955 (13)                |

| C14  | 0.48503 (12)  | 0.00302 (8)  | 0.09707 (3) | 0.00989 (14) |
|------|---------------|--------------|-------------|--------------|
| C15  | 0.09005 (12)  | 0.03737 (8)  | 0.15732 (3) | 0.01009 (14) |
| C16  | 0.02562 (12)  | -0.12445 (8) | 0.11143 (3) | 0.00985 (13) |
| O1W  | 0.81160 (12)  | 0.54803 (8)  | 0.20623 (3) | 0.01822 (14) |
| O2W  | 0.16935 (10)  | 0.15580 (6)  | 0.01259 (3) | 0.01110 (11) |
| O3W  | -0.23235 (10) | 0.11122 (7)  | 0.00395 (3) | 0.01179 (11) |
| H1N4 | -0.017 (2)    | 0.1420 (17)  | 0.1043 (6)  | 0.024 (4)*   |
| H1N5 | 0.124 (3)     | -0.1360 (19) | 0.1831 (7)  | 0.037 (5)*   |
| H1N6 | 0.147 (2)     | 0.1885 (17)  | 0.1873 (7)  | 0.026 (4)*   |
| H2N6 | 0.151 (3)     | 0.0852 (17)  | 0.2268 (7)  | 0.030 (5)*   |
| H1N7 | -0.047 (3)    | -0.2572 (17) | 0.0707 (8)  | 0.030 (5)*   |
| H2N7 | 0.024 (2)     | -0.2988 (17) | 0.1167 (6)  | 0.023 (4)*   |
| H1W1 | 0.753 (3)     | 0.482 (2)    | 0.2054 (8)  | 0.043 (6)*   |
| H2W1 | 0.899 (3)     | 0.5365 (19)  | 0.1887 (8)  | 0.038 (5)*   |
| H1W2 | 0.113 (3)     | 0.2197 (18)  | 0.0235 (7)  | 0.030 (5)*   |
| H2W2 | 0.261 (3)     | 0.1440 (18)  | 0.0306 (7)  | 0.032 (5)*   |
| H1W3 | -0.295 (3)    | 0.1150 (18)  | 0.0282 (7)  | 0.035 (5)*   |
| H2W3 | -0.308 (3)    | 0.1054 (18)  | -0.0198 (7) | 0.033 (5)*   |
|      |               |              |             |              |

Atomic displacement parameters  $(\AA^2)$ 

| <b>T</b> 711 | <b>T</b> 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>T T</b> <sup>2</sup> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | * 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>*</b> 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>T</b> 7) 2                                         |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| U            | <i>U</i> <sup>22</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U <sup>33</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $U^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $U^{23}$                                              |
| 0.01044 (5)  | 0.00761 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00876 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00044 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00033 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00075 (4)                                           |
| 0.00864 (7)  | 0.00831 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00767 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00067 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.00032 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00030 (5)                                           |
| 0.0124 (3)   | 0.0111 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0150 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0025 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0028 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0036 (2)                                            |
| 0.0126 (3)   | 0.0105 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0145 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0007 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0027 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0029 (2)                                            |
| 0.0188 (3)   | 0.0109 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0126 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0005 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0018 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0012 (2)                                           |
| 0.0143 (3)   | 0.0100 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0106 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0002 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0021 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0011 (2)                                            |
| 0.0120 (3)   | 0.0122 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0170 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0011 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0051 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0012 (2)                                            |
| 0.0118 (3)   | 0.0128 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0132 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0027 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0025 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0001 (2)                                            |
| 0.0262 (4)   | 0.0160 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0126 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0015 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0069 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0036 (2)                                           |
| 0.0184 (3)   | 0.0113 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0146 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0006 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0057 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0035 (2)                                           |
| 0.0101 (3)   | 0.0093 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0105 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0005 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0017 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0006 (2)                                            |
| 0.0102 (3)   | 0.0097 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0084 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0006 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0005 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0002 (2)                                           |
| 0.0127 (3)   | 0.0083 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0093 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0014 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0004(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0004 (2)                                            |
| 0.0143 (3)   | 0.0086 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0088 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0013 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0007(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0005 (2)                                            |
| 0.0129 (3)   | 0.0102 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0086 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0006 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0010 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0019 (2)                                            |
| 0.0190 (4)   | 0.0125 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0097 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0029 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0009 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0002(2)                                            |
| 0.0210 (4)   | 0.0088 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0147 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0004 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0025 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0008 (3)                                            |
| 0.0099 (3)   | 0.0093 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0116 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0001 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0004 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0006 (3)                                           |
| 0.0103 (3)   | 0.0090 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0115 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0007 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0017 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0006 (3)                                            |
| 0.0135 (4)   | 0.0095 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0170 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0003 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0046 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0027 (3)                                            |
| 0.0166 (4)   | 0.0112 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0216 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0031 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0070 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0059 (3)                                            |
| 0.0146 (4)   | 0.0107 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0198 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0032 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0058 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0040 (3)                                            |
| 0.0107 (3)   | 0.0097 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0111 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0014 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0018 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0006 (3)                                            |
| 0.0104 (3)   | 0.0104 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0091 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0003 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0007 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0002 (3)                                           |
| 0.0133 (4)   | 0.0122 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0108 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0013 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.0027 (3)                                           |
| 0.0116 (3)   | 0.0115 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0081 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0011 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.0007 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.0006 (3)                                           |
|              | $\begin{array}{c} U^{11} \\ \hline 0.01044 \ (5) \\ 0.00864 \ (7) \\ 0.0124 \ (3) \\ 0.0126 \ (3) \\ 0.0126 \ (3) \\ 0.0188 \ (3) \\ 0.0143 \ (3) \\ 0.0120 \ (3) \\ 0.0120 \ (3) \\ 0.0120 \ (3) \\ 0.0120 \ (4) \\ 0.0101 \ (3) \\ 0.0102 \ (3) \\ 0.0102 \ (3) \\ 0.0127 \ (3) \\ 0.0127 \ (3) \\ 0.0129 \ (3) \\ 0.0129 \ (3) \\ 0.0190 \ (4) \\ 0.0210 \ (4) \\ 0.0099 \ (3) \\ 0.0103 \ (3) \\ 0.0135 \ (4) \\ 0.0104 \ (3) \\ 0.0133 \ (4) \\ 0.0116 \ (3) \end{array}$ | $U^{11}$ $U^{22}$ $0.01044 (5)$ $0.00761 (5)$ $0.00864 (7)$ $0.00831 (7)$ $0.0124 (3)$ $0.0111 (3)$ $0.0126 (3)$ $0.0105 (3)$ $0.0126 (3)$ $0.0109 (3)$ $0.0188 (3)$ $0.0109 (3)$ $0.0143 (3)$ $0.0100 (3)$ $0.0120 (3)$ $0.0122 (3)$ $0.0120 (3)$ $0.0128 (3)$ $0.0120 (3)$ $0.0128 (3)$ $0.0120 (3)$ $0.0128 (3)$ $0.0120 (3)$ $0.0128 (3)$ $0.0120 (3)$ $0.0123 (3)$ $0.0120 (3)$ $0.0093 (3)$ $0.0101 (3)$ $0.0093 (3)$ $0.0102 (3)$ $0.0097 (3)$ $0.0127 (3)$ $0.0088 (3)$ $0.0129 (3)$ $0.0102 (3)$ $0.0129 (3)$ $0.0102 (3)$ $0.0190 (4)$ $0.0125 (3)$ $0.0190 (4)$ $0.0125 (3)$ $0.0190 (3)$ $0.0093 (3)$ $0.0103 (3)$ $0.0090 (3)$ $0.0135 (4)$ $0.0095 (3)$ $0.0166 (4)$ $0.0112 (4)$ $0.0166 (4)$ $0.0107 (4)$ $0.0107 (3)$ $0.0097 (3)$ $0.0104 (3)$ $0.0104 (3)$ $0.013 (4)$ $0.0122 (4)$ $0.013 (4)$ $0.0122 (4)$ $0.0116 (3)$ $0.0115 (3)$ | $U^{11}$ $U^{22}$ $U^{33}$ 0.01044 (5)0.00761 (5)0.00876 (5)0.00864 (7)0.00831 (7)0.00767 (7)0.0124 (3)0.0111 (3)0.0150 (3)0.0126 (3)0.0105 (3)0.0145 (3)0.0188 (3)0.0109 (3)0.0126 (3)0.0143 (3)0.0100 (3)0.0106 (3)0.0120 (3)0.0122 (3)0.0170 (3)0.0118 (3)0.0128 (3)0.0126 (3)0.0262 (4)0.0160 (3)0.0126 (3)0.0101 (3)0.0093 (3)0.0105 (3)0.0102 (3)0.0093 (3)0.0105 (3)0.0102 (3)0.0097 (3)0.0084 (3)0.0127 (3)0.0086 (3)0.0088 (3)0.0129 (3)0.0102 (3)0.0097 (3)0.0129 (3)0.0125 (3)0.0097 (3)0.013 (3)0.0093 (3)0.0115 (3)0.0135 (4)0.0095 (3)0.0170 (4)0.0166 (4)0.0112 (4)0.0216 (4)0.0166 (4)0.0112 (4)0.0216 (4)0.0107 (3)0.0097 (3)0.0111 (3)0.0104 (3)0.0104 (3)0.0091 (3)0.0104 (3)0.0104 (3)0.0091 (3) | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ 0.01044 (5)0.00761 (5)0.00876 (5)0.00044 (4)0.00864 (7)0.00831 (7)0.00767 (7)0.00067 (5)0.0124 (3)0.0111 (3)0.0150 (3)0.0025 (2)0.0126 (3)0.0105 (3)0.0145 (3)0.0007 (2)0.0188 (3)0.0109 (3)0.0126 (3) $-0.0005 (2)$ 0.0143 (3)0.0100 (3)0.0106 (3)0.0002 (2)0.0120 (3)0.0122 (3)0.0170 (3)0.0011 (2)0.0188 (3)0.0128 (3)0.0132 (3)0.0027 (2)0.0262 (4)0.0160 (3)0.0126 (3) $-0.0015 (3)$ 0.0184 (3)0.0113 (3)0.0146 (3)0.0006 (2)0.0101 (3)0.0093 (3)0.0105 (3)0.0005 (2)0.0127 (3)0.0083 (3)0.0093 (3)0.0014 (2)0.0129 (3)0.0102 (3)0.0086 (3)0.0006 (2)0.0129 (3)0.0102 (3)0.0086 (3)0.0006 (2)0.0190 (4)0.0125 (3)0.0097 (3) $-0.0029 (3)$ 0.0210 (4)0.0088 (3)0.0115 (3)0.0001 (3)0.0135 (4)0.0095 (3)0.0170 (4)0.0033 (3)0.0135 (4)0.0095 (3)0.0170 (4)0.0031 (3)0.0166 (4)0.0112 (4)0.0216 (4)0.0031 (3)0.0146 (4)0.0107 (4)0.0198 (4)0.0032 (3)0.0146 (4)0.0107 (4)0.0198 (3) $-0.0003 (3)$ 0.0146 (3)0.0097 (3)0.0111 (3)0.0144 (3)0.0107 (3)0.0097 (3)0.0111 (3) $-0.0$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

# supporting information

| C10 | 0.0155 (4) | 0.0137 (4) | 0.0099 (3) | -0.0011 (3) | -0.0022 (3) | 0.0015 (3)  |
|-----|------------|------------|------------|-------------|-------------|-------------|
| C11 | 0.0172 (4) | 0.0117 (4) | 0.0129 (4) | -0.0004 (3) | -0.0024 (3) | 0.0037 (3)  |
| C12 | 0.0143 (4) | 0.0094 (3) | 0.0125 (3) | -0.0012 (3) | -0.0022 (3) | 0.0011 (3)  |
| C13 | 0.0101 (3) | 0.0094 (3) | 0.0091 (3) | -0.0010 (3) | -0.0009 (3) | 0.0000 (3)  |
| C14 | 0.0097 (3) | 0.0100 (3) | 0.0100 (3) | 0.0002 (3)  | -0.0008 (3) | -0.0006 (3) |
| C15 | 0.0103 (3) | 0.0110 (3) | 0.0090 (3) | 0.0005 (3)  | 0.0008 (3)  | 0.0012 (3)  |
| C16 | 0.0101 (3) | 0.0098 (3) | 0.0097 (3) | 0.0010 (3)  | 0.0006 (3)  | 0.0010 (3)  |
| O1W | 0.0221 (4) | 0.0180 (3) | 0.0146 (3) | -0.0055 (3) | 0.0041 (3)  | -0.0028 (3) |
| O2W | 0.0109 (3) | 0.0105 (3) | 0.0118 (3) | 0.0005 (2)  | -0.0007(2)  | 0.0000 (2)  |
| O3W | 0.0110 (3) | 0.0155 (3) | 0.0088 (3) | 0.0026 (2)  | -0.0005 (2) | -0.0011 (2) |
|     |            |            |            |             |             |             |

### Geometric parameters (Å, °)

| Co1—N1               | 2.0275 (8)  | N6—C15   | 1.3269 (12) |
|----------------------|-------------|----------|-------------|
| Co1—N2               | 2.0315 (8)  | N6—H1N6  | 0.848 (19)  |
| Co1—O3               | 2.1471 (7)  | N6—H2N6  | 0.921 (18)  |
| Co1—O2               | 2.1567 (7)  | N7—C16   | 1.3383 (12) |
| Co1—O1               | 2.1640 (7)  | N7—H1N7  | 0.84 (2)    |
| Co1—O4               | 2.2223 (7)  | N7—H2N7  | 0.795 (18)  |
| Co2—O3W              | 2.0590 (7)  | C1—C2    | 1.5058 (13) |
| Co2—O3W <sup>i</sup> | 2.0590 (7)  | C2—C3    | 1.3880 (13) |
| Co2—O2W <sup>i</sup> | 2.1080 (7)  | C3—C4    | 1.3929 (14) |
| Co2—O2W              | 2.1080 (7)  | С3—НЗА   | 0.9500      |
| Co2—N3 <sup>i</sup>  | 2.2015 (7)  | C4—C5    | 1.3957 (13) |
| Co2—N3               | 2.2016 (7)  | C4—H4A   | 0.9500      |
| O1—C1                | 1.2800 (11) | C5—C6    | 1.3908 (13) |
| O2—C7                | 1.2792 (11) | С5—Н5А   | 0.9500      |
| O3—C8                | 1.2715 (12) | C6—C7    | 1.5183 (12) |
| O4—C14               | 1.2840 (11) | C8—C9    | 1.5146 (13) |
| O5—C1                | 1.2378 (11) | C9—C10   | 1.3881 (13) |
| O6—C7                | 1.2451 (11) | C10—C11  | 1.3928 (14) |
| O7—C8                | 1.2440 (11) | C10—H10A | 0.9500      |
| O8—C14               | 1.2392 (11) | C11—C12  | 1.3959 (13) |
| N1—C6                | 1.3347 (12) | C11—H11A | 0.9500      |
| N1—C2                | 1.3358 (11) | C12—C13  | 1.3873 (12) |
| N2—C13               | 1.3361 (11) | C12—H12A | 0.9500      |
| N2—C9                | 1.3363 (11) | C13—C14  | 1.5080 (12) |
| N3—C16               | 1.3194 (11) | O1W—H1W1 | 0.83 (2)    |
| N3—N4                | 1.4020 (11) | O1W—H2W1 | 0.79 (2)    |
| N4—C15               | 1.3261 (11) | O2W—H1W2 | 0.86 (2)    |
| N4—H1N4              | 0.877 (18)  | O2W—H2W2 | 0.817 (19)  |
| N5—C15               | 1.3587 (12) | O3W—H1W3 | 0.79 (2)    |
| N5—C16               | 1.3781 (12) | O3W—H2W3 | 0.830 (19)  |
| N5—H1N5              | 0.89 (2)    |          |             |
| N1—Co1—N2            | 170.32 (3)  | O5—C1—O1 | 125.80 (9)  |
| N1—Co1—O3            | 103.02 (3)  | O5—C1—C2 | 119.95 (8)  |
| N2—Co1—O3            | 76.22 (3)   | O1—C1—C2 | 114.23 (8)  |

| N1—Co1—O2                      | 76.30 (3)              | N1—C2—C3                    | 121.83 (8)             |
|--------------------------------|------------------------|-----------------------------|------------------------|
| N2—Co1—O2                      | 113.33 (3)             | N1—C2—C1                    | 113.54 (8)             |
| O3—Co1—O2                      | 93.09 (3)              | C3—C2—C1                    | 124.62 (8)             |
| N1—Co1—O1                      | 75.53 (3)              | C2—C3—C4                    | 117.64 (8)             |
| N2—Co1—O1                      | 94.87 (3)              | С2—С3—НЗА                   | 121.2                  |
| O3—Co1—O1                      | 94.97 (3)              | С4—С3—Н3А                   | 121.2                  |
| O2—Co1—O1                      | 151.77 (3)             | C3—C4—C5                    | 120.09 (9)             |
| N1—Co1—O4                      | 104.80 (3)             | C3—C4—H4A                   | 120.0                  |
| N2—Co1—O4                      | 75.52 (3)              | C5—C4—H4A                   | 120.0                  |
| O3—Co1—O4                      | 151.74 (3)             | C6-C5-C4                    | 118.54 (9)             |
| O2—Co1—O4                      | 98.20 (3)              | C6—C5—H5A                   | 120.7                  |
| $01-C_01-04$                   | 87.21 (3)              | C4—C5—H5A                   | 120.7                  |
| $O_3W - C_0^2 - O_3W^i$        | 180.0                  | N1—C6—C5                    | 120.72 (8)             |
| $O_3W - Co_2 - O_2W^i$         | 91.06(3)               | N1-C6-C7                    | 113 36 (8)             |
| $O_3W^i$ $C_0^2$ $O_2W^i$      | 88 94 (3)              | C5-C6-C7                    | 125.90 (8)             |
| $03W - Co^2 - 02W$             | 88 94 (3)              | 06-C7-02                    | 126.75 (8)             |
| $O_{3}W^{i}$ $C_{02}$ $O_{2}W$ | 91.06 (3)              | 06 - C7 - C6                | 118 39 (8)             |
| $02W^{i}$ $C_{02}$ $02W$       | 180.0                  | $0^{2}-0^{7}-0^{6}$         | 114.83 (8)             |
| $O_2 W = CO_2 = O_2 W$         | 80.13 (3)              | 02 - 07 - 00                | 117.03(0)              |
| $O_2W^i$ Co2 N3 <sup>i</sup>   | 00.87(3)               | 07 - 08 - 03                | 127.12(9)<br>117.84(8) |
| $O_2W_i = C_0 2 = N_2^{2i}$    | 90.87 (3)<br>88 54 (3) | $0^{-}_{-}$                 | 117.04(8)              |
| $O_2 W = CO_2 = N_3^{i}$       | 00.34(3)               | $N_2 = C_0 = C_1^0$         | 113.04(8)<br>121.34(8) |
| $O_2 W = CO_2 = N_3$           | 91.40(3)               | $N_2 = C_2 = C_{10}$        | 121.34(8)              |
| $O_2W_i$ $C_2 N_2$             | 90.87 (3)              | $N_2 = C_9 = C_8$           | 115.10(6)<br>125.47(8) |
| $O_3 W = C_0 2 = N_3$          | 89.15(3)               | $C_{10} = C_{9} = C_{8}$    | 123.47(8)              |
| $O_2W = CO_2 = N_3$            | 91.40 (5)              | $C_{0}$                     | 110.39 (0)             |
| 02  w = 02 = NS                | 88.34 (3)<br>190.0     | $C_{11}$ $C_{10}$ $H_{10A}$ | 120.8                  |
| $N_3 - C_0 2 - N_3$            | 180.0                  |                             | 120.8                  |
| C1 = 01 = C01                  | 116.01 (6)             | C10-C11-C12                 | 119.95 (8)             |
| C = 02 = 01                    | 115.83 (6)             | CIQ_CII_HIIA                | 120.0                  |
|                                | 116.32 (6)             | CI2—CII—HIIA                | 120.0                  |
| C14 - C01                      | 114.34 (6)             | C13 - C12 - C11             | 117.80 (8)             |
| C6—N1—C2                       | 121.15 (8)             | C13—C12—H12A                | 121.1                  |
| C6—NI—Col                      | 119.12 (6)             | С11—С12—Н12А                | 121.1                  |
| C2—N1—Co1                      | 119.68 (6)             | N2-C13-C12                  | 121.93 (8)             |
| C13—N2—C9                      | 120.58 (8)             | N2—C13—C14                  | 113.57 (7)             |
| C13—N2—Co1                     | 120.38 (6)             | C12—C13—C14                 | 124.50 (8)             |
| C9—N2—Co1                      | 118.95 (6)             | O8—C14—O4                   | 126.69 (8)             |
| C16—N3—N4                      | 103.98 (7)             | O8—C14—C13                  | 117.20 (8)             |
| C16—N3—Co2                     | 135.05 (6)             | O4—C14—C13                  | 116.11 (8)             |
| N4—N3—Co2                      | 116.28 (5)             | N4—C15—N6                   | 124.95 (9)             |
| C15—N4—N3                      | 110.73 (7)             | N4—C15—N5                   | 107.43 (8)             |
| C15—N4—H1N4                    | 124.9 (11)             | N6—C15—N5                   | 127.62 (8)             |
| N3—N4—H1N4                     | 117.3 (11)             | N3—C16—N7                   | 125.34 (8)             |
| C15—N5—C16                     | 106.34 (7)             | N3—C16—N5                   | 111.49 (8)             |
| C15—N5—H1N5                    | 127.1 (13)             | N7—C16—N5                   | 123.16 (8)             |
| C16—N5—H1N5                    | 126.4 (13)             | H1W1—O1W—H2W1               | 104 (2)                |
| C15—N6—H1N6                    | 117.0 (12)             | Co2—O2W—H1W2                | 115.8 (13)             |
| C15—N6—H2N6                    | 121.6 (12)             | Co2—O2W—H2W2                | 115.0 (14)             |

| H1N6—N6—H2N6  | 121.3 (17)  | H1W2—O2W—H2W2   | 107.6 (18)  |
|---------------|-------------|-----------------|-------------|
| C16—N7—H1N7   | 117.6 (13)  | Co2—O3W—H1W3    | 122.4 (14)  |
| C16—N7—H2N7   | 124.3 (13)  | Co2—O3W—H2W3    | 115.8 (13)  |
| H1N7—N7—H2N7  | 118.2 (18)  | H1W3—O3W—H2W3   | 104.9 (18)  |
|               |             |                 |             |
| C16—N3—N4—C15 | -0.82 (10)  | C13—N2—C9—C8    | 177.27 (8)  |
| Co2—N3—N4—C15 | -160.26 (6) | Co1—N2—C9—C8    | 0.78 (10)   |
| Co1-01-C1-05  | -171.62 (7) | O7—C8—C9—N2     | -176.02 (9) |
| Co1-01-C1-C2  | 7.05 (10)   | O3—C8—C9—N2     | 3.74 (12)   |
| C6—N1—C2—C3   | -0.26 (14)  | O7—C8—C9—C10    | 2.07 (14)   |
| Co1—N1—C2—C3  | -177.65 (7) | O3—C8—C9—C10    | -178.16 (9) |
| C6—N1—C2—C1   | -179.43 (8) | N2-C9-C10-C11   | 0.15 (14)   |
| Co1—N1—C2—C1  | 3.18 (10)   | C8—C9—C10—C11   | -177.80 (9) |
| O5—C1—C2—N1   | 172.01 (8)  | C9—C10—C11—C12  | 0.38 (14)   |
| 01—C1—C2—N1   | -6.75 (12)  | C10-C11-C12-C13 | -0.15 (14)  |
| O5—C1—C2—C3   | -7.13 (14)  | C9—N2—C13—C12   | 1.16 (13)   |
| O1—C1—C2—C3   | 174.11 (9)  | Co1—N2—C13—C12  | 177.60 (7)  |
| N1—C2—C3—C4   | 1.55 (15)   | C9—N2—C13—C14   | -178.31 (8) |
| C1—C2—C3—C4   | -179.38 (9) | Co1—N2—C13—C14  | -1.88 (10)  |
| C2—C3—C4—C5   | -1.50 (16)  | C11—C12—C13—N2  | -0.62 (14)  |
| C3—C4—C5—C6   | 0.24 (16)   | C11—C12—C13—C14 | 178.80 (9)  |
| C2—N1—C6—C5   | -1.10 (14)  | Co1O4C14O8      | 177.20 (8)  |
| Co1—N1—C6—C5  | 176.31 (7)  | Co1-O4-C14-C13  | -2.90 (10)  |
| C2—N1—C6—C7   | -179.62 (8) | N2-C13-C14-O8   | -176.90 (8) |
| Co1—N1—C6—C7  | -2.21 (10)  | C12-C13-C14-08  | 3.64 (14)   |
| C4—C5—C6—N1   | 1.09 (15)   | N2-C13-C14-O4   | 3.20 (12)   |
| C4—C5—C6—C7   | 179.41 (9)  | C12-C13-C14-O4  | -176.26 (9) |
| Co1—O2—C7—O6  | -170.41 (8) | N3—N4—C15—N6    | -178.78 (9) |
| Co1—O2—C7—C6  | 7.75 (10)   | N3—N4—C15—N5    | 1.67 (10)   |
| N1—C6—C7—O6   | 174.41 (8)  | C16—N5—C15—N4   | -1.82 (10)  |
| C5—C6—C7—O6   | -4.03 (14)  | C16—N5—C15—N6   | 178.65 (9)  |
| N1—C6—C7—O2   | -3.91 (11)  | N4—N3—C16—N7    | 178.47 (9)  |
| C5—C6—C7—O2   | 177.65 (9)  | Co2—N3—C16—N7   | -27.99 (15) |
| Co1—O3—C8—O7  | 173.50 (9)  | N4—N3—C16—N5    | -0.36 (10)  |
| Co1—O3—C8—C9  | -6.24 (10)  | Co2—N3—C16—N5   | 153.18 (7)  |
| C13—N2—C9—C10 | -0.92 (13)  | C15—N5—C16—N3   | 1.37 (10)   |
| Co1—N2—C9—C10 | -177.40 (7) | C15—N5—C16—N7   | -177.50 (9) |

Symmetry code: (i) -x, -y, -z.

### Hydrogen-bond geometry (Å, °)

| D—H···A                              | D—H      | H···A    | D····A      | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|----------|----------|-------------|-------------------------|
| N4—H1 <i>N</i> 4····O1 <sup>ii</sup> | 0.88 (2) | 1.74 (2) | 2.6044 (12) | 165 (2)                 |
| N5—H1 <i>N</i> 5…O7 <sup>iii</sup>   | 0.89 (2) | 1.77 (2) | 2.6402 (12) | 169 (2)                 |
| N6—H1 <i>N</i> 6···O2                | 0.84 (2) | 2.15 (2) | 2.9117 (12) | 151.1 (19)              |
| N6—H2 $N6$ ···O1 $W^{iii}$           | 0.92 (2) | 1.85 (2) | 2.7645 (12) | 173.6 (19)              |
| N7—H2 $N7$ ···O6 <sup>iv</sup>       | 0.80 (2) | 2.24 (2) | 2.9956 (13) | 158.4 (18)              |

# supporting information

| O1 <i>W</i> —H1 <i>W</i> 1···O3               | 0.83 (2) | 1.90 (2) | 2.7354 (13) | 171 (3) |
|-----------------------------------------------|----------|----------|-------------|---------|
| $O1W - H2W1 \cdots O6^{v}$                    | 0.79 (2) | 2.09 (2) | 2.8711 (12) | 175 (2) |
| O2 <i>W</i> —H1 <i>W</i> 2···O5 <sup>ii</sup> | 0.86 (2) | 1.80 (2) | 2.6666 (11) | 173 (2) |
| O2 <i>W</i> —H2 <i>W</i> 2···O4               | 0.82 (2) | 2.00 (2) | 2.8206 (11) | 175 (2) |
| O3 <i>W</i> —H1 <i>W</i> 3···O4 <sup>ii</sup> | 0.79 (2) | 2.19 (2) | 2.9602 (11) | 163 (2) |
| O3 <i>W</i> —H2 <i>W</i> 3···O8 <sup>i</sup>  | 0.83 (2) | 1.76 (2) | 2.5795 (11) | 173 (2) |
| C3—H3A···O5 <sup>vi</sup>                     | 0.95     | 2.25     | 3.1816 (13) | 167     |
| C5—H5A···N7 <sup>vii</sup>                    | 0.95     | 2.50     | 3.4265 (15) | 164     |
| C10—H10A····O6 <sup>iii</sup>                 | 0.95     | 2.44     | 3.3898 (13) | 177     |
|                                               |          |          |             |         |

Symmetry codes: (i) -*x*, -*y*, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, *y*-1/2, -*z*+1/2; (iv) *x*, *y*-1, *z*; (v) *x*+1, *y*, *z*; (vi) -*x*+2, -*y*+1, -*z*; (vii) *x*, *y*+1, *z*.