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ABSTRACT  DNA double-strand breaks (DSBs) pose a serious threat to genome 

stability and cell survival. Cells possess mechanisms that recognize DSBs and 

promote their repair through either homologous recombination (HR) or non-

homologous end joining (NHEJ). The evolutionarily conserved Mre11-Rad50-

Xrs2 (MRX) complex plays a central role in the cellular response to DSBs, as it 

is implicated in controlling end resection and in maintaining the DSB ends 

tethered to each other. Furthermore, it is responsible for DSB signaling by 

activating the checkpoint kinase Tel1 that, in turn, supports MRX function in a 

positive feedback loop. The present review focuses mainly on recent works in 

the budding yeast Saccharomyces cerevisiae to highlight structure and regula-

tion of MRX as well as its interplays with Tel1. 
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INTRODUCTION 

DNA double-strand breaks (DSBs) are cytotoxic lesions that 

threaten genomic integrity. Misrepair of DSBs often leads 

to chromosome rearrangements and loss of genetic infor-

mation that can result in cell death or oncogenic transfor-

mation. DSBs can arise spontaneously in eukaryotic cells 

either during DNA replication or as intermediates in pro-

grammed recombination events, such as meiosis and im-

mune system development. They can also be induced by 

exposure to DNA-damaging agents used in cancer thera-

pies, including ionizing radiation and topoisomerase poi-

sons. 

Cells have evolved two main mechanisms to repair 

DSBs: non-homologous end joining (NHEJ) and homologous 

recombination (HR). NHEJ directly religates the two broken 

DNA ends with no or minimal base pairing at the junction 

[1]. HR uses intact homologous duplex DNA sequences 

(sister chromatids or homologous chromosomes) as tem-

plates for repairing DSBs in an error-free manner [2, 3]. In 

order to repair DSBs by HR, the 5’ strands of each DSB end 

has to be nucleolytically degraded, in a process referred to 

as resection [4, 5]. The resulting 3’-ended single-stranded 

DNA (ssDNA) tails are first coated by the ssDNA binding 

complex Replication Protein A (RPA), which is then re-

placed by the recombinase Rad51 to form a right-handed 

helical filament that searches for DNA homologous se-

quences and catalyzes invasion of the duplex DNA mole-

cules [2, 3]. Initiation of resection not only channels DSB 

repair to HR but irreversibly inhibits NHEJ, indicating that 

this process is critical for discriminating between homolo-

gy-dependent and end-joining repair of DSBs. 

The highly conserved MRX/MRN complex (Mre11-

Rad50-Xrs2 in yeast; Mre11-Rad50-Nbs1 in mammals) is 

among the first protein complexes that are recruited at 

DSBs [6]. MRX plays an important role in controlling end 

resection and in maintaining the DSB ends tethered to 

each other for their repair by NHEJ or HR [4, 5, 7]. Fur-

thermore, it is implicated in the recruitment and activation 
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of the protein kinase Tel1 (ATM in mammals), which plays 

an important role in DSB signaling [8]. Finally, MRX is es-

sential to generate and resect meiotic DSBs, which are 

created by the Spo11 transesterase that forms a covalent 

linkage between a conserved tyrosine residue and the 5’ 

end of the cleaved strand [9]. Here, we review structure 

and regulation of the MRX complex, as well as its crosstalk 

with Tel1, focusing mainly on budding yeast S. cerevisiae, 

where the most mechanistic information is available. 

 

ARCHITECTURE OF THE MRX COMPLEX 

The Mre11 subunit of MRX contains five conserved phos-

phoesterase motifs that are essential for both 3’-5’ double-

stranded DNA (dsDNA) exonuclease and ssDNA endonucle-

ase activities [10-16]. Mre11 interacts with Rad50, whose 

domain organization is similar to that of the structural 

maintenance of chromosomes (SMC) family of proteins 

[17]. Rad50 is an ATPase belonging to the ABC ATPase su-

perfamily that is characterized by the ATP-binding motives 

Walker A and B located at the amino- and carboxy-terminal 

regions of the protein. These motives associate together, 

with the intervening sequence forming a long antiparallel 

coiled-coil. Two Rad50 ATPase domains interact with two 

Mre11 nuclease proteins to form a “head” domain, which 

is the DNA binding and processing core of MRX [18-22] (Fig. 

1). The Rad50 coiled-coil region protrudes from the head 

domain and its base interacts with two α helices of Mre11 

located carboxy-terminal to the nuclease core domain [23-

26]. At the apex of the coiled-coil, where the N-terminal 

and C-terminal regions fold back on themselves, a CXXC 

motif creates a zinc-mediated hook that allows dimeriza-

tion between Rad50 molecules within a dimeric assembly 

(intra-complex) or between Rad50 molecules in separate 

dimeric assemblies (inter-complex). The ability of Rad50 to 

dimerize with Rad50 molecules that are bound to different 

DNA ends by Zn-dependent dimerization of the hook do-

mains can account for the end-tethering activity of the 

MRX complex [27-32]. 

While Mre11 and Rad50 are conserved in bacteria and 

archaea, only eukaryotes possess Xrs2 (Nbs1 in mammals), 

which is responsible for nuclear localization of Mre11 [33]. 

The addition of a nuclear localization signal to Mre11 can 

partially suppress the hypersensitivity to DNA damaging 

agents of Xrs2-deficient cells [33], suggesting that localiza-

tion of Mre11 into the nucleus is one of the main functions 

of Xrs2. Xrs2/Nbs1 contains a variety of protein-protein 

interaction modules, among which there is a conserved 

region within the C-terminus that is responsible for the 

interaction with Tel1/ATM [34, 35].  

 

FUNCTIONAL DYNAMICS OF THE MRX COMPLEX  

The MRX complex plays a central role in signaling, pro-

cessing and repairing of DSBs. Structural studies have 

shown that these diverse functions are regulated by the 

ATP binding and hydrolysis activity of Rad50 that induce 

conformational changes of both Rad50 and Mre11. In the 

presence of ATP, Mre11 and Rad50 adopt a “closed” con-

formation, in which Rad50 head domains dimerize and 

occlude the nuclease active site of Mre11 (Fig. 1) [24, 26]. 

ATP hydrolysis drives the rotation of the two nucleotide 

binding domains of Rad50, leading to disengagement of 

the Rad50 dimer and DNA melting, so that the Mre11 ac-

tive sites can access DNA to initiate DSB resection [23, 36] 

(Fig. 1). Point mutations that stabilize the ATP-bound con-

formation of Rad50 result in both reduced Mre11 nuclease 

activity and increased DNA binding and end-tethering [37]. 

By contrast, mutations that increase ATP hydrolysis en-

hance both Mre11 nuclease and end-resection activities 

[37]. These data suggest that the ATP-bound state is re-

quired for DNA binding and tethering, whereas release 

from the ATP-bound state by ATP hydrolysis is necessary to 

allow access to DNA of the Mre11 nuclease active site and 

subsequent DSB resection (Fig. 1).  

Rad50 has a slow ATP hydrolysis rate [38], suggesting 

that either MRX exists mostly in the ATP-bound state or 

other proteins can promote ATP hydrolysis within the cell. 

In S. cerevisiae, MRX is known to interact with Rif2, which 

is recruited to telomeric DNA ends by Rap1 and negatively 

regulates telomerase action [39-42]. Rif2 was recently 

found to be recruited also to intrachromosomal DSBs in a 

manner partially dependent on MRX [43]. Interestingly, 

Rif2 enhances the ATP hydrolysis activity of the MRX com-

plex [43]. Furthermore, rif2∆ cells show an increased effi-

ciency of both end-tethering and NHEJ compared to wild 

type cells, indicating that Rif2 counteracts end-tethering 

and DSB repair by NHEJ [43]. These observations suggest 

that Rif2 can modulate the choice between HR and NHEJ 

by promoting the transition of the MRX complex from a 

closed state, required for tethering, to an open state that is 

competent for DSB resection. Interestingly, Rif2 is known 

 
 

FIGURE 1: Structural organization of the MRX complex. The ATP-

bound state of Rad50 negatively regulates MRX nuclease activity 

by masking the Mre11 nuclease sites. ATP hydrolysis by Rad50 

causes conformational changes of both Rad50 and Mre11, result-

ing in disengagement of Rad50 dimer and exposure of the Mre11 

active sites that can access DNA to initiate DSB resection. The 

Mre11 nuclease sites are indicated by yellow stars. ATP and ADP 

are indicated by purple and pink dots, respectively. 
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to counteract NHEJ at telomeres [44]. Whether this Rif2 

function depends on a Rif2-mediated regulation of MRX 

conformational changes is an interesting question that 

remains to be addressed. 

 

MRX IN END-RESECTION 

The first step in HR is the degradation of the 5’ DNA 

strands on either side of the DSB through a process termed 

resection [4, 5]. Several lines of evidence indicate that the 

MRX complex functions together with the Sae2 protein 

(CtIP in mammals) in the processing of the DSB ends. In 

fact, S. cerevisiae mutants lacking Sae2 or any component 

of the MRX/MRN complex delay resection of an endonu-

clease-induced DSB by acting in the same epistasis group 

[45-48]. Furthermore, both Sae2 and MRX play a unique 

role in the processing of hairpin-containing DNA structures 

[49-51]. Finally, sae2∆, mre11 nuclease defective mutants 

and a class of separation-of-function rad50 and mre11 al-

leles, named rad50s and mre11s, allow formation of meiot-

ic DSBs but prevent their resection [11, 52-56]. 

However, Mre11 has a 3’-5’ dsDNA exonuclease activity, 

whose polarity is opposite to that required to generate the 

3’-ended ssDNA at the DSB ends [12, 13]. Mre11 possesses 

also a weak endonuclease activity on 5’-terminated dsDNA 

strands [16, 57, 58], which is strongly stimulated by Sae2 

and by a protein block at the DNA ends [59]. Furthermore, 

sae2∆ and mre11 nuclease mutants are defective in the 

removal of covalent adducts, such as Spo11 (the trans-

esterase that generates meiotic DSBs and remains cova-

lently bound to the 5’ strands of the ensuing breaks) [60-

63] or hairpin-containing DNA structures, from DNA ends 

[49-51]. The same mutants are also hypersensitive to both 

camptothecin, which extends the half-life of DNA-

topoisomerase cleavage complexes, and ionizing radiations, 

which can generate chemically complex DSBs [64-66]. Alto-

gether, these observations suggest that the MRX complex 

initiates DNA resection by creating a nick that provides an 

internal entry site for nucleases capable of degrading DNA 

in a 5’-3’ direction (Fig. 2). 

These nucleases comprise the 5’-3’ exonucleases Exo1 

and the endonuclease Dna2, which control two partially 

overlapping pathways [67, 68]. While Exo1 is able to re-

lease mononucleotide products from a dsDNA end [69-71], 

Dna2-mediated resection needs the RecQ helicase Sgs1 

(BLM in humans) that unwinds double-stranded DNA in a 

3’-5’ polarity [72-74]. Noteworthy, the MRX complex not 

only provides an entry site for Dna2 and Exo1, but it has 

also a structural role in allowing their recruitment to the 

DSB [75], thus explaining why mre11∆ cells show a resec-

tion defect more severe than sae2∆ or mre11 nuclease 

defective mutants. In any case, mre11∆ cells are severely 

defective in DSB resection when the break is present in the 

G2 phase of the cell cycle, whereas they slow down resec-

tion only of two fold when the break occurs when they are 

exponentially growing [45-48]. This observation, together 

with the finding that a DSB is processed more efficiently 

during S phase than in G2 [76], suggests that ongoing DNA 

replication can partially bypass MRX requirement in DSB 

resection.  

Both Sae2 and Dna2 have been shown to be targets of 

cyclin-dependent kinase (Cdk1 in yeast)-Clb complexes [77, 

78], which allow DSB resection to take place only during 

the S and G2 phases of the cell cycle when sister chroma-

tids or homologous chromosomes are present as repair 

templates [79, 80]. Substitution of Sae2 S267 with a non-

phosphorylatable residue impairs DSB processing, whereas 

the same process takes place when Sae2 S267 is replaced 

by a residue mimicking constitutive phosphorylation [77]. 

Similarly, substitution of three Cdk1 consensus sites of 

Dna2 with alanines reduces extensive resection [78]. Nota-

bly, the lack of any subunit of the Ku complex allows DSB 

 

FIGURE 2: Model for DSB resection. The MRX complex and Sae2 

are recruited to DNA ends. In the ATP-bound state, Rad50 blocks 

the Mre11 nuclease and MRX promotes DNA tethering. After ATP 

hydrolysis by Rad50, the Mre11 nuclease sites are exposed and 

can catalyze an endonucleolytic cleavage of the 5’ strand. Rif2 can 

promote the ATP hydrolysis activity of Rad50. MRX-mediated 

incision requires Sae2 phosphorylation by Cdk1-Clb and allows 

bidirectional processing by Exo1 and Sgs1-Dna2 in the 5’-3’ direc-

tion from the nick and by MRX in the 3’ to 5’ direction toward the 

DSB ends. ATP and ADP are indicated by purple and pink dots, 

respectively.  
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resection in G1-arrested cells when Cdk1-Clb activity is low 

[76, 81], suggesting that Cdk1-Clb activity can relieve the 

inhibitory effect exerted by Ku on Sae2. The finding that 

this resection in G1-arrested Ku-deficient cells is limited to 

the break-proximal sequence [76, 81] indicates that Cdk1 is 

still required to activate proteins involved in extensive DSB 

resection such as Dna2. 

Altogether, these data support a model, where MRX is 

recruited to the DSB ends in the ATP-bound state. In this 

configuration, MRX maintains the DSB ends tethered to 

each other to allow DSB repair by NHEJ (Fig. 2). Upon ATP 

hydrolysis by Rad50 and Cdk1-mediated phosphorylation 

events, MRX and Sae2 provide an initial incision of the 5’ 

strand at a certain distance from the DSB end. As first pro-

posed by Garcia et al. [82], this initial cleavage is followed 

by bidirectional resection using the Mre11 3’-5’ exonucle-

ase and the 5’-3’ nuclease activities of Exo1 or Dna2-Sgs1 

(Fig. 2). 

 

ACTIVATION OF Tel1 BY MRX 

In addition to promoting end-resection and to maintaining 

the DSB ends tethered to each other, MRX/MRN is re-

quired to activate Tel1, which is a member of the evolu-

tionary conserved phosphoinositide 3-kinase-related pro-

tein kinase (PIKK) family and whose mammalian ortholog is 

called ATM (Ataxia Telangiectasia Mutated) [8]. The PIKK 

enzymes are large serine/threonine protein kinases charac-

terized by N-terminal HEAT repeat domains and by C-

terminal kinase domains [83]. The C-terminal kinase do-

main of ATM is flanked by two regions called FAT (FRAP, 

ATM, TRRAP) and FATC (FAT C-terminus), which both par-

ticipate in the regulation of the kinase activity [84].  

Tel1/ATM is a master regulator of the DNA damage re-

sponse in both yeast and mammals, where it coordinates 

checkpoint activation and DNA repair in response to DNA 

DSBs and oxidative stress [85, 86]. Biallelic mutations in 

ATM result in ataxia telangiectasia (AT), an autosomal re-

cessive inherited disease characterized by cerebellar de-

generation, strong predisposition to malignancy, growth 

retardation, radiosensitivity, immune deficiencies, and 

premature aging [87-89]. The functional interaction be-

tween MRX/MRN and Tel1/ATM is supported by the find-

ing that biallelic mutation in the MRE11 gene causes a ge-

netic syndrome, called ataxia-telangiectasia-like disease 

(ATLD), whose clinical phenotypes are nearly indistinguish-

able from AT [90, 91]. ATLD cells exhibit reduced activation 

of ATM by DSBs, suggesting that MRN is required for opti-

mal ATM activation following DSB induction, thus explain-

ing the AT-like phenotype of ATLD patients. 

Subsequent studies have revealed that MRX/MRN 

drives the localization of Tel1/ATM to the site of damage 

through direct interaction between Tel1/ATM with 

Xrs2/Nbs1 [35, 92-94] (Fig. 3). The Tel1 kinase activity is 

stimulated by MRX binding to DNA-protein complexes at 

DSBs [95] and the purified MRX/MRN complex increases 

the catalytic activity of Tel1/ATM in the presence of DNA 

fragments [96-98], suggesting that MRX/MRN also controls 

Tel1/ATM catalytic activity through an unknown mecha-

nism. 

Tel1 was originally identified in S. cerevisiae by screen 

for genes involved in telomere length maintenance [99-

101]. In addition to its role in DSB repair, Tel1 is required to 

maintain telomere length by promoting telomerase re-

cruitment through phosphorylation events [102]. Deletion 

of any subunit of the MRX complex causes telomere short-

ening similar to that caused by the lack of Tel1 or both Tel1 

and Rad50, indicating that Tel1 acts in the same pathway 

of MRX in telomere length maintenance [103]. As it is ob-

served at DSBs, Tel1 binding to telomeres is dependent on 

an interaction between Tel1 and the carboxyl terminus of 

the Xrs2 subunit of the MRX complex [104, 105]. Tel1 asso-

ciation to telomeres is counteracted by Rif2, which is 

known to inhibit telomerase-dependent telomere elonga-

tion [39, 40]. Co-immunoprecipitation experiments show 

that the C terminus of Xrs2 interacts with Rif2 [41]. As Tel1 

also binds this Xrs2 region [41], Rif2 may reduce Tel1 asso-

ciation to telomeres by interfering with MRX-Tel1 interac-

 

FIGURE 3: Crosstalk between MRX and Tel1. The MRX complex is 

required to recruit and activate Tel1, which initiates DSB signaling. 

Tel1, once loaded to the DSB ends by MRX, supports MRX func-

tion by promoting its association to the DSBs ends. Rif2 counter-

acts Tel1 recruitment to DSBs by competing with Tel1 for binding 

to MRX and stimulates Rad50 ATPase activity. Initiation of DSB 

resection by MRX-Sae2, Exo1 and Sgs1-Dna2 generate 3’-ended 

ssDNA tails that promotes a switch from a dsDNA-Tel1 to a ssDNA-

Mec1 signaling activity. 
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tion. Further support for a Tel1-Rif2 competition comes 

from the recent finding that a hypermorphic allele of TEL1 

(TEL1-hy909) is capable to overcome the inhibitory activity 

of Rif2 on MRX [42]. The Rif2 function in modulating MRX-

Tel1 interaction is not restricted to telomeres. In fact, the 

lack of Rif2 increases the association of MRX also to in-

trachromosomal DNA ends in a Tel1-dependent manner 

[43] (Fig. 3). Consistent with a direct role of this protein at 

DSBs, Rif2 can bind DNA ends both in vitro and in vivo [43], 

although the amount of Rif2 bound at a DSB flanked by 

telomeric repeats is higher than that found at a DSB that 

does not contain telomeric sequences [41-43]. 

In S. cerevisiae, Tel1 signaling activity is disrupted when 

the DSB ends are subjected to 5’-3’ exonucleolytic degra-

dation [106] (Fig. 3). Similarly, ATM activation in mammals 

is triggered by blunt ends or short overhangs and is inhibit-

ed by long overhangs of 3’ or 5’ ssDNA [107]. Interestingly, 

the lack of either Sae2 or Mre11 nuclease activity enhances 

Tel1/ATM activation at DSBs by increasing MRX persistence 

at DSBs [47, 108], suggesting that Sae2 and Mre11 nucle-

ase can inhibit Tel1/ATM signaling activity. As the mamma-

lian counterpart of MRX has been shown to bind ssDNA-

dsDNA junctions [109], the slowing down of DSB resection 

might lead to MRX persistence at DSBs by increasing the 

stability of these DNA structures. Alternatively, ssDNA near 

the dsDNA junction may break to form a second DSB that 

activates MRX-Tel1, as suggested in [110].  

Attenuation of Tel1/ATM signaling by nuclease-

mediated DSB resection is accompanied by activation of 

the checkpoint kinase Mec1 (ATR in mammals), which is 

another member of the phosphoinositide 3-kinase-related 

protein kinase family [8] (Fig. 3). In both yeast and mam-

mals, all Mec1/ATR functions at DSBs depend on the inter-

action with Ddc2 (ATRIP in mammals), which mediates 

Mec1/ATR recruitment on RPA-coated ssDNA 3’ overhangs 

[111-114].  

 

REGULATION OF MRX BY Tel1 

Recent data have shown that Tel1, once recruited to DSBs 

by MRX, supports MRX function in a positive feedback loop 

(Fig. 3). In fact, a screen for S. cerevisiae mutants that re-

quire Tel1 to survive to genotoxic treatments recently 

showed that a mutation in Rad50 (rad50-V1269M) makes 

tel1∆ cells hypersensitive to DNA damaging agents [43]. 

The rad50-V1269M mutation impairs MRX association at 

DSBs that is further reduced by the lack of Tel1, indicating 

that Tel1 promotes/stabilizes MRX association to the DSB. 

Interestingly, Tel1 exerts this function independently of its 

kinase activity [43], suggesting that it plays a structural role 

in promoting/stabilizing MRX retention to DSBs. Similarly, 

the lack of Tel1, but not of its kinase activity, was shown to 

impair MRX association also at DNA ends flanked by telo-

meric DNA repeats [43]. 

Although the rad50-V1269M mutation resides in the 

globular domain of Rad50, rad50-V1269M tel1∆ cells are 

severely defective in the maintenance of the DSB ends 

tethered to each other [43], suggesting that the Rad50 

hook and globular domains function interdependently. 

Consistent with this hypothesis, it has been shown that 

proper association to DNA of the globular domain can in-

duce parallel orientation of the Rad50 coiled-coil domains 

that favours intercomplex association needed for DNA 

tethering [22]. Furthermore, mutations in the hook domain 

that reduce its dimerization state affect the MRX functions 

specified by the globular domain, including Tel1/ATM acti-

vation, Rad50-Mre11 interaction, NHEJ and DSB resection 

[115]. Altogether these results support a model wherein 

Tel1, once loaded at DSBs by MRX, exerts a positive feed-

back by promoting an end-specific association of MRX with 

DNA (Fig. 3). This Tel1-mediated regulation of DNA-MRX 

retention is important to allow the establishment of a pro-

ductive MRX intercomplex association that is needed to 

maintain DNA ends in close proximity. 

Defects in maintaining the DSB ends tethered to each 

other in tel1∆ rad50-V1269M cells affect DSB repair not 

only by NHEJ, but also by HR [43]. During HR, the 5’ ends at 

the DSB are degraded to yield 3’ ssDNA tails that invade an 

intact homologous duplex DNA to prime DNA synthesis. 

After ligation of the newly synthesized DNA to the resected 

5’ strands, a double Holliday junction intermediate is gen-

erated and can be resolved by endonucleolytic cleavage to 

produce non-crossover (NCO) or crossover (CO) products. 

However, in mitotic cells, the invading strand is often dis-

placed after limited synthesis and anneals to the 3’ ssDNA 

tail at the other end of the DSB. After fill-in synthesis and 

ligation, this mechanism, called synthesis-dependent 

strand annealing (SDSA), generates exclusively NCO prod-

ucts and explain the lower incidence of associated COs 

during mitotic DSB repair [116-118]. Interestingly, tel1∆ 

rad50-V1269M cells are specifically impaired in SDSA [43], 

suggesting that the tethering activity exerted by MRX can 

be particularly important to promote the annealing of the 

displaced strand to the 3’ ssDNA tail at the other end of the 

DSB. By contrast, this function can be escaped when the 

second DSB end is already captured by the D-loop and the 

DNA intermediate is stabilized by the formation of a dou-

ble Holliday junction. 

 

CONCLUSION 

Overall, the MRX complex emerges as a multifunctional 

enzyme involved in a number of activities that include 

sensing and processing of the DSB ends. Furthermore, its 

association with Tel1 links DSB sensing with signaling by 

the checkpoint machinery to coordinate DSB repair with 

cell cycle progression. These functions are regulated by 

ATP binding and hydrolysis activities of Rad50 that provide 

intrinsic dynamics and flexibility properties. Furthermore, 

the Tel1 protein itself, once recruited at DNA ends by MRX, 

supports the end-tethering activity of the MRX complex by 

facilitating its proper association to DNA ends. These ob-

servations reveal the complex architecture that character-

izes the activity of MRX and Tel1 in DNA-damage response, 

maintenance of genetic stability and cell cycle regulation. 
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